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Abstract. This work reviews some recent advances on the periodic solution of the semi-continuous dynamical

system, which consists of two parts: the stability of periodic solution, the homoclinic and heteroclinic bifurcations.

In the first part, the order-1 periodic solution is classified into three types at first. Then for type 1 periodic solution,

by means of square approximation and a series of switched systems, the periodic solution is approximated by a

series of continuous hybrid limit cycles. Hence, a general stability criteria are obtained by the method of successor

function similar to the analysis in the ordinary differential equation. In the second part, the homoclinic and hetero-

clinic cycles are found for some specific parameter value in the prey-predator system. When the parameter varies,

the cycles disappear and the system bifurcates an unique order-1 periodic solution. The geometry theory and the

successor function are applied to obtain these bifurcations. Finally, we discuss some possible future trends in the

periodic solution of the semi-continuous dynamical systems.
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1. Introduction

Impulsive control methods have many important applications in various fields such as biolo-

gy, engineering, medicine etc[1]. There are different kinds of impulses controls pointed out in

[2, 3, 1]. Most studies focus on the systems with impulse at fixed times. Recently, the systems

with impulses depending on the state (not on the time) have been more attractive and received

more attention, which can be formulated as semi-continuous dynamical systems[4]. For con-

venience, we call the impulsive state feedback system as semi-continuous dynamical system in

the following.

In this study, we aim to review the advances of the periodic solutions of of semi-continuous

dynamical systems since 2010, particularly the existence and stability of periodic solution and

the homoclinic and heteroclinic bifurcations [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,

20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39].

An earlier existence result of the periodic solution was obtained by constructing a Bendix-

son region proposed by Zeng and Chen on 2006. The method of successor function is a

more convenient and popular method[4], which is applied to prove the existence in various

fields[14, 16, 19, 24, 25, 35, 34]. For the stability of the periodic solutions, the famous Ana-

logue of Poincaré Criterion[2, 40] is applied widely, yet it is not convenient to calculate due

to the dependence on initial conditions. E. M. Bonotto et al. investigated the Lyapunov sta-

bility and Poisson stability of closed set in semi dynamical systems[41, 42], and extended the

Poincaré-Bendixson and LaSalle’s theorems to the semi-continuous dynamical systems[36, 43].

The more popular and convenient method, the method of successor function, is also used to s-

tudy the stability of periodic solution[4]. In the references [26, 25, 35, 34], the authors applied

this method to obtain some stability results for the particular semi-continuous dynamical sys-

tems. Based on these results, the authors in [44] classified the order-1 periodic solution into

three types at first, and then presented a convenient and general stability criteria of the convex

periodic solution by square approximation and a series of switched systems.

Unlike the rich results in the bifurcation theory of the ordinary differential equation, there is

litter results concerning the impulsive differential equations, especially about the semi-continuous
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dynamical systems[15, 22, 21, 24, 28]. In this paper, we mainly review the homoclinic bifur-

cation [24, 28] and heteroclinic bifurcation[21] of a predator-prey system investigated by the

geometry theory of semi-continuous dynamical systems.

This paper is organized as follows. Section 2 introduces some preliminary knowledge about

the semi-continuous dynamical systems. Section 3 presents the recent results about the exis-

tence of periodic solution. The stability of order-1 periodic solution, especially the stability

criterion established by a series of approximation hybrid systems is presented in Section 4.

The existence of homoclinic and heterclicnic cycles and bifurcations are provided in Section 5.

Finally, a brief discussion concludes this paper.

2. Some preliminary knowledge about the semi-continuous dynamical sys-

tems

In this section, we introduce some notations and definitions of the semi-continuous dynamical

systems, which will be used in the following discussion.

Definition 2.1 ([4, 44, 25]) Consider a two dimensional state dependent impulsive differential

equation

(1)



dx
dt

= P(x,y),

dy
dt

= Q(x,y),

(x,y) 6∈M{x,y},

∆x = α(x,y),

∆y = β (x,y),

(x,y) ∈M{x,y},

The solution mapping of system (1) is called as the semi-continuous dynamical system denoted

by (Ω, f ,ϕ,M), where (x,y) ∈ Ω ⊂ R2
+, f = f (p, t) is the semi-continuous dynamical system

mapping with initial point p = (x0,y0) 6∈ M, the sets M and N are called the impulse set and

phase set, which are lines or curves on R2
+. The continuous function ϕ : M→N is called impulse

mapping.

