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Abstract. In this paper, a system of non-linear quasi-parabolic partial differential system, modeling the chemother-

apy application of spatial tumor-host interaction is considered. At some certain parameters, we derive the steady

state of the anti-angiogenic therapy, baseline therapy and anti-cytotoxic therapy models as well as their local sta-

bility condition. We use the method of upper and lower solutions to show that the steady states are globally stable.

Since the system of non-linear quasi-parabolic partial differential cannot be solved analytically, we formulate a

robust numerical scheme based on the semi-fitted finite difference operator. Analysis of the basic properties of

the method shows that it is consistent, stable and convergent. Our numerical results are in agreement with our

theoretical findings.
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1. Introduction
A tumor is scientifically referred to as a neoplasm, or an abnormal tissue area that is either

fluid-filled or solid in appearance. A tumor does not necessarily mean cancer, it can be classified
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into the benign type (which means non-progressive or cannot metastasize, for example, uterine

fibroids and moles), pre-malignant (or pre-cancerous growth which include: actinic keratosis,

dysplasia of the cervix, metaplasia of the lung and leukoplakia), or malignant (cancerous), and

the malignant tumor which is a cancerous case. Record have shown that there are various types

of tumors, which are made up of specific types of cancer cells; these include the carcinoma,

sarcoma, lymphoma or leukemia, blastoma and germ cell tumor [13].

In practice, it requires an expert to differentiate between an ordinary tumor and a cancerous

type. Its treatment can be classified into stages I-IV, the first two stages is called a low-grade tu-

mor which can be treated by watchful monitoring or surgery. The high-grade class (III, IV) are

malignant and can spread quickly from the affecting area to other surrounding tissues. Its treat-

ment include the use of radiation therapy, chemotherapy, targeted therapy and tumor treating

fields. According to statistics conducted on patients with the tumor related issues, chemotherapy

approach forms the integral part of tumor treatment, because it requires administering drugs that

can destroy the affected cancer cells by impeding their growth and reproduction. Chemother-

apy delivery methods include: injection, orally (by mouth as a pill or liquid), intravenously

(through infusion into a vein), topically (as a cream on the skin), direct placement (through a

lumbar puncture or device placed under the scalp) [7].

In this paper, we consider the models derived by Hinow et al., in [6, page 525 -527]. The

models consider cancer as a complex multiscale disease. Thus, to simplify their work toward

finding an efficient healing of cancer, Hinow et al. derived a model for scenario of tumor growth

only limited by intrinsic constraints such as oxygen supply and the surrounding stromal tissue,

which they referred to as the baseline model. In order to cure such a complex multi-scale dis-

ease, Hinow et al., modified the baseline model to a cytostatic model in the sense that the drugs

used are not toxic to the cells, but instead inhibit some mechanism essential for cell division

or a specific function, which they referred to as an anti-angiogenic chemotherapy model and a

drug that affects cells in the proliferative state which they referred to as cytotoxic chemotherapy

model. Their findings are that when no treatment is applied to the model, their model repro-

duces a typical dynamics of early tumor growth and initially avascular tumor reaches a diffusion
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limited size of the order of millimeters which initiates angiogenesis through the release of vas-

cular endothelial growth factor (VEGF) secreted by hypoxic cells in the core of the tumor. They

also stated that the VEGF stimulates endothelial cells to migrate towards the tumor and estab-

lishes a nutrient supply sufficient for sustained invasion. However, when they applied cytostatic

treatment in the form of a VEGF-inhibitor, they found out that the treatment has the capability

to reduce tumor mass. Moreover, they were able to determine that inhibition of endothelial cell

proliferation as the more important of the two cellular functions targeted by the drug. On the

other hand, considering the application of a cytotoxic drug as a diffusible substance entering

the tissue from the blood vessels, they concluded that the drug can either reduce the tumor mass

significantly or in fact accelerate the growth rate of the tumor. All these findings are based on

experiments without mathematical analysis. Thus, to this end, we believe that mathematical

analysis of their model can elaborate more clearly to the audience in this field. Thus, in the next

paragraphs, we highlight their models.

Let t, x to denote time, space, w,n,h,a,m, f ,g,c denote oxygen concentration, normoxic cells,

hypoxic cells, apoptic cells, endothelial cells, extracellular matrix, angiogenic factor, concen-

tration of a drug, and the density of all types of cells and matrix combined is

v = h+a+n+ f +m.

For convenient of explaining the models, we group the dependent variables and diffusion terms
into vector u= [w,n,h,a,m, f ,g,c]T and the diffusion coefficients D= [Dw,Dn max{n−vc,0}+
Dm,0,0,Dm,0,Dg,Dc]

T respectively, then the cytotoxic chemotherapy (drug that affects cells in
the proliferative state) and anti-angiogenic chemotherapy (also considered as cytostatic in the
sense that the drugs used are not toxic to the cells, but instead inhibit some mechanism essen-
tial for cell division or a specific function) models in [6, page 525-527] was derived through
the baseline model (scenario when tumor growth only limited by intrinsic constraints such as
oxygen supply and the surrounding stromal tissue) which we rewrite in a vector form as

