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Abstract. The liver plays vital role in various activities like digestion, metabolism etc. in human body. The

proper structure and functions of liver relies on its calcium homeostasis. The hepatocyte cell is a building block

of liver. The calcium homeostasis in liver depends on intracellular calcium dynamics in a hepatocyte cell. The

specific calcium levels are maintained for various activities in the hepatocyte cell. This calcium level depends on

the processes of various influxes, effluxes and buffering mechanism. Any disturbances in these processes may lead

to impaired function of the cell and cause disorder in function of liver. In this paper the mathematical model is

proposed to study the effect of buffer and various fluxes like channel flux, leak and pump in a hepatocyte cell. The

finite volume method for unsteady state case is implemented to obtain the solution of proposed problem in two

dimensions. The effect of various physiological factors like concentration of exogenous and endogenous buffers,

leak flux constant, channel conductance, pump rate, diffusion coefficient of medium on calcium concentration is

demonstrated.
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1. Introduction

Largest internal gland in human body is liver which is made up of parenchymal hepatocyte

cells. Varieties of proteins necessary for initiation, sustentation and termination of basic cellular

activities are secreted by hepatocyte cell. The functioning of liver is controlled by calcium sig-

naling in hepatocyte cells. The concentration of free calcium ions plays crucial role in normal

functioning of cell. Cell needs to keep calcium level inside the reference range from 0.1µM

to 1µM to maintain normal calcium homeostasis [1]. The main source of calcium in hepato-

cyte cell is endoplasmic reticulum (ER). The calcium releases either from the gate of calcium

channels embedded on ER membrane or small leakage through ER membrane. The calcium

channels are abundant near apical surface of cell [2]. The released calcium from gate of cal-

cium channel diffuses in cytosol of cell in presence of buffers to attain equilibrium calcium

concentration towards basal surface of cell [3, 4]. The cyclic movement of calcium from ER

to cytosol and viceversa is shown in Figure 1. The buffer binds with free calcium to minimize

FIGURE 1. The calcium fluxes in a hepatocyte cell

the excess amount of free calcium. The SERCA pumps also flushes free calcium ions back into

ER. Thus to maintain balanced level of calcium inside cell, there must be fine co-ordination in

many physiological factors like quantity and type of buffers, channel fluxes, leakage, pumping

rate, diffusion coefficient etc. [5].

In the past, many attempts has been made to study calcium signaling in cells like neuron

[6, 7, 8, 9], fibroblast [10, 11], astrocyte [12, 13], acinar cell[14, 15, 16], oocyte [17, 18, 19],
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myocyte [20, 21]. But very few attempts are made to study the calcium signaling in hepatocyte

cell. In this paper an attempt has been made, to propose a mathematical model to study calci-

um dynamics in hepatocyte cell in presence of EGTA-Ethylene Glycol Tetra Acetic Acid and

BAPTA-1,2-Bis(o-Amino Phenoxy) ethane- NNNN Tetra Acetic Acid, as exogeneous buffers

and endogenous buffer.

2. Mathematical Model

The partial differential equation describing calcium dynamics in a hepatocyte cell in presence

of excess buffer incorporating calcium fluxes is given by [22],

∂C
∂ t

= DC

(
∂ 2C
∂x2 +

∂ 2C
∂y2

)
+(1+V )(Vleak +PVChan)

(
CT

1+V
−C
)

−Pmax
R

C2

C2 +K2
Pump

− k+j [B j]∞(C−C∞), f or 0 < x < 20, 0 < y < 20, t > 0(1)

The numerical values of biophysical constants are summarized in Table 1 [5, 22].

2.1. Initial condition

The background calcium concentration in hepatocyte cell before opening calcium channel

gate is 0.1µM [1]. With this assumption initial condition can be framed as,

(2) Ct=0 = 0.1µM

2.2. Boundary condition

The calcium releasing channels are concentrated near apical surface of hepatocyte cell [2].

Therefore it is considered that calcium is released from a gate of calcium channel kept at node

3, situated near midway of apical surface at point (0, 10). Therefore the first boundary condition
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TABLE 1. Numerical values of biophysical constants.