Definition 2.2 ([4, 44, 25]) Let f (p, t) : Ω→ Ω be the semi-continuous dynamical system

mapping described by system (1). If there exist points A ∈ N and B ∈M, and a time T > 0 such
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that

B = f (A,T ), and A = ϕ(B),

then, the solution f (p,T ) is said to an order-1 periodic solution denoted by ÂB. The orbit

Γ = ÂB∪AB is said to an order-1 cycle.

Definition 2.3 ([4, 44, 25]) Suppose the impulse set M and the phase set N in system (1) be

straight lines, and the intersection point of phase set N and y axis be E as shown in Fig.1. Then

for any point A ∈ N, the distance between the point A and E is denoted by a as the coordinate

of point A. The trajectory initiating from A reaches impulse set M at point B, then the impulse

function ϕ maps B to C in phase set N. Point C is called the subsequent point of A, and the

coordinate of C is denoted as c. The successor function of A is defined as F(A) = c−a.

By a similar way, we can define the order-2 periodic solution and the corresponding successor

function.

Definition 2.4 ([4]) Let f (p, t) : Ω→ Ω be the semi-continuous dynamical system mapping

described by system (1). If there exist points A ∈ N, A1,B,B1 and C, time T1 > 0 and T2 > 0

such that

A1 = f (A,T1) ∈M, B = ϕ(A1) ∈ N, B1 = f (B,T2) ∈M, and C = ϕ(B1) ∈ N,

then, the order-2 successor function of A is defined as F(A) = c−a as shown in Fig. 2, where a

and c are denoted as the coordinate of A and C, respectively. If C = A, the solution f (A,T1+T2)

is said to an order-2 periodic solution with period T1 +T2.

Definition 2.5 ([44]) The order-1 periodic solution Γ1 = f (p, t) is said to be orbitally stable

if there exists δ > 0 and t1 > 0 such that ρ( f (p1, t),Γ1) < ε , for t > t1 and any ε > 0, where

p1 ∈U(p,δ )∩N.

3. The existence of periodic solution

In this section, we present two existence criteria of order-1 periodic solution. The first one

is established in [45] for a general planar autonomous impulsive system which is similar with

Poincaré-Bendixson theorem of ordinary differential equation. The second one is a general

existence criterion by means of successor function[4].
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FIGURE 1. The successor function.
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FIGURE 2. The order-2 succes-

sor function.

Theorem 3.1([45]) Assume that there exists a bounded closed simple connected region G

with boundary ∂G = Γ1∪Γ2∪Γ3, which has the following properties:

(1) there is no singularity in it;

(2) the boundary Γ1 = G∪M are non-tangent arc of semi-continuous dynamical system (1);

(3) the boundary Γ2 ⊂ ϕ(M) is a line segment and satisfies ϕ(Γ1)⊂ Γ2;

(4) the orbits of system (1) with initial values in Γ2∪Γ1 will come into the interior of G,

then there must exists an order-1 periodic solution in region G(see Fig. 3).
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FIGURE 3. The Bendixon Region.

Lemma 3.1([4, 25]) The successor function F(A) is continuous.

Theorem 3.2([4, 25]) In a semi-continuous dynamical system (Ω, f ,ϕ,M), if there are two

points A and B in the phase set N such that F(A) > 0 and F(B) < 0, then there must exist a

point C ∈ N between A and B such that F(C) = 0. That is, there is an order-1 periodic solution

passing through point C.

The order-2 and order-1 periodic solutions have the following relationship.

Theorem 3.3([4]) If system (1) has an order-2 periodic solution, there must exist an order-1

periodic solution.

4. The stability of order-1 periodic solution

Let Γ = ÂB∪ BA denote an order-1 cycle, and assume the trajectory ÂB with A ∈ N is not

tangent to the impulse set M. The successor point of a point C ∈ N is E where C is near point

A. According to the position between the points A, C and E, the order-1 periodic solution is

classified into three types:

(1) Type 1: the order-1 cycle Γ is convex, and the points C and E are at the same side of A

as shown in Fig.4.

(2) Type 2: the order-1 cycle Γ is not convex, yet the points C and E are at the same side of

A as shown in Fig.5.

(3) Type 3: the points C and E are at different sides of A as shown in Fig.6.
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The type 1 periodic solution is said to be a convex order-1 periodic solution of unilateral

asymptotic type. In the following we focus on the general stability criterion of type 1 periodic

solution generated by a state dependent impulsive system with linear impulse:

(2)



dx
dt

= P(x,y),

dy
dt

= Q(x,y),

x < h,

∆x =−αx,

∆y = βy,

x = h.

