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Abstract. Plants are essential for the survival of human beings. Plants can be subjected to diseases. Plant diseases

are caused by pathogens such as fungi, bacteria and viruses. Most of these pathogens are transmitted by insect vec-

tors. In this paper we formulate and analyze a delay differential equation model for plant disease by incorporating

the incubation delay which is the time taken for a plant to become infected. The mathematical model is formulated

by considering both the plant and the insect vector populations. The total plant population is taken as a constant

and the insect vector population is taken as variable. It is assumed that the insect vector population is growing

logistically in the environment. The existence and stability of equilibria of the model are discussed in detail. The

basic reproduction number R0 of the model is computed and it is observed that the disease-free equilibrium point

is stable for all delay whenever R0 < 1. When R0 > 1 the endemic equilibrium point is stable in the absence of

delay. We have estimated the length of delay which preserves the stability of endemic equilibrium point. So when

the delay is less than a threshold value, the endemic equilibrium point is stable. At that threshold value we get

Hopf bifurcation and system shows oscillatory behaviour. Here numerical simulation is also performed to support

the analytical results.
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1. Introduction

We all depend on agricultural production for our food security and livelihoods. There are

several factors which influence the crop production worldwide. One of them is plant pathogens,

e.g. viruses, bacteria, fungi etc. which cause severe damage to plant production leading to eco-

nomic loss and depressions in farmers. Mathematical modeling is an useful tool to understand

the disease dynamics in plant population. Although there are plenty of mathematical models to

predict the dynamics of human diseases, there are very few models to understand the disease

dynamics in plant population. We have plant-specific diseases, so it is better to formulate suit-

able mathematical models by keeping a particular crop/plant in mind. Plants are also subjected

to pesticides and proper use of pesticides is also necessary to have less damage to the crop pro-

ductions. Mathematical modeling can help in formulating integrated pest management tools.

In [1], authors formulated and analyzed a plant-insect herbivore-pesticide model by consider-

ing broccoli patches surrounded by different types of ground and exposed to different levels

of insecticide spray. They fitted their model with experimental data and concluded that the

interaction between pesticide sprays and weedy margins plays an important role in integrated

pest management. The dynamics of plant disease model with continuous and impulsive con-

trol strategies is discussed in [2]. In [3], authors have considered a mathematical model for

vectored plant disease by considering variable virus density. They also extend their proposed

model by assuming that there are two competing viruses. They obtained the conditions to deter-

mine displacement and coexistence of the viruses. A non-autonomous plant disease model by

considering latent period and periodicity in the model parameters is analyzed in [4]. Analysis

of plant disease model in periodic environment and pulse roguing is demonstrated in [5]. In

[6], authors have formulated and analyzed a mathematical model for mosaic disease in Jatropha

curcas plantation by incorporating roguing and delay. Recently a plant disease model with de-

lay is formulated and analyzed by Jackson and Chen-Charpentier [7] where they assumed that

insect vectors can transit the virus from one plant to another. So in place of virus population,

they considered insect vector population while formulating their mathematical model. They

considered incubation delay in their model and compared the result of model with delay with

the model without delay using numerical simulation. Later in [8], they extended their work by
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including predator population which can eat insect vectors. Here authors presented the theoret-

ical implication of biological control of plant disease. In our present work we extend the model

by [7, 8]. In [7], authors assumed that the insect vector population follows constant recruitment

and death type demography. However for the analysis purpose they assumed that the total vec-

tor population is a constant equal to the upper limit of it. This assumption is valid if the vector

population reaches to its saturation level very fast compared to the plant population. But this

may not be a good assumption as it may depend on the species of plants and insect vectors.

In [8], authors again considered the same constant recruitment and death type demography for

vector population. Here they kept vector population as variable and discussed the existence and

stability of disease-free equilibrium. Here the existence and stability of endemic equilibrium

are demonstrated only through numerical simulation. In our proposed model we have assumed

that the total insect population is variable and growing logistically in the environment. Here

the density dependent birth and death rates of insect population when they are exposed to in-

fection are following a specific demography as discussed in [9]. This type of demography is

little hard to analyze but is more realistic. Here one can adjust the convex combination constant,

the parameter which determines the level of density dependence of birth and death rates of the

population under consideration. The carrying capacity of the insect vector population can also

influence the disease dynamics [10].