∂u
∂ t (x, t)−

∂

∂x

[
D,F

(
u, ∂u

∂x

)]
= F(u), with

u1(x,0) = 1.0, u2(x,0) = 0.93exp(−200ξ 2), u3(x,0) = u4(x,0) = 0.00,

u5(x,0) = 0.01, u6(x,0) = 1−u2(ξ ,0)−u3(ξ ,0)−0.05, u7(x,0) = 0.00,

u8(x,0) ∈ [0,1],



(1)
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as the initial conditions, F(u) = F(w,n,h,a,m, f ,g,c) and the boundary conditions for the

reaction-diffusion system in equation (1) are the no flux-boundary conditions. Thus, for u1 in

equation (1) we have

∂

∂x [D1,F
(

u, ∂u
∂x

)
] = ∂

∂x

[
D1,

∂u1
∂x

]
≡ Dw

∂ 2w
∂x2 ,

F(u)≡ αwm(wmax−w)−βw(n+h+m)w− γww,

(2)

where, Dw,αw,wmax,βw,γw denote the coefficient of oxygen diffusion, rate of diffusability of

oxygen, maximum oxygen density, uptake rate of oxygen by normoxic, hypoxic, endothelial

cells and loss rate of oxygen. The reason for the choice of the source term αwm(wmax−w) is

that, at high environmental levels of oxygen, less oxygen is released through the vessel walls.

For u2 in equation (1) we have

∂

∂x [D2,F
(

u, ∂u
∂x

)
] = ∂

∂x

(
(Dn max{n− vc,0}+Dm)

∂n
∂x −χnn∂ f

∂x

)
,

F(u)≡ αnn(vmax− v)−αhH (wh−w)n+ αh
10H (w−wh)h,

(3)

where, vc,Dn max{n−vc,0}nx,Dm,χn,αn,vmax,wh,αh,H denote a threshold which adds to the

dispersion of these cells through crowding-driven motion, nonlinear diffusion, random motility,

haptotactic movement, rate of logistic growth, maximal density, critical value, rate of gain or

loss, Heaviside function which is 1 for positive arguments and zero otherwise. We also see

that the growth of normoxic cells levels off in regions where the sum of all cells and matrix

approaches the maximal density vmax. In the regions where the concentration of oxygen drops

below a certain critical value wh, normoxic cells enter the hypoxic class at a rate αh and this

transition process is reversible, and the reverse transition is denoted by the the reduced rate

αh/10.

For u3 in equation (1) we have

∂

∂x [D3,F
(

u, ∂u
∂x

)
] = 0,

F(u)≡ αhH (wh−w)n− αh
10H (w−wh)h−βhH (wa−w)h,

(4)

The first and the second terms are in equation (14) are dictated by conservation of mass and

correspond to terms in equation (13). The third term in equation (14) denotes the transition of
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hypoxic cells to apoptotic cells at rate βh as the level of oxygen falls below a second threshold,

which is wa < wh. In [6, page 526] is reported that hypoxic cells are less active in general due

to reduced availability of oxygen and other nutrients and thus, they assumed that lack of energy

causes them to be immobile.

For u4 in equation (1) we have

∂

∂x [D4,F
(

u, ∂u
∂x

)
] = 0,

F(u)≡ βhH (wa−w)h,

(5)

The first term denotes the transition from hypoxic class to apoptic class.

For u5 in equation (1) we have

∂

∂x [D5,F
(

u, ∂u
∂x

)
] = ∂

∂x

(
Dm

∂m
∂x −mχm

∂g
∂x

)
,

F(u)≡ αmmg(vmax− v),

(6)

where, Dm denotes the random motility for endothelial cells and endothelial cells respond via

chemotaxis to gradients of angiogenic factor and this require the presence of angiogenic factor

for proliferation. Proliferation is capped by the total density of cells. The proliferation constant

for endothelial cells is αm.

For u6 in equation (1) we have

∂

∂x [D6,F
(

u, ∂u
∂x

)
] = 0,

F(u)≡−β f n f ,

(7)

where the tissue matrix is degraded by the tumor cells according to a mass-action law with rate

constant β f .

For u7 in equation (1) we have

∂

∂x [D7,F
(

u, ∂u
∂x

)
] = Dg

∂ 2g
∂x2 ,

F(u)≡ αgh−βgmg,

(8)

where, Dg denotes diffusion coefficient, also see that angiogenic factor is produced by hypoxic

cells (alone) at rate αg and consumed by endothelial cells with a mass-action coefficient of βg.
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To ensure that they model is universal, Hinow et al., dimensionelise the baseline model (see

in [6, page 538-539]) and the dimensionless baseline model is

∂w
∂ t (x, t)−Dw

∂ 2w
∂x2 = αwm(1−w)−βw(n+h+m)w− γww,

∂n
∂ t (x, t)−

∂

∂x

(
(Dn max{n− vc,0}+Dm)

∂n
∂x −χnn∂ f

∂x

)
= αnn(vmax− v)

−αhH (wh−w)n+ αh
10H (w−wh)h− γnnc,

∂h
∂ t (x, t) = αhH (wh−w)n− αh

10H (w−wh)h−βhH (wa−w)h,

∂a
∂ t (x, t) = βhH (wa−w)h+ γnnc,

∂m
∂ t (x, t)−

∂

∂x

(
Dm

∂m
∂x −mχm

∂g
∂x

)
= αmmg(vmax− v),

∂ f
∂ t (x, t) =−β f n f ,

∂g
∂ t (x, t)−Dg

∂ 2g
∂x2 = αgh−βgmg.