Theorem 4.1([44]) Let ÂB be a type 1 order-1 periodic solution. For any point C ∈ N in the

neighbourhood of point A, there exist a trajectory through C intersects the phase set N at point

E. If for any point C above point A, its successor function satisfies F(C) < 0, then the order-1

periodic solution ÂB is unidirectional stable.

The difficulty in the stability analysis of the semi-continuous dynamical systems is the intro-

duction of impulse function. Hence, some methods of ordinary differential equation cannot be

used. The impulse function can be described as

(3) x = f1(t) =


x1, t < t1,

x2, t ≥ t1.
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At time t1, there is an impulse ∆x = x2− x1 as shown in Fig. 7. In order to overcome the

difficulty, a piecewise continuous function is introduced to approximate equation (3)

(4) x = f2(t) =


x1, t ≤ t1,

x2− x1

t2− t1
t + x1−

x2− x1

t2− t1
t1, t1 < t < t2,

x2, t2 ≤ t.

Equation (4) is called as a square approximation function of equation (3), as shown in Fig.

8. These two figures show that f2(t)→ f1(t) as t1 → t2. Based on the similar idea, we will

construct the square approximation of system (2).

For an order-1 periodic solution ÂB with period T , the end points A and B are denoted by

A(xa,ya) and B(xb,yb). The time spend on the line AB is zero since B is mapped to A impulsive-

ly. In order to use the square approximation of the impulsive map, we assume point B spends

time T/n reaching A defined by the following system

(5)


dx
dt

=−αnh
T

, P1(x,y),

dy
dt

=
n(ya− yb)

T
, Q1(x,y), n = 1,2, . . .

Then we formulate a hybrid system to approximate system (2)

(6)



dx
dt

= P(x,y),

dy
dt

= Q(x,y),

 initial values in the phase set x = (1−α)h,

dx
dt

=−αnh
T

, P1(x,y),

dy
dt

=
n(ya− yb)

T
, Q1(x,y),

 initial values in the pulse set x = h.

Now, the discontinuous solution of impulse system (2) is approximated by a piecewise con-

tinuous solution of system (6). The discontinuous periodic solution is approximated by a a

continuous closed periodic cycle.

For simplicity some denotations are introduced

Z(x,y), X1(P(x,y),Q(x,y)), X2(P1(x,y),Q1(x,y)),
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mation function.

to rewritten system (6) as

(7)
d
dt
[Z(x,y)] = c1X1 + c2X2,

or

(8)


dx
dt

= Z1(x,y) = c1P(x,y)+ c2P1(x,y),

dy
dt

= Z2(x,y) = c1Q(x,y)+ c2Q1(x,y),
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where

(9)

 c1 = 1, c2 = 0, if initial values are in the phase set x = (1−α)h

c1 = 0, c2 = 1, if initial values are in the phase set x = h.

For a periodic cycle Γ = ÂB∪BA of system (2), choosing any point S0 ∈ N near point A,

there are a series of points {S1,S2, . . . ,Sk, . . .}, where Si+1 is the subsequent point of Si. Now

we construct a coordinate system at the phase set N such that the coordinate of A is zero. Let si

be the coordinates of the points Si, i = 0,1, . . ..

M N

S0

S1

S2

S3

A

B

FIGURE 9. The stable order-1 periodic solution.

Lemma 4.1([25, 44]) For any initial point S0 ∈ N in the neighborhood of A, if there are a

series of points {S0,S1, . . . ,Sk, . . .} approach to A when k→ ∞, i.e., limk→∞ sk = 0, then the

order-1 periodic solution is stable (unidirectional).

Lemma 4.2 (Königs) Suppose that s = f (s) is a continuous transform from line segment L

to itself, and it has a fixed point s = 0. Then the fixed point s = 0 is stable(unstable), if the part

of curve s = f (s) near the origin is in the domain

∣∣∣s
s

∣∣∣≤ 1− ε(≥ 1+ ε), ε > 0.

Lemma 4.3([44]) Suppose the function H(x(t),y(t)) has continuous partial derivatives with

respect to x and y, where x(t) and y(t) are continuous functions. The integration of H(x,y)
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along a closed curve S satisfies∮
S

dH(x(t),y(t))
dt

dt =
∫ T

0

dH(x(t),y(t))
dt

= 0,

where T is the period of S.