This paper is organized as follows. In section 2, we formulate our mathematical model. In

Section 3, we find the equilibria of the model and compute the basic reproduction number. In

Section 4, we discuss the stability of different equilibria of the model in presence and absence of

delay. Here we also discuss the existence of Hopf-bifurcation and obtain the critical value of the

delay τ beyond which system shows oscillatory behaviour. In Section 5, we perform numerical

simulation to support our analytical findings. Finally, we conclude our results in Section 6.

2. The Model

Here the total plant population (M(t)) is divided into three disjoint classes namely, susceptible

plants S(t), infected plants I(t) and recovered plants R(t). Similarly, the total insect vector (N(t))

is divided into two classes namely, susceptible insect vectors X(t) and infected insect vectors
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FIGURE 1. Flow diagram of plant disease dynamics

Y (t). As infected vectors do not feel sick or die due to infection, so recovered insect class is not

incorporated in this model. The virus travel from one plant to another through insect vectors.

Here the total plant population is assumed to be a constant. When an infected plant dies due

to disease, it is replaced by new plant. The insect population is assumed to grow logistically

which is more realistic. When an infected vector feeds/walks on susceptible plant, it transmits

virus/bacteria to the plant. Similarly, when a susceptible insect feeds/walks on infected plant, it

acquires bacteria/virus. Keeping in view of these facts we formulate our model as follows:

dS
dt

= µ(M−S)+ηI− βY S
1+αY

,

dI
dt

=
βY S

1+αY
− (γ +µ +η)I

dR
dt

= γI−µR (2.1)

dX
dt

=
(

b− ar
K

N
)

N−
(

d +(1−a)
r
K

N
)

X−
(

β1I
1+α1I

)
X

dY
dt

=

(
β1I

1+α1I

)
X−

(
d +(1−a)

r
K

N
)

Y.

S(0)> 0, I(0)≥ 0, R(0)≥ 0, X(0)> 0,Y (0)≥ 0.

The description of parameters are given in Table 1 and the schematic flow diagram of our

model is shown in Figure 1. As S+ I +R = M is a constant, so considering S and I is enough

to understand the dynamics of plant population. Also we have X +Y = N, and we consider
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TABLE 1. Description of parameters and their values

Parameter Description Value Reference

M Total plant host population 200 [7]

K Carrying capacity of the insect vector population 100 [7]

β Infection rate of plants due to vectors 0.003 Assumed

β1 Infection rate of vectors due to plants 0.003 Assumed

α Saturation constant of plants due to vectors 0.01 [7]

α1 Saturation constant of vectors due to plants 0.01 Assumed

µ Natural death rate of plants 0.01 [7, 8]

γ Recovery rate of plants 0.01 [7, 8]

η Death rate of infected plants due to the disease 0.01 Assumed

b Natural birth rate constant for insect population 0.2 Assumed

d Natural death rate constant for insect population 0.1 [7]

b−d = r Growth rate constant for insects population 0.1 Assumed

0≤ a≤ 1 Convex combination constant 0.8 Assumed

the differential equations corresponding to Y and N in place of X and Y as it makes analysis

simpler. Additionally, we incorporate incubation delay (τ) in the plants becoming infected. So

we modify our model (2.1) and write the delay differential equation model as follows:

dS
dt

= µ(M−S)+ηI− βY (t− τ)S(t− τ)

1+αY (t− τ)
,

dI
dt

=
βY (t− τ)S(t− τ)

1+αY (t− τ)
− (γ +µ +η)I

dN
dt

= rN
(

1− N
K

)
(2.2)

dY
dt

= (
β1I

1+α1I
)(N−Y )− (d +(1−a)

r
K

N)Y.