Symbol Description Numerical value

DC Diffusion coefficient 100-200 µm2/S

V Volume ratio of ER and cytosol 0.185

Vleak Leak flux constant 0.11S−1

P Fraction of open channel 0-1

VChan Channel conductance 6S−1

Pmax
R Maximal pump rate 0.9µM−1S−1

KPump Michaelis Menten Constant 0.1µM

C∞ Equilibrium calcium concentration 0.1µM

k+1 for EGTA Buffer association constant 1.5µM−1S−1

K1 for EGTA Dissociation constant 0.2µM

k+2 for Endogenous buffer Buffer association constant 50 µM−1S−1

K2 for Endogenous buffer Dissociation constant 10µM

k+3 for BAPTA Buffer association constant 600 µM−1S−1

K3 for BAPTA Dissociation constant 0.17µM

[B]T Total buffer concentration 50-150 µM

can be set by using Ficks law of diffusion as [5];

(3) limx→0,y→10−DC
∂C
∂x

= σC

Where, σC is influx of calcium from calcium channel.

The calcium concentration attains its equilibrium concentration 0.1µM far away from cal-

cium channel i.e near basal surface of the hepatocyte cell. The hepatocyte cell is cubical in

shape having length of approximately 20µm [1]. Therefore to set second boundary condition

it is assumed that the distance required to attain equilibrium calcium concentration is length of

hepatocyte cell.

(4) limx→20,y→20C =C∞ = 0.1µM
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3. Solution by finite volume method

In the first step hepatocyte cell is discretized using uniform grid having 25 nodal points as

shown in Figure 2.

FIGURE 2. Two dimensional discretization of hepatocyte cell

For simplification we convert nonlinear partial differential Eq.(1) into linear form. For this

we consider following two cases [20].

3.1. Case-I: KPump >>C

With this assumption we have,

(5)
C2

C2 +K2
Pump

<<
C2

K2
Pump

<<
C

KPump

Therefore Eq. (1) reduces to the form,

(6)
1

DC

∂C
∂ t

=
∂ 2C
∂x2 +

∂ 2C
∂y2 −a1C+b1

Where,

a1 =
(1+V )

DC
(Vleak +PVChan)+

Pmax
R

DCKPump
+

k+j [B j]∞
DC

b1 =
CT
DC

(Vleak +PVChan)+
k+j [B j]∞C∞

DC
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3.2. Case-II: KPump <<C

Here we assume that, KPump = λC for 0 < λ < 1 which gives,

(7)
C2

C2 +K2
Pump

=
1

1+λ 2

With this approximation Eq. (1) reduces to the form,

(8)
1

DC

∂C
∂ t

=
∂ 2C
∂x2 +

∂ 2C
∂y2 −a2C+b2

Where,

a2 =
(1+V )

DC
(Vleak +PVChan)+

k+j [B j]∞
DC

b2 =
CT
DC

(Vleak +PVChan)−
Pmax

R
DC

1
1+λ 2 +

k+j [B j]∞C∞

DC

3.3. General equation for Case-I and Case-II

The Eq. (6) and Eq. (8) can be written in general form for case I and case II as,

(9)
1

DC

∂C
∂ t

=
∂ 2C
∂x2 +

∂ 2C
∂y2 −aC+b

Where, a = a1,b = b1 for case- I and a = a2,b = b2 for case- II.

Integrating Eq.(9) with respect to time and space over a control volume gives [23],

(10)
∫ t+∆t

t

∫ xe

xw

∫ yn

ys

1
DC

∂C
∂ t

dydxdt =
∫ t+∆t

t

∫ xe

xw

∫ yn

ys

(
∂ 2C
∂x2 +

∂ 2C
∂y2 −aC+b

)
dydxdt

Solving space integration we get,

δxδy
DC

∫ t+∆t

t

∂CG

∂ t
dt =

∫ t+∆t

t

[(
∂C
∂x

)
e
−
(

∂C
∂x

)
w
+

(
∂C
∂y

)
n
−
(

∂C
∂y

)
s

]
dt

−aδxδy
∫ t+∆t

t
CGdt +bδxδy

∫ t+∆t

t
dt(11)

Now for solving time integral we use weighted parameter θ which lies between 0 to 1.