(9)

When

αm → αm

10
,

χm → χm

10

in equation (9), the baseline model becomes the anti-angiogenic chemotherapy model.

However, when a drug that affects cells in the proliferative state is introduced then the nor-

moxic cells are driven into apoptosis at a rate proportional to the drug concentration, then the

baseline becomes the cytotoxic chemotherapy model. This implies that the reaction function

equation in (13) becomes

F(u)≡ αnn(vmax− v)−αhH (wh−w)n+
αh

10
H (w−wh)h− γnnc,(10)
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with rate constant γ > 0, whereas, in order to balance the loss of normoxic cells, the reaction

function for apoptotic cells in equation (15) is amended accordingly to

F(u)≡ βhH (wa−w)h+ γnnc,(11)

and whenever, the concentration of the drug denoted by c ∈ [0,1] which is assumed to be deliv-

ered through blood infusion and thus enters the tissue from the blood stream. The production

rate of the drug is therefore proportional to the density of endothelial cells, which implies that

regions with higher vascular density will experience a higher concentration of the drug. Hence

it is described by a reaction-diffusion equation similar to that of oxygen as

∂

∂x [D8,F
(

u, ∂u
∂x

)
] = ∂

∂x

[
D8,

∂u8
∂x

]
≡ Dc

∂ 2c
∂x2 ,

F(u)≡ αc(t)m(1− c)− γcc− kγnnc,

(12)

The drug diffuses at a constant rate Dc in the tissue and decays at a constant rate c, it also affects

the normoxic cells in such a way that it is consumed at a rate kγn when it kills normoxic cells.

Instead of looking at a constant drug supply Hinow et al.,in [6, page 532] included a scheduling

of the drug by letting the production rate αc(t)> 0

αc(t) = 100
5

∑
k=0

exp(−4(t− (200+2k))2),

be a time-dependent function, corresponding to the drug being delivered to the tissue.

It is well known fact that many research work have been done with regard to solve dynamic

models either analytically or numerically. For instance Cristini et al., [4] developed a thermody-

namically consistent mixture model for avascular solid tumor growth which takes into account

the effects of cell-to-cell adhesion, and taxis inducing chemical and molecular species. They

showed that their model is well-posed and the governing equations are of Cahn-Hilliard type.

To solve the governing equations, they developed a numerical algorithm based on an adaptive

Cartesian block-structured mesh refinement scheme and found out that the their numerical so-

lutions presented that taxis may play a role in tumor invasion, because when nutrient plays the

role of a chemoattractant, they found out that diffusional instability is exacerbated by nutrient
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gradients. Accordingly, they also believed that their model is capable of describing complex

invasive patterns observed in experiments.

However, based on biological and ecological fields, Tuan et al., in [20] studied the identifica-

tion of the population density of a logistic equation backwards in time associated with non-local

diffusion and nonlinear reaction. Since their original model is ill-posed, they applied the quasi-

reversibility method to convert their model to a stable approximation model. Their numerical

results presented the convergence and stability of the regularized solution for the backward

parabolic problem with non-local diffusion and nonlinear reaction term.

However, some of the solution to a model is considered as a cure to a tumor disease, because

they are compared to experimental data in most cases, see in [3, 23]. Due to limited availability

of the literature, we are only able to mention a few.

Since, Hinow et al.,[6] presented their results without presenting their stability analysis of

the models in their work in [6]. Thus, we believe that they were not able to explain their results

by referring to direct mathematical analysis. This, we believe has undermined the qualitative

features of the underlying mathematical models at hand. Therefore in this paper, our aim is

to present our mathematical analysis of the models on their merits and establish the stability

condition for each model. We then use stability conditions to present our results. Due to the

non-linearities of terms in the models, we construct a reliable numerical method capable of

capturing the qualitative features of these models.

Thus, it is a well known fact that solving the problems like the one in equation (1) with the

standard finite difference methods (SFDMs) has limitations. That is, explicit methods finite dif-

ference methods (EFDMs), can solve such differential equations with low computational cost,

with very small stability regions, which in turn implies severe restrictions on the meshes sizes,

which are required in order to achieve the desired results. On the other hand, the implicit finite

difference methods (IFDMs) do solve such differential equations with wider stability regions

as compared to the EFDMS. However, their associated computational complexity can achieve

only one order as compared to EFDMs that use the same number of stages [2].

The rest of the paper is organized as follows. Mathematical analysis of the main model is

presented in Section 2. A robust numerical scheme based on the semi-fitted finite difference
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technique is formulated in Section 3, analysis of the basic properties of this scheme is also

examined for convergence. To justify the effectiveness of the proposed schemes, we present

some numerical results in Section 4. Section 5 concludes the paper.