The initial conditions for the system (2.2) are given by S(θ) = φ1(θ), I(θ) = φ2(θ), N(θ) =

φ3(θ), Y (θ)= φ4(θ), φ1(θ)≥ 0, φ2(θ)≥ 0, φ3(θ)≥ 0, φ4(θ)≥ 0, where φ1(θ), φ2(θ), φ3(θ),

φ4(θ)∈C ([−τ,0],R4
+), the Banach space of continuous functions mapping the interval [−τ,0]

into R4
+ where R4

+ = {(x1,x2,x3,x4) : xi ≥ 0, i = 1,2,3,4}.
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3. Existence of Equilibria and the Basic Reproduction Number

The system (2.2) has three equilibria, namely

i) the boundary equilibrium E0 = (M,0,0,0),

ii) the disease-free equilibrium E1 = (M,0,K,0) and

iii) the endemic equilibrium E2 = (S∗, I∗,N∗,Y ∗) where,

S∗ =
(γ +µ +η)δ

[
δ + η

µ
δ +β1M(1+αK)+δα1M

]
[
ββ1Kδ + ββ1Kδη

µ
+(γ +µ +η)δ{β1 +δα1 +α1β1K}

] ,
Y ∗ =

(M−S∗)β1K(
δ + η

µ
δ

)
+β1(M−S∗)+α1δ (M−S∗)

,

I∗ =
βY ∗S∗

(γ +µ +η)(1+αY ∗)
, N∗ = K,

and δ = d +(1−a)r. We find the basic reproduction number R0 by following the next genera-

tion matrix methods as discussed in [11, 12]. We consider only the infected compartment I and

Y and follow the same notation as in [11, 12]. The matrix F and V for our model is given by:

F =

 βY S
β1I(N−Y )

1+α1I
)

 and V =

 (γ +µ +η)I{
d +(1−a)

r
K

}
Y



. F= Jacobian of F at E1 =

 0 βM

β1K 0


and V=Jacobian of V at E1 =

 γ +µ +η 0

0 {d +(1−a)r}

,

and it follows that

FV−1 =

 0 βM
d+(1−a)r

β1K
γ+µ+η

0

 .

The largest eigenvalue of FV−1 is called the basic reproduction number R0 and is obtained as

follows:

R0 =

√
ββ1MK

{d +(1−a)r}(γ +µ +η)
.
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4. Stability Analysis

Following [13], the Jacobian matrix of the system (2.2) is given by

J =


−µ− βYτ e−λτ

1+αYτ
−λ η 0 − βSτ e−λτ

(1+αYτ )2

βYτ e−λτ

1+αYτ
−(γ +µ +η +λ ) 0 βSτ e−λτ

(1+αYτ )2

0 0 r− 2rN
K −λ 0

0 (N−Y )β1
(1+α1I)2 m43 m44−λ


where

m43 =
β1I

1+α1I
− (1−a)

r
K

Y,

m44 =
−β1I

1+α1I
−{d +(1−a)

r
K

N}.

The characteristic equation is given by [13]

det(J) = 0.

Theorem 4.1. The boundary equilibrium E0(M,0,0,0) is always unstable.

Proof. The Jacobian matrix evaluated at E0(M,0,0,0) is given by
−µ−λ η 0 −βMe−λτ

0 −(γ +µ +η +λ ) 0 βMe−λτ

0 0 r−λ 0

0 0 0 −d−λ

 .

The eigenvalues of the above matrix are r,−µ ,−(γ+µ+η) and−d. As one of the eigenvalues

is positive so the equilibrium E0 is unstable.

Theorem 4.2. The disease-free equilibrium E1 = (M,0,K,0) is locally asymptotically stable

for R0 < 1.

Proof. The Jacobian matrix evaluated at E1(M,0,K,0) is given by
−µ−λ η 0 −βMe−λτ

0 −(γ +µ +η +λ ) 0 βMe−λτ

0 0 −r−λ 0

0 Kβ1 0 −{d +(1−a)r}−λ


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Clearly, two eigenvalues of the above matrix are −µ and −r and the remaining eigenvalues are

given by the roots of the following non-linear equation:

λ
2+λ ((µ + γ +η)+{d +(1−a)r})+{d +(1−a)r}(µ+γ+η)−ββ1MKe−λτ = 0. (4.1)

When τ = 0, last equation becomes a quadratic equation. The coefficient of λ is positive and

hence the condition for roots to have negative real parts is given by

ββ1MK
{d +(1−a)r}(µ + γ +η)

< 1.

