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Abstract. In order to understand the impact of periodic evolution in habitats on the survival of species, a logistic

reaction diffusion harvesting model with infinite delay in a periodically evolving domain is studied. By assuming

that the evolving domain is uniform and isotropic, the model is converted into a reaction diffusion problem in a

fixed domain. The asymptotic behavior of the model is obtained by using principal eigenvalue and the upper and

lower solutions method, and a biological explanation of the impact of regional evolution on species is given. Our

theoretical results and numerical simulations show that big evolution rate benefits the survival of species.
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1. Introduction

Ecology is the scientific analysis of interactions among organisms and their environment [1].

Mathematical models are usually used to describe an ecological system ranging in scale from an

individual population to an ecological community and to gain understanding of the real system
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[2], such as the classic logistic equation [3]

dN
dt

= rN(1− N
K
). (1.1)

It depicts the changes in the number of species in its habitat, where N denotes total number of

a population, r represents intrinsic growth factor, K is carrying capacity, that is, the maximum

number of species that can be accommodated in the habitat. Taking the random movement of

individuals in space into account, we arrive at a logistic reaction diffusion equation

∂u
∂ t

= d∆u+u(a−bu), (1.2)

where u = u(x, t) indicates population density, a represents the birth rate, b is the internal com-

petition factor, d > 0 is the diffusion rate. Equation (1.2) was proposed by Fisher [4] in 1937

to discuss a steadily progressive wave of gene increase due to the local establishment of a

favourable mutation. Kolmogoroff, Petrovsky and Piscoun-off [5] proved that the reaction dif-

fusion equation (1.2) admits a travelling wave solution under certain conditions. Considering

sustainable development and utilization of renewable resources, many scholars have been s-

tudying the corresponding harvesting model [6]

∂u
∂ t

= d∆u+u
(
a(t)−b(t)u

)
−E(t)u, (1.3)

where E(t) is the harvesting effort and its magnitude depends upon the resources devoted to

harvest, Eu represents the amount of harvesting. Considering the time delay, Chen [7] studied

the logistic harvesting model with infinite delay

∂u
∂ t

= d∆u+u
(
a−bu− c

∫ t

−∞

K(t− s)u(x,s)ds
)
−Eu, (1.4)

where K is a non-negative piecewise continuous kernel and satisfies∫
∞

0
K(s)ds = 1,

∫
∞

0
sK(s)ds <+∞.

In this paper, model (1.4) with Dirichlet boundary condition on periodically evolving domains

will be discussed to understand the dynamics of the solution.

2. The model on periodically evolving domains
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When ecological phenomena are characterized by reaction diffusion models, the domains

involved are usually fixed. However, the changing of domain plays a significance role in the

survival of species and attracts much attention. One of them is the problem with free boundary,

which is caused by behaviors of species themselves. In [8], Du and Lin studied the logistic

reaction diffusion model, and gave spreading-vanishing dichotomy, that is, the population either

successfully expends to the entire new environment and tends to a positive equilibrium state,

or eventually goes to extinction. See also some recent work [9-11] and references therein.

Another problem with regional change is that with evolving domain [12], which is caused by

climate and environment. For example, leaves where insects live grow with time, rivers and

lakes where fishes habitat change seasonally, areas of which become larger in summer and

smaller in winter.

As in [13], let Ω(t) ⊂ Rn be a simply connected evolving domain at time t ≥ 0 with its

evolving boundary ∂Ω(t). For any point

x(t) = (x1(t),x2(t), . . . ,xn(t)) ∈Ω(t),

we assume that u(x(t), t) is the density of a species at position x(t) and time t ≥ 0. By Reynolds

transport theorem [14], we have

∂u
∂ t

+∇u ·a+u(∇ ·a) = d∆u+ f (u, t) in Ω(t), (2.1)

where f (u, t) = u
(
a(t)−b(t)u−c(t)

∫ t
−∞

K(t−s)u(y,s)ds
)
−Eu, ∇u ·a is called advection term

while (∇ ·a)u is called dilution term. In order to circumvent the difficulty induced by the evolv-

ing domain, we modify equation (2.1) by using transformation of variables. Let y1, y2, . . . , yn

be fixed cartesian coordinates in fixed domain Ω(0) such that

x1(t) = x̂1(y1,y2, . . . ,yn, t),

x2(t) = x̂2(y1,y2, . . . ,yn, t),

. . . ,

xn(t) = x̂n(y1,y2, . . . ,yn, t).
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Then u is mapped into the new function defined as

u(x1(t),x2(t), . . . ,xn(t), t) = v(y1,y2, . . . ,yn, t). (2.2)

Thus equation (2.1) can be translated to another form which is defined on the fixed domain

Ω(0) with respect to y = (y1,y2, . . . ,yn). However, the new equation is still very complicated.