2. Mathematical analysis of the models

In this work, our major attention is on the baseline, anti-angiogenic and cytotoxic chemother-

apy models. We shall adapt linear stability analysis method to discuss the general dynamics of

each model. At the steady state, the cytotoxic chemotherapy model in equation (1), becomes

αwm(1−w)−βw(n+h+m)w− γww = 0,

αnn(vmax− v)−αhH (wh−w)n+ 1
10αhH (w−wh)h− γnnc = 0,

αhH (wh−w)n− 1
10αhH (w−wh)h−βhH (wa−w)h = 0,

βhH (wa−w)h+ γnnc = 0,

αmmg(vmax− v) = 0,

−β f n f = 0,

αgh−βgmg = 0,

γcc− kγnnc = 0,



(13)

where we see that the steady states of the baseline and anti-angiogenic models are the same.

Solving the system of nonlinear equations in equation (13), we obtain

w∗ =
αwm∗

αw +βwm∗+ γw
, m∗ = vmax, n∗ = h∗ = a∗ = f ∗ = g∗ = 0, c∗ > 0.(14)

We see the oxygen and endothelial cells staedy states (w∗ and m∗) are positive for the baseline,

anti-angiogenic and cytotoxic chemotherapy models. Consequently, the hypoxic, apoptic cells’
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, angiogenic factor (VEGF) and the extra-cellular matrix steady states are zero. On the other

hand, when a host is tumor free, we find that

w∗ = 0, f ∗ = vmax,(15)

which implies that the extra-cellular matrix ( f ) in all three models is well and healthy. We

also see that the oxygen cells’ steady state is zero, rendering the tumor free case unworthy to

investigate.

Therefore, for the baseline, anti-angiogenic and cytotoxic chemotherapy models, we have the

uniform steady states as

w∗

n∗

h∗

a∗

m∗

f ∗

g∗

c∗



=



αwvmax
αw+βwvmax+γw

0

0

0

vmax

0

0


,



αwm∗
αw+βwvmax+γw

0

0

0

vmax

0

0


,



αwvmax
αw+βwvmax+γw

0

0

0

vmax

0

0

c∗ > 0



.(16)

Stability of the steady states in equation (16) can be investigated from the corresponding ho-

mogeneous baseline, anti-angiogenic and cytotoxic chemotherapy models. Thus, extracting the

Jacobian matrices for all three models, from the system in equation (1), we obtain the non-zero

entries of the Jacobian matrices for all the three models evaluated at the critical points as

J1,1 = −αwm∗−βwm∗− γw, J1,2 = J1,3 =−βww∗, J1,5 = αw(1−w∗)−βww∗,

J2,2 = αnvmax−αhH (wh−w∗)− γnc∗, J2,3 =
αh

10
H (w∗−wh), J3,2 = αhH (wh−w∗),

J3,3 = −αh

10
H (w∗−wh)−βhH (wa−w∗), J4,2 = γnc∗, J4,3 = βhH (wa−w∗),

J7,3 = αg, J7,5 =−βgm∗, J8,2 =−kγnc∗, J8,8 =−γc,(17)

which clearly reduces to the characteristic equation of the form

λ
2− tr(J2×2)λ +det(J2×2) = 0,(18)
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where

tr(J2×2) = J2,2 + J3,3,

= αnvmax−αhH (wh−w)− γnc∗− αh
10H (w∗−wh)−βhH (wa−w∗),

det(J2×2) = (J2,2)× (J3,3)− (J2,3)× (J3,2),

−(αnvmax−αhH (wh−w∗)− γnc∗)
(

αh
10H (w∗−wh)+βhH (wa−w∗)

)
−α2

h
10 H (wh−w∗)H (w∗−wh).


The steady states in equation (16) are asymptotically stable if and only if the trace and the deter-

minant in equation (19) is negative and postive respectively, ([8]). This implies that tr(J2×2)< 0

gives

αnvmax < αhH (wh−w∗)+ γnc∗+
αh

10
H (w∗−wh)+βhH (wa−w∗),(19)

and det(J2×2)> 0 gives

−(αnvmax−αhH (wh−w∗)− γnc∗)
(

αh

10
H (w∗−wh)+βhH (wa−w∗),

)
−

α2
h

10
H (wh−w∗)H (w∗−wh)> 0,

⇒ αnvmax < αhH (wh−w∗)+ γnc∗−
α2

h
10 H (wh−w∗)H (w∗−wh)(

αh
10H (w∗−wh)+βhH (wa−w∗)

) .(20)

Thus, for the baseline model, we have from equations (19-20) that

αnvmax < αhH (wh−w∗)+ αh
10H (w∗−wh)+βhH (wa−w∗),

αnvmax < αhH (wh−w∗)−
α2

h
10 H (wh−w∗)H (w∗−wh)

(
αh
10 H (w∗−wh)+βhH (wa−w∗))

,

(21)

which implies that the product of the logistic growth of the normoxic cells with the maximal

density is bounded by the rates of the transitions of normoxic cells into hypoxic cells (and vice

versa), hypoxic cells into apoptic cells (vice-versa).