This corresponds to R2
0 < 1, i.e. R0 < 1. Hence the equilibrium E1 is locally asymptotically

stable for R0 < 1 in the absence of delay.

When τ 6= 0, let us assume λ = iω . Substituting λ = iω in the equation (4.1) and equating the

real and imaginary parts we get the following two equations:

−ω
2 +(γ +µ +η){d +(1−a)r}= ββ1MK cosωτ,

ω{(γ +µ +η)+d +(1−a)r}=−ββ1MK sinωτ.

Now squaring and adding the last two equations, we get the following biquadratic equation:

ω
4 +[(γ +µ +η)2 +{d +(1−a)r}2]ω2 +(γ +µ +η)2{d +(1−a)r}2− (ββ1MK)2 = 0.

Assuming ω2 = u, we have

u2 +[(γ +µ +η)2 +{d +(1−a)r}2]u+(γ +µ +η)2{d +(1−a)r}2(1−R2
0) = 0.

Clearly, for R0 < 1, the last quadratic is not having any positive root and this implies that

real ω > 0 does not exist. Hence the equation (4.1) will not have purely imaginary roots for

R0 < 1. This implies that the equation (4.1) has all the roots with negative real parts. Thus the

equilibrium point E1(M,0,K,0) is locally asymptotically stable for all delay whenever R0 < 1.

Theorem 4.3. The endemic equilibrium E2 = (S∗, I∗,N∗,Y ∗) is locally asymptotically stable

whenever it exists in the absence of delay.
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Proof. The Jacobian of the system (2.2) at the endemic equilibrium E2(S∗, I∗,N∗,Y ∗) is,
−µ− βY ∗e−λτ

1+αY ∗ −λ η 0 − βS∗e−λτ

(1+αY ∗)2

βY ∗e−λτ

1+αY ∗ −(γ +µ +η +λ ) 0 βS∗e−λτ

(1+αY ∗)2

0 0 −(r+λ ) 0

0 (K−Y ∗)β1
(1+α1I∗)2 m∗43 m∗44−λ

 ,

where

m∗43 =
β1I∗

1+α1I∗
− (1−a)

r
K

Y ∗

m∗44 =−
(

β1I∗

1+α1I∗
+{d +(1−a)r}

)
The characteristic polynomial of the above matrix is given by

(λ + r)
[
λ

3 +B1λ
2 +B2λ +B3 + e−λτ(C1λ

2 +C2λ +C3)
]
= 0, (4.2)

where

B1 =

(
γ +2µ +η +{d +(1−a)r}+ β1I∗

1+α1I∗

)
> 0

C1 =
βY ∗

1+αY ∗
> 0

B2 =

(
β1I∗

1+α1I∗
+{d +(1−a)r}

)
(γ +2µ +η)+µ(γ +µ +η)> 0

C2 =

(
β1I∗

1+α1I∗
+{d +(1−a)r}

)
βY ∗

1+αY ∗
+(γ +µ)

βY ∗

1+αY ∗
− ββ1S∗(K−Y ∗)

(1+αY ∗)2(1+α1I∗)2

B3 =

(
β1I∗

1+α1I∗
+{d +(1−a)r}

)
µ(µ + γ +η)> 0

C3 =

(
β1I∗

1+α1I∗
+{d +(1−a)r}

)(
βY ∗

1+αY ∗

)
(γ +µ)− ββ1µS∗(K−Y ∗)

(1+αY ∗)2(1+α1I∗)2

When τ = 0, the characteristic equation reduces to

(λ + r)
[
λ

3 +(B1 +C1)λ
2 +(B2 +C2)λ +(B3 +C3)

]
= 0.