To further simplify the model equation (2.1), we assume that domain evolution is uniform and

isotropic. That is, the evolution of the domain takes place at the same proportion in all directions

as time elapses. Mathematically, x(t) = (x1(t),x2(t), . . . ,xn(t)) can be described as follows:

(x1(t),x2(t), . . . ,xn(t)) = ρ(t)(y1,y2, . . . ,yn), y ∈Ω(0), (2.3)

where the positive continuous function ρ(t) is called evolution rate subject to ρ(0) = 1. Fur-

thermore, if ρ(t) = ρ(t +T ) for some T ≥ 0, the domain is periodically evolving, which has

been discussed in [12]. If ρ̇(t) ≥ 0, the domain is then called growing one [13, 14], and if

ρ̇(t)≤ 0, the domain is shrinking, see [15] and references therein.

By (2.3), we have

vt = ut +∇u ·a,

a = ẋ(t) = ρ̇(t)(y1,y2, . . . ,yn) =
ρ̇

ρ
(x1,x2, . . . ,xn),

∇ ·a =
nρ̇

ρ
, ∆u =

1
ρ2(t)

∆v.

Then (2.1) becomes

vt =
d

ρ2(t)
∆v− nρ̇(t)

ρ(t)
v+ f (v, t), y ∈Ω(0), t > 0. (2.4)

Considering the null Dirichlet boundary condition, which means that there is no species on

the boundary, we then transform the logistic harvesting model with infinite delay on the period-

ically evolving domain Ω(t) into the following problem in a fixed domain Ω(0):

vt =
d(t)

ρ2(t)∆v− nρ̇(t)
ρ(t) v−E(t)v

+v
(
a(t)−b(t)v− c(t)

∫ t
−∞

K(t− s)v(y,s)ds
)
, y ∈Ω(0), t > 0,

v(y, t) = 0, y ∈ ∂Ω(0), t > 0,

v(y, t) = η(y, t)(:= u(x(t), t)), y ∈Ω(0), −∞ < t ≤ 0.

(2.5)
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3. Asymptotic behavior of the solution

To explore the impact of evolving domain on the asymptotic behavior of the solution to

problem (2.5), we need to consider the eigenvalue problem of the corresponding linear periodic

problem 
ϕt− d

ρ2(t)∆ϕ = a(t)
R0

ϕ− (nρ̇(t)
ρ(t) +E(t))ϕ, y ∈Ω(0), t > 0,

ϕ(y, t) = 0, y ∈ ∂Ω(0), t > 0,

ϕ(y,0) = ϕ(y,T ), y ∈Ω(0).

(3.1)

According to [16], we know that if d > 0 and a(t), E(t), ρ(t) are all periodically continuous

functions, then problem (3.1) has a unique principal eigenvalue R0(> 0) with a positive T-

periodic eigenfunction ϕ(y, t). To reflect the dependence of R0 on parameters d and ρ(t), R0 is

written as R0 = R0(d,ρ(t)). From standard results on perturbation of simple eigenvalues [17],

R0 is a smooth function with respect to d and ρ(t). Moreover, we have the following properties

of R0(d,ρ(t)).

Lemma 3.1. Assuming that the environment is periodically evolving, then the principal eigen-

value of problem (3.1) can be explicitly expressed as

R0 =

∫ T
0 a(t)dt∫ T

0 (E(t)+ dλ1
ρ2(t))dt

,

where λ1 > 0 is the principal eigenvalue of−∆ in Ω(0) subject to homogenous Dirichlet bound-

ary condition, and R0 is monotonically decreasing to d and increasing to ρ(t).