Hence, the baseline model stability makes the anti-angiogenic chemotherapy model uncodi-

tional stable. Consequently, the cytotoxic chemotherapy model asymptotic stability is

αnvmax < γnc∗+αhH (wh−w∗)+ αh
10H (w∗−wh)+βhH (wa−w∗),

αnvmax < γnc∗+αhH (wh−w∗)−
α2

h
10 H (wh−w∗)H (w∗−wh)

(
αh
10 H (w∗−wh)+βhH (wa−w∗))

,

(22)
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which implies that the product of the logistic growth of the normoxic cells with the maximal

density is bounded by the sum of death rate of the normoxic cells (due to the presence of the

drug), rates of the transitions of normoxic cells into hypoxic cells (and vice versa), hypoxic

cells into apoptic cells (vice-versa). Remark 2.1 The stability conditions present the following

facts:

(a) heavyweight functions should not be all zero for the baseline model to exists.

(b) the stability conditions mainly only affects maximal density, normoxic, hypoxic cells and

the cytotoxic drug.

(c) the apoptic cells and agiogenic factor are not affected by the stability conditions.

Global stability of the steady states

In this segment, we mainly prove that the equilibrium points in equation (16) are globally

asymptotically stable with the upper and lower solution method in [14, 15]. Denoting the re-

action functions in equation (1) by l j(w,n,h,a,m, f ,g,c) for j = 1,2,3,4,5,6,7,8, then from

equation (1) we let

l1 = αwm(1−w)−βw(n+h+m)w− γww,

l2 = αnn(vmax− v)−αhH (wh−w)n+ 1
10αhH (w−wh)h− γnnc,

l3 = αhH (wh−w)n− 1
10αhH (w−wh)h−βhH (wa−w)h,

l4 = βhH (wa−w)h+ γnnc,

l5 = αmmg(vmax− v),

l6 =−β f n f ,

l7 = αgh−βgmg,

l8 = 100∑
5
k=0 exp(−4(t− (200+2k))2)m(1− c)− γcc− kγnnc,



(23)

and let U ⊂R8
+ such that U = {u ∈R8

+ : u≤ 0≤ ū} and K j be any positive constant satisfying

K ≥ max{Kw,Kn,Kh,Ka,Km,K f ,Kg, ,Kc}

≥ max
{
−∂ l j

∂u j
: u = (w,n,h,a,m, f ,g,c) ∈ S

}
, j = 1,2,3,4,5,6,7,8,

then we have the following results (see [22]).
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Lemma 2.1. Let

∂w
∂ t (x, t)−Dw

∂ 2w
∂x2 ≤ Kw,

∂n
∂ t (x, t)−

∂

∂x

(
(Dn max{n− vc,0}+Dm)

∂n
∂x −χnn∂ f

∂x

)
≤ Kn,

∂h
∂ t (x, t)≤ Kh,

∂a
∂ t (x, t)≤ Ka,

∂m
∂ t (x, t)−

∂

∂x

(
Dm

∂m
∂x −mχm

∂g
∂x

)
≤ Km,

∂ f
∂ t (x, t)≤ K f ,

∂g
∂ t (x, t)−Dg

∂ 2g
∂x2 ≤ Kg,

∂c
∂ t (x, t)−Dc

∂ 2c
∂x2 ≤ Kc



(24)

then

lim
t→∞

w(x, t) = Kw, lim
t→∞

n(x, t) = Kn, lim
t→∞

h(x, t) = Kh, lim
t→∞

a(x, t) = Ka,

lim
t→∞

m(x, t) = Km, lim
t→∞

f (x, t) = K f , lim
t→∞

g(x, t) = Kg, lim
t→∞

c(x, t) = Kc.

Theorem 2.1. The equilibrium points in equation (16) are globally asymptotically stable.

Proof. From the maximum principle of parabolic equations, it is known that for any ini-

tial value (w0(t,x),n0(t,x),h0(t,x),a0(t,x),m0(t,x), f0(t,x),g0(t,x),c0(t,x))> (0,0,0,0,0) the

corresponding non-negative solution (w(t,x),n(t,x),h(t,x),a(t,x),m(t,x), f (t,x),g(t,x),c(t,x))

is strictly positive for t > 0. Since the equilibrium points in equation (16) are non-negative, then

let ε0 ∈ (0,1). Then according to Lemma (2.1) and the comparison principle of parabolic equa-

tions, there exists t1 > t0 > 0 such that, for any t > t1,

w(x, t)≤ Kw + ε0 := w̄(x, t),

n(x, t)≤ Kn + ε0 := n̄(x, t),

h(x, t)≤ Kh + ε0 := h̄(x, t),

a(x, t)≤ Ka + ε0 := ā(x, t),

m(x, t)≤ Km + ε0 := m̄(x, t),

f (x, t)≤ K f + ε0 := f̄ (x, t),

g(x, t)≤ Kg + ε0 := ḡ(x, t),

c(x, t)≤ Kc + ε0 := c̄(x, t),



(25)
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and

w(x, t)≥ Kw− ε0 := w(x, t),

n(x, t)≥ Kn− ε0 := n(x, t),

h(x, t)≥ Km− ε0 := m(x, t),

a(x, t)≥ Ka− ε0 := a(x, t),

m(x, t)≥ Km− ε0 := m(x, t),

f (x, t)≥ K f − ε0 := f (x, t),

g(x, t)≥ Kg− ε0 := g(x, t),

c(x, t)≥ Kc− ε0 := c(x, t).