Clearly, one eigenvalue is −r. Using Routh-Hurwitz criterion the roots of the cubic equation

will have negative real parts if

B3 +C3 > 0 and(B1 +C1)(B2 +C2)− (B3 +C3)> 0. (4.3)
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Using the equations corresponding to endemic equilibrium point, it is easy to verify that the

condition stated in (4.3) hold. Hence the endemic equilibrium point E2 is locally asymptotically

stable when the delay τ = 0.

Now we consider the case when the delay τ > 0. We know that one eigenvalue is −r. For

the stability change the characteristic equation should have a pair of purely imaginary root. To

check whether the characteristic equation (4.2) has purely imaginary roots or not, we put λ = iω

in the remaining cubic equation and separate real and imaginary parts. This gives the following

equations:

(B3−B1ω
2) = (C1ω

2−C3)cosωτ−C2ω sinωτ

(ω3−B2ω) = (C1ω
2−C3)sinωτ +C2ω cosωτ (4.4)

Squaring and adding the above equations, and writing ω2 = u we get the following cubic equa-

tion in u,

F(u) = u3 +d1u2 +d2u+d3 = 0, (4.5)

where

d1 = B2
1−2B2−C2

1

d2 = B2
2−2B1B3−C2

2 +2C1C3 (4.6)

d3 = B2
3−C2

3

It is easy to observe that if the coefficients (d′is) in F(u) satisfy the conditions of Routh-Hurwitz

criterion, then the equation (4.5) will not have any positive real root, i.e. we will not get any

positive value of ω , which satisfy the transcendental equations stated in (4.4). In this case the

result is summarized in the following theorem.

Theorem 4.4. If the coefficients d1,d2,d3 in F(u) satisfy the conditions of Routh-Hurwitz cri-

terion, then the interior equilibrium E2(S∗, I∗,N∗,Y ∗) of the system (2.2), if exists, is asymptot-

ically stable for all delay τ > 0, provided it is stable in absence of delay.

Theorem 4.5. If the coefficients d1,d2,d3 in F(u) satisfy the conditions of Routh-Hurwitz cri-

terion, and the endemic equilibrium point E2(S∗, I∗,N∗,Y ∗) is unstable at τ = 0, then it will

remain unstable for all τ ≥ 0.

We have the following results for the roots of a cubic polynomial [14].
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Lemma 4.1. For the polynomial equation u3 +d1u2 +d2u+d3 = 0,

(i) If d3 < 0, the equation has at least one positive root;

(ii) If d3 ≥ 0 and4= d2
1−3d2 ≤ 0, the equation has no positive root;

(iii) If d3 ≥ 0 and 4 = d2
1 − 3d2 > 0, the equation has positive roots if and only if u∗1 =

−d1 +
√
4

3
> 0 and F(u∗1)≤ 0, where F(u) = u3 +d1u2 +d2u+d3.

So using the last lemma if the equation F(u) = 0 has a positive zero, then the characteristic

equation (4.2) has a pair of purely imaginary roots ±iω (say). In this case eliminating sinωτ

from the equations in (4.4), we get

τ = τ
∗
n (say) =

1
ω

cos−1
[
(ω3−B2ω)C2ω +(B1ω2−B3)(C3−C1ω2)

(C2
2ω2 +(C3−C1ω2)2

]
+

2nπ

ω
, (n= 0,1,2 . . .).

This result is summarized in the following theorem.

Theorem 4.6. The endemic equilibrium point E2 of the system (2.2) is conditionally stable if

and only if all the roots of the characteristic equation (4.2) have negative real parts at τ = 0

and there exist some positive value of the delay τ such that the characteristic equation (4.2) has

a pair of purely imaginary roots ±iω0 (say). The system will undergo a stability change for an

infinite number of values of τ say τ∗n , where

τ
∗
n =

1
ω0

cos−1
[
(ω3

0 −B2ω0)C2ω0 +(B1ω2
0 −B3)(C3−C1ω2

0 )

(C2
2ω2

0 +(C3−C1ω2
0 )

2

]
+

2nπ

ω0
, (n = 0,1,2 . . .).