Proof. Since a(t) is spatially independent, we rewrite the eigenfunction as

ϕ(y, t) = α(t)ψ1(y),

where α(t) is a function to be determined later, ψ1(y) > 0 (y ∈ Ω(0)) is the eigenfunction

related with the principal eigenvalue λ1 > 0 of the eigenvalue problem −∆ψ1 = λ1ψ1, y ∈Ω(0), t > 0,

ψ1 = 0, y ∈ ∂Ω(0), t > 0.
(3.2)

From (3.1), we have

α̇(t)ψ1(y)+
dλ1

ρ2 α(t)ψ1(y)+(
nρ̇

ρ
+E(t))α(t)ψ1(y) =

a(t)
R0

α(t)ψ1(y),
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which derives

α(t) = α(0)e
∫ t

0(
a(τ)
R0
− nρ̇(τ)

ρ(τ)
−E(τ)− dλ1

ρ2(τ)
)dτ

.

Owing to ϕ(y, t +T ) = ϕ(y, t), we have α(t +T ) = α(t) and∫ T

0
(
a(t)
R0
−E(t)− dλ1

ρ2(t)
)dt = 0.

Therefore,

R0 =

∫ T
0 a(t)dt∫ T

0 (E(t)+ dλ1
ρ2(t))dt

. (3.3)

The corresponding monotonicities are directly from expression (3.3). This completes the proof.

We now consider the steady state to problem (2.5).

Definition 3.1. We call the solution to the problem

Vt =
d

ρ2(t)∆V − nρ̇(t)
ρ(t) V

+V (a−E−bV − c
∫ t
−∞

K(t− s)V (y,s)ds), y ∈Ω(0), t > 0,

V (y, t) = 0, y ∈ ∂Ω(0), t > 0,

V (y, t +T ) =V (y, t), y ∈Ω(0), −∞ < t ≤ 0

(3.4)

as the steady state of problem (2.5).

Next we first present the existence and uniqueness of the steady state and then show the con-

vergence result for the solution to the initial boundary problem (2.5) in relation to the periodic

solution to problem (3.4).

Theorem 3.1. Assume that a(t), b(t), c(t), ρ(t) and E(t) are all continuous T-periodic func-

tions.

(i) If R0 > 1, then problem (3.4) admits a unique positive periodic solution V ∗(y, t). Moreover,

V ∗(y, t) is global attractor of problem (2.5), that is, for any solution v(y, t) to problem (2.5)

with positive bounded initial data, we have

lim
m→∞

v(y, t +mT ) =V ∗(y, t) on Ω(0)× [0,+∞);

(ii) if R0 < 1, then problem (3.4) has only trivial solution V ?(y, t) ≡ 0. Moreover, V ?(y, t) is

global attractor of problem (2.5), which means that

lim
t→∞

v(y, t) = 0 on Ω(0).
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Proof. We first present the existence and uniqueness of the solution to problem (3.4). When

R0 > 1, let ϕ be positive eigenfunction to problem (3.1), we choose

V̂ = εϕ,

where ε is sufficient small so that

εb(t)ϕ(y, t)R0 < a(t)(R0−1), (y, t) ∈Ω(0)× [0,T ],

then V̂ is a lower solution of problem (3.4). It is easy to see that if we choose

Ṽ ≥M := max{ max
(y,t)∈Ω(0)×[0,T ]

a
b
(t), sup

(y,t)∈Ω(0)×(−∞,0]
η(y, t)},

then Ṽ is a upper solution of problem (3.4). We now select K∗ so that F(v, t) = K∗v+ f (v, t) is

nondecreasing with respect to v, and consider the following iteration process with initial values

V (0)
= Ṽ and V (0) = V̂

V (m)
t − d

ρ2(t)∆V (m)
+K∗V (m)

= K∗V (m−1)− nρ̇(t)
ρ(t) V (m−1)

+V (m−1)
(a−E

−bV (m−1)− c
∫ t
−∞

K(t− s)V (m−1)
(y,s)ds), y ∈Ω(0), t > 0,

V (m)
t − d

ρ2(t)∆V (m)+K∗V (m) = K∗V (m−1)− nρ̇(t)
ρ(t) V (m−1)+V (m−1)(a−E

−bV (m−1)− c
∫ t
−∞

K(t− s)V (m−1)(y,s)ds), y ∈Ω(0), t > 0,

V (m)
(y, t) =V (m)(y, t), y ∈ ∂Ω(0), t > 0,

V (m)
(y, t) =V (m−1)