δxδy
DC

[CG−C0
G] = θ

[
CE −CG

δx
−CG−CW

δx
+

CN−CG

δy
−CG−CS

δy

]
∆t

+(1−θ)

[
C0

E −C0
G

δx
−

C0
G−C0

W
δx

+
CN0−C0

G
δy

−
C0

G−C0
S

δy

]
∆t

−aδxδy[θCG− (1−θ)C0
G]∆t +bδxδy∆t(12)
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Where the values of C at time t are super scripted with 0. Rearranging Eq.(12) gives,[
δxδy
DC∆t

+
θ

δx
+

θ

δx
+

θ

δy
+

θ

δy
+aθδxδy

]
CG

=

[
δxδy
DC∆t

− (1−θ)

δx
− (1−θ)

δx
− (1−θ)

δy
+

(1−θ)

δy
−a(1−θ)δxδy

]
C0

G

+
θCE +(1−θ)C0

E
δx

+
θCW +(1−θ)C0

W
δx

+
θCN +(1−θ)C0

N
δy

+
θCS +(1−θ)C0

S
δy

+bδxδy

(13)

To apply Crank Nicolson method we put θ = 1/2 in Eq.(13),[
δxδy
DC∆t

+
1
2

(
1

δx
+

1
δx

+
1

δy
+

1
δy

)
+

1
2

aδxδy
]

CG

=

[
δxδy
DC∆t

− 1
2

(
1

δx
+

1
δx

+
1

δy
+

1
δy

)
− 1

2
aδxδy

]
C0

G

+
1
2

CE +C0
E

δx
+

1
2

CW +C0
W

δx
+

1
2

CN +C0
N

δy
+

1
2

CS +C0
S

δy
+bδxδy(14)

For all internal nodes, Eq.(14) can be put in the form,

(15) aGCG = a0
GC0

G +
aE

2
[CE +C0

E ]+
aW

2
[CW +C0

W ]+
aN

2
[CN +C0

N ]+
aS

2
[CS +C0

S ]+Su

Where,

aG =
[

δxδy
DC∆t +

1
2 (aE +aW +aN +as)+

1
2aδxδy

]
a0

G =
[

δxδy
DC∆t −

1
2 (aE +aW +aN +as)− 1

2aδxδy
]

aE = aW = 1
δx

aN = aS =
1

δy

Su = bδxδy

Incorporating first boundary condition at node 3 by setting, CW = σC we get,

(16) aGCG = a0
GC0

G +
aE

2
[CE +C0

E ]+
aN

2
[CN +C0

N ]+
aS

2
[CS +C0

S ]+Su

Where,

aG =
[

δxδy
DC∆t +

1
2 (aE +aN +as)+( 1

δx +
1
2aδxδy)

]
a0

G =
[

δxδy
DC∆t −

1
2 (aE +aN +as)− ( 1

δx +
1
2aδxδy)

]
aE = 1

δx

aN = aS =
1

δy
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Su = (2σC
δx +bδxδy)

Incorporating second boundary condition at node 1 by setting C∞ = 0.1 and aW = aS = 0 for

cutting link with boundary we get,

(17) aGCG = a0
GC0

G +
aE

2
[CE +C0

E ]+
aN

2
[CN +C0

N ]+Su

Where,

aG =
[

δxδy
DC∆t +

1
2 (aE +aN)+( 1

δx +
1

δy +
1
2aδxδy)

]
a0

G =
[

δxδy
DC∆t −

1
2 (aE +aN)− ( 1

δx +
1

δy +
1
2aδxδy)

]
aE = 1

δx

aN = 1
δy

Su = (2CB
δx + 2CB

δy +bδxδy)

Similarly boundary condition can be incorporated at nodes 5, 21 and 25. The system of linear

algebraic equations obtained in Eq.(15) to Eq. (17) at each time step can be put in matrix form

as follows;

(18) [A]25×25 ∗ [C]25×1 = [B]25×1

Where, [A] is system matrix, [C] is concentration vector and [B] is constant vector. The Eq.(18)

is solved at each iteration to obtain solution vector [C]25×1. The numerical simulations has been

done in MATLAB 2014a, to obtain the solution.

4. Results and Discussion

The effect of change in EGTA buffer concentration i.e. [EGTA] on calcium concentration

is shown in Figure 3 for case-I and Figure 4 for case-II. In both cases it is observed that with

increase in value [EGTA] from 50µM to 150µM the concentration of free calcium decreases

simultaneously. In case-I where KPump >>C concentration of free calcium is less in comparison

with that for case-II where KPump << C. This is because of larger value of KPump sequesters

maximum amount of calcium back into ER. The equilibrium calcium concentration is slightly

higher in case-II.
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FIGURE 3. Case-I. Variation of calcium in space in presence of EGTA buffer at

time t=100 ms

FIGURE 4. Case-II. Variation of calcium in space in presence of EGTA buffer

at time t=100 ms

FIGURE 5. Case-I. Variation of calcium in space at different time step in pres-

ence of [EGTA]= 50 µM
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FIGURE 6. Case-II. Variation of calcium in space at different time step in pres-

ence of [EGTA]= 50 µM

The calcium concentration in hepatocyte cell in presence of 50 µM EGTA concentration at

different time level in both cases is shown in Figure 5 and Figure 6. The concentration of

calcium increases gradually from 0.1 µM and attains steady state concentration in 100 msec. It

can be seen that near gate of calcium channel the calcium concentration is having peak value.