(26)

Thus, for t > t0, it is possible to obtain

w(x, t) ≤ w(x, t)≤ w̄(x, t),n(x, t)≤ n(x, t)≤ n̄(x, t),

h(x, t) ≤ h(x, t)≤ h̄(x, t), a(x, t)≤ a(x, t)≤ ā(x, t),

m(x, t) ≤ m(x, t)≤ m̄(x, t), f (x, t)≤ f (x, t)≤ f̄ (x, t),

g(x, t) ≤ g(x, t)≤ ḡ(x, t), c(x, t)≤ c(x, t)≤ c̄(x, t).(27)

Since l j(w,n,h,a,m, f ,g,c) in equation (26) is a C1 function of w,n,h,a,m, f ,g,c, where l1 is

quasi-monotone non-increasing in n,h,a,m, f ,g,c, l2 is mixed quasi-monotone in w,h,a,m, f ,g,c,

l3 is quasi-monotone non-decreasing in w,n,a,m, f ,g,c, l4 is mixed quasi-monotone in w,n,h,m, f ,g,c,

h5 is mixed quasi-monotone in w,n,h,a, f ,g,c, l6 is quasi-monotone non-decreasing in w,n,h,a,m,g,c,

l7 is mixed quasi-monotone in w,n,h,a,m, f ,c and l8 is mixed quasi-monotone in w,n,h,a,m, f ,g,

then by the method of upper and lower solutions we know that the system in (1) has a unique

global non-negative solution w,n,h,a,m, f ,g,c, [14]. Thus,

w, w̄,n, n̄,h, h̄,a, ā,m, m̄, f , f̄ ,g, ḡ,c, c̄,(28)



NUMERICAL SIMULATION OF A TUMOR-HOST MODEL 15

satisfy

αwm(1− w̄)−βw(n+h+m)w̄− γww̄≥ 0≥ αwm̄(1−w)

−βw(n̄+ h̄+ m̄)w− γww,

αnn̄(vmax− (h+a+ n̄+ f +m))−αhH (wh−w)n̄

+αh
10H (w−wh)h− γnn̄c≥ 0≥ αnn(vmax− (h̄+ ā+n+ f̄ + m̄))

−αhH (wh− w̄)n+ αh
10H (w̄−wh)h− γnnc̄,

αhH (wh− w̄)n̄− αh
10H (w̄−wh)h̄−βhH (wa− w̄)h̄≥ 0≥ αhH (wh−w)n

−αh
10H (w−wh)h−βhH (wa−w)h,

βhH (wa−w)h+ γnnc≥ 0≥ βhH (wa− w̄)h̄+ γnn̄c̄,

αmm̄g(vmax− (h+a+n+ f + m̄))≥ 0≥ αmmḡ(vmax− (h̄+ ā+ n̄+ f̄ +m)),

−β f n̄ f̄ ≥ 0≥−β f n f ,

αgh−βgmḡ≥ 0≥ αgh̄−βgm̄g,

100∑
5
k=0 exp(−4(t− (200+2k))2)m(1− c̄)

−γcc̄− kγnnc̄≥ 0≥ 100∑
5
k=0 exp(−4(t− (200+2k))2)m̄(1− c)− γcc− kγnn̄c.



(29)

Therefore, (w̄, n̄, h̄, ā, m̄, f̄ , ḡ, c̄) and (w,n,h,a,m, f ,g,g), are a pair of coupled upper and lower

solutions of system (1),[22], respectively.
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Thus, for any

(w,n,h,a,m, f ,g,c)≤ (w1,n1,h1,a1,m1,g1,c1), and (w2,n2,h2,a2,m2, f2,g2,c2)≤ (w̄, n̄, h̄, ā, m̄, f̄ , ḡ, c̄)

we have

|αwm1(1−w1)−βw(n1 +h1 +m1)w1− γww1

−(αwm2(1−w2)−βw(n2 +h2 +m2)w2− γww2)|

≤ K(|w1−w2|+ |n1−n2|+ |h1−h2|+ |a1−a2|),

|αnn1(vmax− v1)−αhH (wh−w1)n1 +
αh
10H (w1−wh)h1− γnn1c1

−(αnn2(vmax− v2)−αhH (wh−w2)n2 +
αh
10H (w2−wh)h2− γnn2c2)|

≤ K(|n1−n2|+ |h1−h2|+ |a1−a2|+ |v1− v2|),

|αhH (wh−w1)n1− αh
10H (w1−wh)h1−βhH (wa−w1)h1

−(αhH (wh−w2)n2− αh
10H (w2−wh)h2−βhH (wa−w2)h2)|

≤ K(|n1−n2|+ |h1−h2|),

|βhH (wa−w1)h1 + γnn1c1− (βhH (wa−w2)h2 + γnn2c2)|

≤ K(|n1−n2|+ |h1−h2 + |c1− c2|),

|αmm1g1(vmax− v1)− (αmm2g2(vmax− v2))|

≤ K(|m1−m2|+ |g1−g2 + |v1− v2|),∣∣−β f n1 f1− (−β f n2 f2)
∣∣≤ K(|n1−n2|+ | f1− f2),∣∣αgh1−βgm1g1− (αgh2−βgm2g2)