(y, t +T ), y ∈Ω(0), −∞ < t ≤ 0,

V (m)(y, t) =V (m−1)(y, t +T ), y ∈Ω(0), −∞ < t ≤ 0,

(3.5)

we then get the iterations {V (m)} and {V (m)}, where m = 1,2,3, . . . . Recalling positivity lemma

[18] yields

V̂ ≤V (m) ≤V (m+1) ≤V (m+1) ≤V (m) ≤ Ṽ ,

and

lim
m→∞

V (m)
=V ∗, lim

m→∞
V (m) =V ∗.

Then we have

V̂ ≤V (m) ≤V (m+1) ≤V ∗ ≤V ∗ ≤V (m+1) ≤V (m) ≤ Ṽ .
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It follows from the regularity of partial differential equation that V ∗ and V ∗ are the solutions

to problem (3.4). To illustrate the uniqueness of the solution, let V1 and V2 be two solutions.

Define

Λ = {s ∈ [0,1], sV1 ≤V2 on Ω(0)× [0,T ]}.

Clearly Λ contains a neighbourhood of 0. We claim that 1 ∈ Λ. Suppose not, then

s0 = supΛ < 1

and

(V2− s0V1)t−∆(V2− s0V1) = f (V2, t)− s0 f (V1, t).

Recalling that f (V, t)+K∗V is increasing on [0, maxV2] gives

(V2− s0V1)t−∆(V2− s0V1)+K∗(V2− s0V1)

= f (V2, t)− s0 f (V1, t)+K∗V2− s0K∗V1

≥ f (s0V1, t)− s0 f (V1, t)≥ 0

for y ∈ Ω(0), t > 0. On the other hand, for y ∈ ∂Ω(0), t > 0, V2− s0V1 = 0. Using the strong

maximum principle we have assertions as follows.

(i) V2− s0V1 > 0 on Ω(0)× [0,T ] with ∂

∂ν
(V2− s0V1) < 0 on ∂Ω(0)× [0,T ]. Then, clearly

there is some ε > 0 such that V2−s0V1≥ εV1. Thus s0+ε ∈Λ, which contradicts the maximality

of s0.

(ii) V2− s0V1 ≡ 0 on Ω(0)× [0,T ]. This case is also impossible since we would have the

equation f (V2, t) = s0 f (V1, t), but f (V2, t) = f (s0V1, t) > s0 f (V1, t). Therefore, problem (3.4)

has only a positive periodic solution V ∗(y, t).

Next, we will use the principle of induction and the uniqueness of the solution to problem

(3.4) to prove the convergence result:

lim
m→∞

v(y, t +mT ) =V ∗(y, t) in Ω(0)× [0,+∞).

Similarly as [18], let vm(y, t) = v(y, t+mT ). If the initial data η(y, t) is positive and bounded,

then we can choose sufficiently small ε and big M such that

εφ = V̂ ≤ η(y, t)≤ Ṽ = M in Ω(0)× (−∞,0],
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then using the comparison principle yields

V̂ (y, t)≤ v(y, t)≤ Ṽ (y, t) in Ω(0)× (−∞,+∞).

Then we can obtain

V (1)(y, t) =V (0)(y, t +T ) = V̂ (y, t +T )≤ v1(y, t)≤ Ṽ (y, t +T ) =V (0)
(y, t +T ) =V (1)

(y, t)

in Ω(0)× (−∞,0]. By the comparison principle, we can see that

V (1)(y, t)≤ v1(y, t)≤V (1)
(y, t) in Ω(0)× [0,+∞).

Assume, by induction, that

V (m−1)(y, t)≤ vm−1(y, t)≤V (m−1)
(y, t) in Ω(0)× [0,+∞).

By the comparison principle, we can deduce that

V (m)(y, t)≤ vm(y, t)≤V (m)
(y, t) in Ω(0)× [0,+∞).