It decreases with distances away from source.

FIGURE 7. Case-I and II. Variation of calcium in space at time = 100 msec in

presence of [Endogenous buffer]= 50 µM

The profile of calcium concentration in presence of endogenous buffer is as shown in Figure

7 for case-I and case-II respectively for steady state. The calcium concentration in presence

of endogenous buffer is much less than that in case of EGTA buffer. This is because of high



FINITE VOLUME SIMULATION OF TWO DIMENSIONAL CALCIUM DYNAMICS 11

binding capacity of endogenous buffer. It captures free calcium ions instantly as compared to

EGTA.

FIGURE 8. Case-I and II. Variation of calcium in space at time = 100 msec in

presence of [BAPTA]= 50 µM

In Figure 8 the profile of calcium concentration is shown in presence of BAPTA buffer at

steady state. The nodal calcium concentration is less as compared to the cases of other buffer-

s. BAPTA buffer has highest association rate constant than that of other considered buffers.

Therefore it binds with calcium ions as soon as they released from channel gate. This leads to

decrease in value of nodal calcium concentration.

FIGURE 9. Case-I. Variation of calcium in space at time = 100 msec with pump

and without pump
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FIGURE 10. Case II. Variation of calcium in space at time = 100 msec with

pump and without pump

Figure 9 and Figure 10 are plotted to study effect of SERCA pump on cytosolic calcium

concentration in case- I and case-II respectively in presence of EGTA buffer. It is observed

that in absence of pump the calcium concentration is higher at each node. In this condition

only present buffers bind with free calcium ion to minimize unnecessary increase of calcium

concentration.

Figure 11 shows the difference in values of calcium concentration with pump and without

FIGURE 11. The difference in calcium concentration with pump and without

pump with respect to time

pump. It is observed that this difference increases sharply with time upto 100msec and after

that it increases gradually and becomes almost constant. This is due to the equilibrium among

the processes which have been achieved by the cell after 100msec. It is also observed that the
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difference is maximum in case- I than in case-II. This is because in case-I Kpump is much higher

than that in case II.

FIGURE 12. Case-I. Variation of calcium in space at time = 100 msec with in-

crease in value of diffusion coefficient

FIGURE 13. Case II. Variation of calcium in space at time = 100 msec with

increase in value of diffusion coefficient

To study effect of diffusion coefficient on calcium profile the numerical simulations are done

by assuming different values of diffusion coefficient as shown in Figure 12 and Figure 13 re-

spectively for case-I and case- II. It can be seen that the increase in value of diffusion coefficient

spontaneously decreases value of calcium concentration. This is because the increased value of
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diffusion coefficient transports more calcium ions from one part of cell to other part. Which

results in decrease in accumulated nodal calcium concentration.

5. Conclusion

A finite volume model is proposed and successfully employed to study effect of excess buffers

like EGTA buffer, endogenous buffer, BAPTA buffer, channel flux, leak and pump on variation

of calcium concentration in a hepatocyte cell for two dimensional case. On the basis of results

obtained, it is concluded that, the BAPTA buffer has more significant effect than EGTA and

endogenous buffer in reducing the calcium concentration in a hepatocyte cell. Thus quantity

and type of buffers play an vital role in reducing calcium concentration under various condition

in which the calcium concentration becomes high in the cell during particular activity. Also

the SERCA pump helps to collect calcium ions back into ER to maintain balanced range of

calcium. The high levels of calcium concentration in the cell for longer periods can cause cell

death. Thus these buffers and SERCA pumps protect the cell in such conditions by reducing

the calcium concentration. The results obtained here are in agreement with biophysical facts,

however no such experimental results are available for comparison. The finite volume method

has proved to be quite versatile in incorporating the parameters and obtaining interesting results.

The information of spatiotemporal calcium profiles under various conditions can be generated

from such models and can be useful to clinical applications in detection and treatment of dis-

eases related to liver.
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