∣∣≤ K(|h1−h2|+ |m1−m2|+ |g1−g2|),

|100∑
5
k=0 exp(−4(t− (200+2k))2)m1(1− c1)− γcc1− kγnn1c1

−(100∑
5
k=0 exp(−4(t− (200+2k))2)m2(1− c2)− γcc2− kγnn2c2)|

≤ K(|n1−n2|+ |m1−m2|+ |c1− c2|),



(30)
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Defining two iteration sequences (w̄, n̄, h̄, ā, m̄, f̄ , ḡ, c̄) and (w,n,h,a,m, f ,g,c) for i≥ 1,

w̄(i) = w̄(i−1)+(αwm(i−1)(1− w̄(i−1))−βw(n(i−1)+h(i−1)+m(i−1))w̄(i−1)

−γww̄(i−1))/K,

n̄(i) = n̄(i−1)+(αnn̄(vmax− (h+a+ n̄+ f +m))−αhH (wh−w)n̄

+αh
10 H (w−wh)h− γnn̄c)/K,

h̄(i) = h̄(i−1)+(αhH (wh− w̄(i−1))n̄(i−1)− αh
10 H (w̄(i−1)−wh)h̄(i−1)

−βhH (wa− w̄(i−1))h̄(i−1))/K,

ā(i) = ā(i−1)+(βhH (wa−w(i−1))h(i−1)+ γnn(i−1)c(i−1))/K,

m̄(i) = m̄(i−1)+(αmm̄(i−1)g(i−1)(vmax− (v(i−1))))/K,

f̄ (i) = f̄ (i−1)+(−β f n̄(i−1) f̄ (i−1))/K,

ḡ(i) = ḡ(i−1)+(αgh(i−1)−βgm(i−1)ḡ(i−1))/K,

c̄(i) = c̄(i−1)+((100∑
5
k=0 exp(−4(t− (200+2k))2)m(i−1)(1− c̄(i−1))

−γcc̄(i−1)− kγnn(i−1)c̄(i−1))/K,

w(i) = w(i−1)+(αwm̄(1−w)−βw(n̄+ h̄+ m̄)w− γww)/K,

n(i) = n(i−1)+(αnn(i−1)(vmax− (h̄(i−1)+ ā(i−1)+n(i−1)+ f̄ (i−1)+ m̄(i−1)))

−αhH (wh− w̄(i−1))n(i−1)+ αh
10 H (w̄(i−1)−wh)h− γnn(i−1)c̄(i−1))/K,

h(i) = h(i−1)+(αhH (wh−w(i−1))n(i−1)

−αh
10 H (w(i−1)−wh)h(i−1)−βhH (wa−w(i−1))h(i−1))/K,

a(i) = a(i−1)+(βhH (wa− w̄(i−1))h̄(i−1)+ γnn̄(i−1)c̄(i−1))/K,

m(i) = m(i−1)+(αmm(i−1)ḡ(i−1)(vmax− (h̄(i−1)+ ā(i−1)+ n̄(i−1)+ f̄ (i−1)+m(i−1))),

f (i) = f (i−1)+(−β f n(i−1) f (i−1))/K,

g(i) = g(i−1)+(αgh̄(i−1)−βgm̄(i−1)g(i−1))/K,

c(i) = c(i−1)+(100∑
5
k=0 exp(−4(t− (200+2k))2)m̄(i−1)(1− c(i−1))− γcc(i−1)

−kγnn̄(i−1)c(i−1))/K.



(31)

where (w̄(0), n̄(0), h̄(0), ā(0), m̄(0), f̄ (0), ḡ(0), c̄(0)) = (w̄, n̄, h̄, ā, m̄, f̄ , ḡ, c̄)

and (w(0),n(0),h(0),a(0),m(0), f (0),g(0),c(0)) = (w,n,h,a,m, f ,g,c). Thus, for i≥ 1

(w,n,h,a,m, f ,g,c) ≤ (w(i),n(i),h(i),a(i),m(i), f (i),g(i),c(i))

≤ (w(i+1),n(i+1),h(i+1),a(i+1),m(i+1), f (i+1),g(i+1),c(i+1))

≤ (w̄(i+1), n̄(i+1), h̄(i+1), ā(i+1), m̄(i+1), f̄ (i+1), ḡ(i+1), c̄(i+1))

≤ (w̄(i), n̄(i), h̄(i), ā(i), m̄(i), f̄ (i), ḡ(i), c̄(i))≤ (w̄, n̄, h̄, ā, m̄, f̄ , ḡ, c̄),
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and there exist (w̃(0), ñ(0), h̃(0), ã(0), m̃(0), f̃ (0), g̃(0), c̃(0))> (0,0,0,0,0)

and (ŵ(0), n̂(0), ĥ(0), , â(0), m̂(0), f̂ (0), ĝ(0), ĉ(0))> (0,0,0,0,0) such that