Due to the uniqueness of the solution to problem (3.4), we have

lim
m→∞

V (m)
= lim

m→∞
V (m) =V ∗(y, t),

and then

lim
m→∞

v(y, t +mT ) =V ∗(y, t) on Ω(0)× [0,+∞).

When R0 < 1, the proof is as above. This completes the proof.

Based on the above results, we further study the impact of diffusion rate d on the survival of

species.

Theorem 3.2. Assume that a(t), b(t), c(t), ρ(t) and E(t) are all continuous T-periodic func-

tions and satisfy
∫ T

0 (a(t)−E(t))dt > 0, b(t) > 0, then there exists a constant D > 0 such that

when d ∈ (0,D), problem (2.5) admits a unique steady state V ∗(y, t), which is globally asymptot-

ically stable; when d ∈ (D,+∞), trivial solution V ?(y, t)≡ 0 is only the steady state of problem

(2.5) and is globally asymptotically stable.
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Proof. By Lemma 3.1 and
∫ T

0 (a(t)−E(t))dt > 0, b(t) > 0, it is easy to know R0 = 1 if and

only if

d = D :=
∫ T

0 (a(t)−E(t))dt

λ1
∫ T

0
1

ρ2(t)dt
. (3.6)

Therefore, when d ∈ (0,D), we have R0 > 1, and then problem (2.5) has a positive steady state;

when d ∈ (D,+∞), we have R0 < 1, and problem (2.5) admits a unique trivial solution. This

completes the proof.

Remark 3.1. Theorem 3.2. implies that a small diffusion rate d(<D) is benefit to the survival of

species. Similar results have been found by many researches, for example, the authors showed

in [19] that the slower diffusing species always wins the competition.

4. Impact of domain evolution on survival of species

Assuming that ρ(t) ≡ 1 on initial domain Ω(t), that is Ω(t) = Ω(0) is a fixed domain, we

consider the following logistic harvesting model with infinite delay

∂ v̌
∂ t = d∆v̌+

v̌(a−bv̌− c
∫ t
−∞

K(t− s)v̌(x,s)ds)−Ev̌, y ∈Ω(0), t > 0,

v̌(y, t) = 0, y ∈ ∂Ω(0), t > 0,

v̌(y,0) = v̌0(y), y ∈Ω(0).

(4.1)

The corresponding eigenvalue problem is
φt− d

ρ2(t)∆φ = a
R∗0

φ − (nρ̇(t)
ρ(t) +E)φ , y ∈Ω(0), t > 0,

φ(y, t) = 0, y ∈ ∂Ω(0), t > 0,

φ(y,0) = φ(y,T ), y ∈Ω(0),

(4.2)

where R∗0 is the principal eigenvalue of problem (4.2) ([20]).

Definition 4.1. We call the solution to the problem

V̌t =
d

ρ2(t)∆V̌ − nρ̇(t)
ρ(t) V̌

+V̌ (a−E−bV̌ − c
∫ t
−∞

K(t− s)V̌ (y,s)ds), y ∈Ω(0), t > 0,

V̌ (y, t) = 0, y ∈ ∂Ω(0), t > 0,

V̌ (y, t +T ) = V̌ (y, t), y ∈Ω(0), t ≤ 0

(4.3)
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as the steady state of problem (4.1).

Recalling Theorem 3.2 together with ρ(t)≡ 1 yields

R∗0 =
∫ T

0 a(t)dt∫ T
0 (E(t)+dλ1)dt

, D∗ :=
1

λ1T

∫ T

0
(a(t)−E(t))dt. (4.4)

We can give the corresponding global dynamics of problem (4.1).

Theorem 4.1. Assume that a(t), b(t), c(t), ρ(t) and E(t) are all continuous T-periodic func-

tions and satisfy
∫ T

0 (a(t)−E(t))dt > 0, b(t) > 0, then there exists a constant D∗ > 0 such

that when d ∈ (0,D∗), problem (4.3) admits a unique positive periobic solution V̌ ∗(y, t). More-

over, V̌ ∗(y, t) is globally asymptotically state to problem (4.1), that is, for any solution v̌(y, t) to

problem (4.1)

lim
m→∞

v̌(y, t +mT ) = V̌ ∗(y, t) on Ω(0)× [0,+∞);

when d ∈ (D∗,+∞), problem (4.3) has only trivial solution V̌ ?(y, t) ≡ 0. Moreover, V̌ ?(y, t) is

global asymptotically state to problem (4.1), which means that

lim
t→∞

v̌(y, t) = 0 on Ω(0).