The periodic solution Γn generated by hybrid system (6) has period T + T
n . For any continu-

ous differential function D(x(t),y(t)), we have

Lemma 4.4 Assume that a continuous periodic solution Γn square approximates the order-1

periodic solution Γ of unilateral asymptotic type, then∫
Γ

D(x(t),y(t))dt = lim
n→∞

∮
Γn

D(x(t),y(t))dt = 0.

According to Theorem 4.1, the stability of order-1 periodic solution is if and only if

(10) F(Sk) = yc− ySk < 0

for any point Sk above point A, where c is the successor point of Sk, ySk and yc are the coordinates

of points Sk and c, which are shown in Fig. 10. Hence, it is necessary to find a method to

calculate the value of F(Sk).

Along the direction of the trajectory ÂB, we establish the curvilinear coordinate (s,n) on

point A, where s is the arc length starting from A, n is the length of the normal line, which are

shown in Fig. 10. The trajectory passing through Sk intersect the n axis and impulse set M at

point a and b, respectively. The trajectory through c intersect n axis at d, where c = ϕ(b) ∈ N.

Then we define the successor function of Sk in the curvilinear coordinate system by

F
⊕
(Sk) = nd−nc < 0.

Hence, we have the stability condition

(11) F(Sk) = yc− ysk < 0⇐⇒ F
⊕
(Sk) = nd−nc < 0.

Taking arc length s as a parameter, the equation of ÂB and AB can be rewritten in the curvi-

linear coordinate system (s,n)

x = ϕ(s), y = ψ(s)

and

x = ϕ1(s), y = ψ1(s).



12 LANSUN CHEN, XIYIN LIANG AND YONGZHEN PEI

MN

A

B

Sk

b

c

Γn

T

T/n

n

s

FIGURE 10. The curvilinear coordinate.

Hence the equation of periodic solution Γn is

(12)

 x = Φ(s) = c1ϕ(s)+ c2ϕ1(s),

y = Ψ(s) = c1ψ(s)+ c2ψ1(s),

where c1 and c2 are defined in equation (9).

For point A, there is a relationship between its rectangular coordinate (x,y) and curvilinear

coordinate (s,n)

x = Φ(s)−nΨ
′(s), y = Ψ(s)+nΦ

′(s).

Let Z10(x,y) and Z20(x,y) be the value of Z1(x,y) and Z2(x,y) of periodic solution Γn, i.e.,

Z10(x,y) = Z1(Φ(s),Ψ(s)), Z20(x,y) = Z2(Φ(s),Ψ(s)).

From equation (8), it is easy to obtain

(13)

dy
dx

=
Ψ′(s)+Φ′(s)dn

ds +nΦ′′(s)

Φ′(s)−Ψ′(s)dn
ds −nΨ′′(s)

=
Z2(Φ(s)−nΨ′(s),Ψ(s)+nΦ(s))
Z1(Φ(s)−nΨ′(s),Ψ(s)+nΦ(s))

and

(14)
dn
ds

=
Z2Φ′(s)−Z1Ψ′(s)−n(Z1Φ′′(s)+Z2Ψ′′(s))

Z1Φ′(s)+Z2Ψ′(s)
= F(s,n).
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Suppose the functions Z1 and Z2 have continuous partial derivatives, we have

(15)
dn
ds

= F ′n(s,n)
∣∣
n=0n+o(n),

where

(16) F ′n(s,n)
∣∣
n=0 =

Z2
10Z2y0−Z10Z20(Z1y0 +Z2x0)+Z2

20Z1x0

(Z2
10 +Z2

20)
3
2

= H(s),

where Z1x0, Z1y0, Z2x0 and Z2y0 are the partial derivatives of Z1 and Z2 as n = 0, respectively.

Hence the first order approximation of equation (14) is

dn
ds

= H(s)n,

and we obtain

(17) n = n0 exp
(∫ s

0
H(τ)dτ

)
, n0 = n(0).

Obviously, if
∫ γ

0 H(s)ds < 0, it has |n(γ)| < |n0|. Then by Lemma 4.1 and Lemma 4.2, we

have the following theorem.

Theorem 4.2 Let Γn = ÂB∪BA be the periodic orbit of system (8), γ be the length of Γn.