Now in order to verify the transversality condition for the existence of Hopf-bifurcation we need

to prove that dξ

dτ
6= 0 at ξ = 0, where λ (τ) = ξ (τ)+ iω(τ) and λ is the root of the following

cubic equation which is coming from the characteristic equation (4.2):

λ
3 +B1λ

2 +B2λ +B3 + e−λτ(C1λ
2 +C2λ +C3) = 0

Differentiating it with respect to τ we get,

(3λ
2+2B1λ +B2)

dλ

dτ
+e−λτ(2C1λ +2C2)

dλ

dτ
+(C1λ

2 +C2λ +C3)(−τe−λτ dλ

dτ
−λe−λτ)= 0

{(3λ
2+2B1λ +B2)+e−λτ(2C1λ +C2)−τe−λτ(C1λ

2+C2λ +C3)}
dλ

dτ
= λe−λτ(C1λ

2+C2λ +C3)
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which implies,(
dλ

dτ

)−1

=
(3λ 2 +2B1λ +B2)eλτ

λ (C1λ 2 +C2λ +C3)
+

(2C1λ +C2)

λ (C1λ 2 +C2λ +C3)
− τ

λ
.

Since λ (τ0) = iω0 is a simple root of the characteristic equation (4.2), we can evaluate the

expressions involved in the above derivative at τ = τ0 as follows:{
(3λ

2 +2B1λ +B2)eλτ

}
|τ=τ0 = δ1 + iδ2,{

λ (C1λ
2 +C2λ +C3)

}
|τ=τ0 = δ3 + iδ4, (4.7)

{2C1λ +C2}|τ=τ0 = δ5 + iδ6,

where δ1 = (B2−3ω
2
0 )cosω0τ0−2B1ω0 sinω0τ0

δ2 = 2B1ω0 cosω0τ0 +(B2−3ω
2
0 )sinω0τ0

δ3 = −C2ω
2
0 ,

δ4 = ω0(C2−C1ω
2
0 ),

δ5 = C2,

δ6 = 2C1ω0.

Now (
dλ

dτ

)−1

|τ=τ0 =

(
d

dτ
Reλ (τ0)

)−1

=
δ1δ3 +δ2δ4 +δ5δ3 +δ4δ6

δ 2
3 +δ 2

4
.

Using the equations in (4.4), we can rewrite above expression as follows:(
dλ

dτ

)−1

|τ=τ0 =
ω2

0
[
3ω4

0 +2(B2
1−2B2−C2

1)ω
2
0 +(B2

2−2B1B3 +2C1C3−C2
2)
]

δ 2
3 +δ 2

4

=
ω2

0

δ 2
3 +δ 2

4
(3u2 +2d1u+d2)|u=ω2

0
=

ω2
0

δ 2
3 +δ 2

4
F ′(u)|u=ω2

0

Therefore

sign
[(

d
dτ

Reλ (τ0)

)]
= sign

[(
d

dτ
Reλ (τ0)

)−1
]
= sign

[
ω2

0

δ 2
3 +δ 2

4
F ′(u)|u=ω2

0

]
.

As δ 2
3 +δ 2

4 > 0, ω2
0 > 0 and F ′(u)|u=ω2

0
6= 0, the sign

[(
d

dτ
Reλ (τ0)

)]
will be determined by

the sign
[
F ′(u)|u=ω2

0

]
.

We already have Re(λ (τ)) = ξ (τ) and ξ (τ0) = 0. Therefore if sign
[
F ′(u)|u=ω2

0

]
< 0, then there

exists a ζ > 0 such that ξ (τ) is decreasing in (τ0−ζ ,τ0) and ξ (τ) = 0 at τ = τ0. Hence for all
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τ ∈ (τ0− ζ ,τ0), ξ (τ) > 0, which contradicts the fact that roots of the characteristic equation

(4.2) have negative real parts for all τ ∈ [0,τ0] and τ = τ0 is the minimum value of delay τ for

which (4.2) will have purely imaginary roots. Hence sign
[
F ′(u)|u=ω2

0

]
> 0 which shows that

there exists at least one λ (τ) with ξ (τ) > 0 for τ > τ0. Thus the transversality condition is

satisfied. Hence we have the following Theorem.