To understand the impact of evolution rate on the global dynamics of the solution, we com-

pare problem (4.1) (ρ(t)≡ 1) with problem (2.5) for general ρ(t), and have the following results

which can be obtained by the explicitly expressions of R0, R∗0, D and D∗.

Theorem 4.2. Assume that a(t), b(t), c(t), ρ(t) and E(t) are all continuous T-periodic func-

tions and satisfy
∫ T

0 (a(t)−E(t))dt > 0, b(t)> 0, then the following assertions are true:

(i) if 1
T
∫ T

0
1

ρ2(t)dt = 1, then R0 = R∗0, that is, the survival and extinction of species on periodi-

cally evolving domains are the same as that on fixed domains;

(ii) if 1
T
∫ T

0
1

ρ2(t)dt > 1, then R0 > R∗0, which shows that the periodical domain evolution leads to

fewer opportunities for the species to survive on evolving domains than that on fixed domains;

(iii) if 1
T
∫ T

0
1

ρ2(t)dt < 1, then R0 < R∗0, which shows that the periodical domain evolution results

in more opportunities for the species to survive on evolving domains than that on fixed domains.

Theorem 4.3. Assume that a(t), b(t), c(t), ρ(t) and E(t) are all continuous T-periodic func-

tions and satisfy
∫ T

0 (a(t)−E(t))dt > 0, b(t)> 0, then the following assertion is true:
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(i) if 1
T
∫ T

0
1

ρ2(t)dt = 1, then D = D∗, and in consequence the range of diffusion rate which

species can survive has no difference compared on periodically evolving domain with on fixed

domain, that is, the periodic domain evolution has no impact on the survival of species;

(ii) if 1
T
∫ T

0
1

ρ2(t)dt > 1, then D < D∗, and hence the range of diffusion rate which species can

survive is smaller on periodically evolving domain than on fixed domain, that is, the periodic

domain evolution has a negative impact on the survival of species;

(iii) if 1
T
∫ T

0
1

ρ2(t)dt < 1, then D > D∗, and hence the range of diffusion rate which species can

survive is larger on periodically evolving domain than on fixed domain, that is, the periodic

domain evolution has a positive impact on the survival of species.

Set ρ−2 = 1
T
∫ T

0
1

ρ2(t)dt, where ρ(t) is evolution rate. According to the above conclusions,

one can find that ρ−2 is a threshold which can predict the impact of periodic domain evolution

on the survival of species. In fact, by Remark 3.1, Theorems 4.2 and 4.3, we know that, if a

species resides in a periodically evolving domain and its boundary is extremely infertile, then

domain evolution will affect the survival and extinction of species which is closely related to

the average value ρ−2. Specifically, if ρ−2 > 1, then species must diminish its diffusion rate if

it is to survive on its habitat. Otherwise, the species will become extinct. That is, the periodical

domain evolution under this condition restrain the survival of species. If ρ−2 < 1, then species

on evolving domain can survive in a larger range of diffusion rates compared to species on a

fixed domain. That is, as domain evolves, species can survive not only at the same rate as on

fixed domains, but also at larger diffusion rates. Thus, the periodical domain evolution under

this condition can promote the survival of species. And if ρ−2 = 1, we can see that although

the domain will show periodic growth and reduction, the survival or extinction of species is the

same as that on fixed domains.

5. Numerical simulations

In this section, we present some numerical simulations in one dimensional space to illustrate

our theoretical analysis.
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Firstly, considering the domain evolution, we choose Ω(t) = (0,x(t)) = (0,ρ(t)y), where

ρ(t) will be chosen later with ρ(0) = 1 and y ∈ (0,1).

Secondly, since time delay induces much difficulties in numerical simulations and our results

are independent of time delay, we neglect time delay (c = 0) and only consider the following

problem 
vt =

d
ρ2(t)∆v− nρ̇(t)

ρ(t) v+ v(a(t)−b(t)v)−E(t)v, y ∈Ω(0), t > 0,

v(y, t) = 0, y ∈ ∂Ω(0), t > 0,

v(y,0) = v0(y) = (u0(x(0))), y ∈Ω(0).