The periodic solution Γn is stable if

(18)
∫

γ

0
H(s)ds < 0.

Let ds =
√

Z2
10 +Z2

20dt, the stability condition (18) is rewritten as

(19)∫
γ

0
H(s)ds =

∫ T+ T
n

0

Z2
10Z2y0−Z10Z20(Z1y0 +Z2x0)+Z2

20Z1x0

Z2
10 +Z2

20
dt

=
∫ T+ T

n

0

[
Z1x0 +Z2y0−

Z2
10Z1y0 +Z10Z20(Z1y0 +Z2x0)+Z2

20Z1x0

Z2
10 +Z2

20

]
dt

=
∫ T+ T

n

0
(Z1x0 +Z2y0)dt− 1

2

∮
Γn

d(Z2
10 +Z2

20)

Z2
10 +Z2

20
dt =

∫ T+ T
n

0
(Z1x0 +Z2y0)dt.

Theorem 4.3 The periodic solution Γn of equation (8) is orbital asymptotical stable if the

integral along Γn satisfies ∫ T+ T
n

0
(Z1x0 +Z2y0)dt < 0.
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In addition, according to

Z1x0 =
∂Z1

∂x
=

∂P
∂x

, Z2y0 =
∂Z2

∂y
=

∂Q
∂y

,

it is easy to get

Theorem 4.4 The periodic solution Γn of equation (8) is orbital asymptotical stable if the

integral along Γn satisfies ∫ T+ T
n

0

(
∂P
∂x

+
∂Q
∂y

)
dt < 0.

Obviously, system (8) approaches (2), i.e.,

Γn→ Γ,
T
n
→ 0, T +

T
n
→ T, when n→ ∞,

by Lemma 4.4, we have

Theorem 4.5 If the semi-continuous dynamical system (2) has a type 1 order-1 periodic

solution Γ with period T , and the integral along Γ satisfies∫ T

0

(
∂P
∂x

+
∂Q
∂y

)
dt < 0,

then the order-1 periodic solution Γ is orbital stable (but not necessarily orbital asymptotical

stable).

Corollary 1 If the semi-continuous dynamical system (2) has a type 1 order-1 periodic

solution Γ with period T , and the region which contains Γ satisfies(
∂P
∂x

+
∂Q
∂y

)
< 0,

then the order-1 periodic solution Γ is orbital stable.

5. The homoclinic and heteroclinic bifurcations in predator-prey models

Unlike the rich results about the bifurcation theory in ordinary differential equations, there is

little results about that in semi-continuous dynamical system. In this section, we review some

results about the homoclinic and heterclinic bifurcation in the specific predator-prey models[21,

24, 28].
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5.1. The heteroclinic cycle and heteroclinic bifurcation. A predator prey model with Allee

effect is described by

(20)



dx
dt

= r(x−θ)(1− x
K
)− qxy

1+qhx
,

dy
dt

=
aqy

1+qhx
(x−b),

y < τ,

∆x =−αx,

∆y =−βy,

y = τ.

where 0 < α < 1, 0 < β < 1, θ > 0 implies that the prey suffering strong Allee effect. The

states x(t) and y(t) represent the population density of prey and predator at time t, respectively.

The other parameters and biology background can be found in [24] in detail.

For convenience, in the following we assume τ < y∗ and

(21) condition H: θ < b < K, and
qy∗

(1+qhb)2 > r− 2rb
K

+
rθ

K
,

where y∗ = (b−θ)(K−b)(1+qhb)r/(kqb).

Lemma 5.1 System (20) is uniformly bounded.

Theorem 5.1 If condition (H) holds, system (20) have two boundary saddle equilibria N1(θ ,0)

and N2(K,0), and a positive equilibrium N3. Furthermore, N3 is locally asymptotically stable.

Let L+
1 and L−2 denote the stable manifold of N1 and unstable manifold of N2, respectively.

Then L−2 intersects the impulse set y = τ and phase set y = (1−β )τ at points A and B, and L+
1

intersects the impulse set y = τ and phase set y = (1−β )τ at points A1 and B1. Both the curves

and points are shown in Fig. 11. Since the impulse function ϕ(x,α)= (1−α)x is monotonically

increasing with respect to x and monotonically decreasing with respect to α , there must exist a

α∗ ∈ (0,1) such that the phase point of A is B1, i.e., ϕ(xA,α
∗) = (1−α)xA = xB1 .

Hence, there is a closed curve Γ = B̂1N1 ∪N1N2 ∪ N̂2A∪AB1 passing through two saddles

N1 and N2. Hence, system (20) has an order-1 heteroclinic cycle. When α ∈ (α∗,1), it has

0 < (1−α)xA = xA+ < (1−α∗)xA = xB1 . Thus the trajectory from A+ will cross the x = 0 axis

and has no impulse effect, which implies that system (20) has no periodic solution. When 0 <

α0 < α∗ < 1, system (20) has an unique order-1 periodic solution by the method of successor

function.
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M

N

AA1

BB1

N1 N2

dx

dt
= 0

dy

dt
= 0

L+
1 L−

2

FIGURE 11. The heteroclinic cycle.