Theorem 4.7. The endemic equilibrium point E2 is locally asymptotically stable if τ ∈ [0,τ0],

and it is unstable for τ > τ0. When τ = τ0 a Hopf bifurcation occurs, i.e., a family of periodic

solutions bifurcate from the infected steady state E2 as τ passes through τ0.

5. Simulation

Here we simulate the system (2.2) for a set of parameters stated in Table 1. For this set

of parameters the basic reproduction number R0 = 7.07. The disease-free equilibrium point

E1(200,0,100,0) is unstable and the endemic equilibrium E2(25,87.5,100,53.8) is stable in ab-

sence of delay. For this set of parameters the critical value of delay is obtained as τ0 = 18.2027.

So the system is stable for all delay τ ∈ [0,18.2027) and at τ = 18.2027 it exhibits Hopf-

bifurcation. This fact is demonstrated in Figures 2-5, where plots of susceptible plant, infected

plant, susceptible insect and infected insect are plotted against time for different values of delay

parameter τ . From these figure it is clear that for any τ > 18.2027 the system will exhibit os-

cillations. Here oscillation is demonstrated using τ = 18.5. The 2-d phase plot for susceptible

plant verses infected plant is shown in Figure 6 for τ = 18.5 where system is exhibiting a limit

cycle. Next we repeat our simulation for different value of the carrying capacity K of insect

population. It is found that with the increase in the carrying capacity K the critical value of the

delay τ0 decreases. This fact is demonstrated in Figures 7-10, where the carrying capacity K is

changed to 150 and all other parameters are as mentioned in Table 1. For this set of parameters

we get R0 = 8.66 and the critical value of delay τ0 = 13.434. Hence in this situation system

exhibits Hopf-bifurcation even at lesser value of delay. This implies that carrying capacity of

the insect population also plays an important role in determining the dynamics of plant-insect

populations.
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FIGURE 2. Variation of susceptible plants with time for different values of delay τ .
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FIGURE 3. Variation of infected plants with time for different values of delay τ .
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lay τ .
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FIGURE 5. Variation of infected insects with time for different values of delay τ .
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FIGURE 6. 2-d plot of susceptible plant verses infected plant for τ = 18.5.
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FIGURE 7. Variation of susceptible plants with time for different values of delay

τ when the carrying capacity K = 150.
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FIGURE 8. Variation of infected plants with time for different values of delay τ

when the carrying capacity K = 150.
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FIGURE 9. Variation of susceptible insects with time for different values of de-

lay τ when the carrying capacity K = 150.
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FIGURE 10. Variation of infected insects with time for different values of delay

τ when the carrying capacity K = 150.



MODELING AND ANALYSIS OF PLANT DISEASE 17

6. Conclusion

Here we propose and analyze a delay differential equation model for plant disease where virus is

propagated by insect vector. It is assumed that insect vector population is variable and growing

logistically in the environment. The proposed model has three equilibria, namely, the bound-

ary equilibrium point (insect-free), disease-free equilibrium point and the endemic equilibrium

point. The basic reproduction number is computed and the stability of different equilibria is

discussed in detail. It is observed that the first equilibrium point is always unstable, the disease-

free equilibrium is locally asymptotically stable for all delays whenever the basic reproduction

number R0 < 1, the endemic equilibrium point is locally asymptotically stable till delay is less

than some critical value and is unstable beyond this critical value. At this critical value of delay,

system undergoes through Hopf-bifurcation about the endemic equilibrium point. Identification

of this critical value of delay is very important for practical problem as any control efforts to

eliminate the infection may not work if system is undergoing through stable oscillations. It is

found that the carrying capacity of the insect population also plays an important role as increase

in this leads to decrease in the critical value of delay beyond which system exhibits oscillations.

Numerical simulation is also performed to support our analytical findings. Present study may

help in planning suitable control strategy to control the spread of disease in plant population.

Here we have not considered biological control by introducing predator population. This we

leave for our future work.
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