(5.1)

At the same time we take the initial function v0(y) = sin(πy) corresponding to t = 0.

Next, we choose different values of parameters in problem (5.1) to verify our theoretical

analysis.

Example 5.1. To highlight the impacts of periodic evolution to domain on the survival of

species, we assume that the parameters in problem (5.1) are constants a = 7, b = 0.5, E = 1.5

and we choose a small diffusion rate d:

d = d1 = 0.5.

And then we choose different evolution rates ρ(t):

ρ1(t)≡ 1 and
1
T

∫ T

0

1
ρ2

1 (t)
dt = 1,

ρ2(t) = e−0.09(1−cos4t) and
1
T

∫ T

0

1
ρ2

2 (t)
dt = 1.2069 > 1,

ρ3(t) = e0.1(1−cos4t) and
1
T

∫ T

0

1
ρ2

3 (t)
dt = 0.8269 < 1.

Then we have conclusions as follows:

(i) R0(d1,ρ1)=
∫ T

0 a(t)dt∫ T
0 (E(t)+ d1λ1

ρ2
1 (t)

)dt.
= 1.0878> 1. By Theorem 3.1 we know that solution v(y, t) of

problem (2.5) asymptotically converges to the steady state V ∗(y). On the fixed domain (0,1), the

solution u(x, t)(= v(y, t)) asymptotically converges to the positive periodic steady state V ∗(x).

This is shown in Fig. 1.

(ii) R0(d1,ρ2) =
∫ T

0 a(t)dt∫ T
0 (E(t)+ d1λ1

ρ2
2 (t)

)dt.
= 0.9389 < 1. By Theorem 3.1 we know that solution v(y, t)

of problem (2.5) asymptotically converges to the trivial solution V ?(y)(≡ 0). On the evolving
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FIGURE 1. Left: The developing process of fixed domain corresponding to

ρ1(t) ≡ 1. Color bar on the right shows the density of species. Right: Con-

vergence of temporal solutions to the positive periodic steady state (red dashed

line).
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FIGURE 2. Left: The developing process of domain evolution corresponding

to ρ2(t) = e−0.09(1−cos4t). Color bar on the right shows the density of species.

Right: Convergence of temporal solutions to the trivial solution (red dashed

line).

domain (0,x(t)), the solution u(x, t)(= u(ρ(t)y, t) = v(y, t)) asymptotically converges to the

trivial solution, that is, lim
t→∞

u(ρ(t)y, t) = 0 on Ω(0). This is shown in Fig. 2.

(iii) R0(d1,ρ3) =
∫ T

0 a(t)dt∫ T
0 (E(t)+ d1λ1

ρ2
3 (t)

)dt.
= 1.2543 > 1. By Theorem 3.1 we know that solution v(y, t)

of problem (2.5) asymptotically converges to the positive periodic steady state V ∗(y). On the

evolving domain (0,x(t)), the solution u(x, t)(= u(ρ(t)y, t) = v(y, t)) asymptotically converges
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FIGURE 3. Left: The developing process of domain evolution corresponding

to ρ3(t) = e0.1(1−cos4t). Color bar on the right shows the density of species.

Right: Convergence of temporal solutions to the positive periodic steady state

(red dashed line).

to the positive periodic steady state, that is, lim
m→∞

u(ρ(t)y, t +mT ) =V ∗(y, t) on Ω(0)× [0,+∞).

This is shown in Fig.3.

We can find when ρ(t)≡ 1, the species can survive on the fixed domain (see Fig. 1). However,

when domain evolves with ρ−2 > 1, the species will extinct in the future (see Fig. 2). It shows

the periodical domain evolution with small ρ(t) (ρ−2 > 1) has negative impact on the survival

of species. By the way, from Fig. 3, when ρ−2 < 1, the peak becomes larger, that is, the species

on evolving domain with big ρ(t) can live better. It shows the periodical domain evolution with

big ρ(t) (ρ−2 < 1) has positive impact on the survival of species.