Theorem 5.2 If condition (H) holds, there exist α∗ and α0 with 0 < α0 < α∗ < 1 such

that system (20) has an unique order-1 periodic solution for any α ∈ (α0,α∗). When α = α∗,

system (20) has an order-1 heteroclinic cycle. If α ∈ (α∗,1), system (20) has no order-1 periodic

solution.

5.2. The homoclinic cycle and homoclinic bifurcation. A predator prey model is described

by

(22)



dx
dt = x(a− x)(x+ k)− xy,
dy
dt = y(θ −d)(x−λ )−u(x+ k)+δ (a− x)(x+ k)− y,

x > h,

∆x = τ,

∆y =−qy,

x = h.

where τ is the constant stocking rate, 0 < q < 1 is the harvesting rate, x(t) and y(t) represent

the population density of prey and predator at time t, respectively. The other parameters and

biology background can be found in [28] in detail. When δ = 0 and 4u < (θ − d)(a− λ )2,

system (22) without impulsive effects has two positive equilibria E(x1,y1) and Q(x2,y2), where

E is a non-saddle singular points and Q is a saddle point.

Lemma 5.2 System (22) is uniformly upper bounded.

Let ΓA and ΓB denote the unstable and stable manifold of saddle point Q, L1 and L2 de-

note the isolines dx
dt = 0 and dy

dt = 0. According to Lemma 5.2, ΓA intersect impulse set M at
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point A(xA,yA). The vertical isolines L1 passing through Q intersect the set M and N at point

C(xC,yC) and D(xD,yD), respectively. These curves and points are shown in Fig. 12. Since the

impulse map φ(y,q) = (1−q)y is monotonically increasing with respect to y and monotonically

decreasing with respect to q, there must exist a q∗ ∈ (0,1) such that the phase point of A is B,

i.e., φ(yA,q∗) = (1−q)yA = yB. Hence, there is a cycle Γ = B̂Q∪ Q̂A∪AB passing through Q.

That is, system (22) has a homoclinic cycle.

If q < q∗ and yB ≤ φ(yc,q), yD ≥ φ(yA,q), a Bendixion region is constructed to obtain an

unique order-1 periodic solution by Theorem 3.1. Hence we have the following theorem.

M N

A

B
Q

C

D

ΓA

ΓB

L1

L2

FIGURE 12. The homoclinic cycle.

Theorem 5.3 If 4u < (θ − d)(a− λ )2, there is a q∗ ∈ (0,1) such that system (22) has an

order-1 homoclinic cycle. If q < q∗ and yB ≤ φ(yc,q), yD ≥ φ(yA,q), then system (22) has no

homoclinic cycle and bifurcates an unique order-1 periodic solution.

6. Conclusion

This paper reviews some advances on the stability and bifurcations of the semi-continuous

dynamical systems since 2010. For the stability results, we focus on the closed convex order-

1 periodic solution, one of three type periodic solutions. A sequences of switched systems are

constructed to generate hybrid limit cycles, which are square approximations of order-1 periodic

solution. Then a general and simple stability criterion is obtained by the successor function
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which is similar to the stability analysis in ordinary differential equation. For the bifurcation

theory, we mainly consider the homoclinic and heteroclinic bifurcations of prey predator models

with state dependent impulsive harvesting. By the successor function and the geometry theory

of the semi-continuous systems, there are the homoclinic or heteroclinic cycles for the specific

parameter value. When the parameter varies, the cycles disappear and the system bifurcates an

unique order-1 periodic solution.

It is worth mentioning that the geometry theory of the semi-continuous dynamical systems is

still in the early stage of study, and has many interesting topics to be explored, especially in the

following topics.

(1) The current method is only applied to type 1 periodic solution, i.e., the closed convex

one of unilateral asymptotical type. It should develop new methods to study the other

two types and other orders of periodic solutions.

(2) Comparing with the rich bifurcation theory in the ordinary differential equation, it

should make more efforts to the bifurcation theory in the semi-continuous dynamical

systems, such as Hopf bifurcation and backward bifurcation.

(3) Most of the current works investigate the two dimensional systems. The more powerful

analytical techniques should be introduced to explore the three dimensional or more

higher dimensional systems.
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