Example 5.2. Assume that the parameters in problem (5.1) are constants a = 11, b = 0.5, E =

1.5 and we choose a big diffusion rate d:

d = d2 = 1.

We now choose different evolution rates ρ(t):

ρ4(t)≡ 1 and
1
T

∫ T

0

1
ρ2

4 (t)
dt = 1,

ρ5(t) = e0.1(1−cos4t) and
1
T

∫ T

0

1
ρ2

5 (t)
dt = 0.8269 < 1,

ρ6(t) = e−0.01(1−cos4t) and
1
T

∫ T

0

1
ρ2

6 (t)
dt = 1.0203 > 1.
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FIGURE 4. Left: The developing process of fixed domain corresponding to

ρ4(t) ≡ 1. Color bar on the right shows the density of species. Right: Con-

vergence of temporal solutions to the trivial solution (red dashed line).

Then we have conclusions as follows:

(i) R0(d2,ρ4)=
∫ T

0 a(t)dt∫ T
0 (E(t)+ d2λ1

ρ2
4 (t)

)dt.
= 0.9675< 1. By Theorem 3.1 we know that solution v(y, t) of

problem (2.5) asymptotically converges to the trivial solution V ?(y)(≡ 0). On the fixed domain

(0,1), the solution u(x, t)(= v(y, t)) asymptotically converges to the trivial solution. This is

shown in Fig. 4.

(ii) R0(d2,ρ5) =
∫ T

0 a(t)dt∫ T
0 (E(t)+ d2λ1

ρ2
5 (t)

)dt.
= 1.1386 > 1. By Theorem 3.1 we know that solution v(y, t)

of problem (2.5) asymptotically converges to the steady state V ∗(y). On the evolving domain

(0,x(t)), the solution u(x, t)(= u(ρ(t)y, t) = v(y, t)) asymptotically converges to the positive

periodic steady state, that is, lim
m→∞

u(ρ(t)y, t +mT ) =V ∗(y, t) on Ω(0)× [0,+∞). This is shown

in Fig. 5.

(iii) R0(d2,ρ6) =
∫ T

0 a(t)dt∫ T
0 (E(t)+ d2λ1

ρ2
6 (t)

)dt.
= 0.9507 < 1. By Theorem 3.1 we know that solution v(y, t)

of problem (2.5) decays to zero. On the evolving domain (0,x(t)), the solution u(x, t)(=

u(ρ(t)y, t) = v(y, t)) asymptotically converges to the trivial solution, that is, lim
t→∞

u(ρ(t)y, t) =

V ?(y, t) = 0 on Ω(0). This is shown in Fig. 6.

We can find if there is no evolution (ρ(t)≡ 1), the species become extinct on the fixed domain

(see Fig. 4). However, when domain evolves properly, that is, ρ−2 < 1, the species will survive

on evolving domain (see Fig. 5). It shows the periodical domain evolution with big ρ(t) (ρ−2 <

1) has positive impact on the survival of species. Moreover, the species on evolving domain with
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FIGURE 5. Left: The developing process of domain evolution corresponding

to ρ5(t) = e0.1(1−cos4t). Color bar on the right shows the density of species.

Right: Convergence of temporal solutions to the positive periodic steady state

(red dashed line).
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FIGURE 6. Left: The developing process of domain evolution corresponding

to ρ6(t) = e−0.01(1−cos4t). Color bar on the right shows the density of species.

Right: Convergence of temporal solutions to the trivial solution (red dashed

line).

small ρ(t) (ρ−2 > 1) will decay quickly to zero (see Fig. 6). It shows the periodical domain

evolution with small ρ(t) (ρ−2 > 1) has negative impact on the survival of species.

Domain evolution is an interesting topic which has attracted a lot of attention [21-25]. How-

ever, most existing results on the long time behaviors of the solutions were investigated through

numerical simulations. Our results shows that if ρ−2 > 1, the periodical domain evolution is not

conducive to species survival. If ρ−2 < 1, the periodical domain evolution can promote species
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survival. And if ρ−2 = 1, we can see that although the domain will show periodic growth and

reduction, the survival or extinct of single species is the same as in fixed domains. We believe

that our results can be extended to the reaction diffusion systems modelling two or more species

models. We will continue to study for later.
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