lim
i→∞

w̄ = w̃, lim
i→∞

n̄ = ñ, lim
i→∞

h̄ = h̃, lim
i→∞

ā = ã, lim
i→∞

m̄ = m̃, lim
i→∞

f̄ = f̃ , lim
i→∞

ḡ = g̃, lim
i→∞

c̄ = c̃

and

lim
i→∞

w = ŵ, lim
i→∞

n = n̂, lim
i→∞

h = ĥ, lim
i→∞

a = â, lim
i→∞

m = m̂, lim
i→∞

f = f̂ , lim
i→∞

g = ĝ, lim
i→∞

c = ĉ,

and

αwm̂(1− w̃)−βw(n̂+ ĥ+ m̂)w̄− γww̃ = 0,

αwm̃(1− ŵ)−βw(ñ+ h̃+ m̃)ŵ− γwŵ = 0,

αnñ(vmax− (ĥ+ â+ ñ+ f̂ + m̂))−αhH (wh− ŵ)ñ+ αh
10 H (ŵ−wh)ĥ− γnñĉ = 0,

αnn̂(vmax− (h̃+ ã+ ñ+ f̃ + m̃))−αhH (wh− w̃)n̂+ αh
10 H (w̃−wh)h̃− γnn̂c̃ = 0,

αhH (wh− w̃)ñ− αh
10 H (w̃−wh)h̃−βhH (wa− w̃)h̃ = 0

αhH (wh− ŵ)n̂− αh
10 H (ŵ−wh)ĥ−βhH (wa− ŵ)ĥ = 0,

βhH (wa− ŵ)ĥ+ γnn̂ĉ = 0,

βhH (wa− w̃)h̃+ γnñc̃ = 0,

αmm̃ĝ(vmax− (ĥ+ â+ n̂+ f̂ + m̃)) = 0,

αmm̂g̃(vmax− (h̃+ ã+ ñ+ f̃ + m̂)),

−β f ñ f̃ = 0,

−β f n̂ f̂ = 0,

αgĥ−βgm̂g̃ = 0,

αgh̃−βgm̃ĝ = 0,

100∑
5
k=0 exp(−4(t− (200+2k))2)m̂(1− c̃)− γcc̃− kγnn̂c̃ = 0,

100∑
5
k=0 exp(−4(t− (200+2k))2)m̃(1− ĉ)− γcĉ− kγnñĉ = 0.



(32)
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Since, the equilibrium points in equation (16) is the unique semi-positive constant equilibrium

of system (1), it must hold for

(w̃, ñ, h̃, ã, m̃, f̃ , g̃, c̃) = (ŵ, n̂, ĥ, â, m̂, f̂ , ĝ, ĉ)

= (
αwvmax

αw +βwvmax + γw
,0,0,0,vmax,0,0,c∗ > 0).(33)

Thus, by [14, 15], the solution ( αwvmax
αw+βwvmax+γw

,0,0,0,vmax,0,0,c∗ > 0) of system (1) satisfies

lim
t→∞

w(x, t) = w∗, lim
t→∞

n(x, t) = n∗, lim
t→∞

h(x, t) = h∗, lim
t→∞

a(x, t) = a∗ lim
t→∞

m(x, t) = m∗,

lim
t→∞

f (x, t) = f ∗, lim
t→∞

g(x, t) = g∗, lim
t→∞

c(x, t) = c∗.(34)

Hence, the constant equilibrium ( αwvmax
αw+βwvmax+γw

,0,0,0,vmax,0,0,c∗ > 0) is globally asymptoti-

cally stable.

3. A construction and analysis of the numerical method

In this section, we describe the derivation of the fitted numerical method for solving the

system in equation (1). We determine an approximation to the derivatives of the functions

w(t,x),n(x, t),h(x, t),a(x, t),m(x, t), f (x, t),g(x, t),c(x, t), with respect to the spatial variable x.

Let Sx be a positive integer. Discretize the interval [0,x f ],x f ∈ Z+ through the points

0 = x0 < x1 < x2 < · · ·< x f ,

where the step-size ∆x = x j+1− x j = 1/x f , j = 0,1, . . . ,x f . Let

Wj(t),N j(t),H j(t),A j(t),M j(t),Fj(t),G j(t),C j(t)(35)

denote the numerical approximations of w(t,x),n(x, t),h(x, t),a(x, t),m(x, t), f (x, t),g(x, t),c(x, t).

Then we approximate the second order spatial derivative in the system in (1) by
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∂w
∂x2 (t,x j)≈

W j+1−2W j+W j−1
φ 2

w
,

∂

∂x

(
[Dn max{N j− vc,0}+Dm]

∂n
∂x −χnn∂ f

∂x

)
(t,x j)

≈ [Dn max{N j− vc,0}+Dm]
N j+1−2N j+N j−1

φ 2
n

−D+
x
(
χnN jD−x Fj

)
,

∂

∂x

(
Dm

∂m
∂x −mχm

∂g
∂x

)
(t,x j)≈

M j+1−2M j+M j−1
φ 2

m
−D+(M jχmD−G j),

∂ 2g
∂x2 (t,x j)≈ D+

x (D
−G j),

∂ 2c
∂x2 (t,x j)≈

C j+1−2C j+C j+1
φ 2

c
,



(36)

where

D+(·) j =
(·)i+1− (·)i

∆x
and D−(·)i =

(·)i− (·)i−1

∆x
,

and the denominator functions

φ
2
w :=

4
ρ2

w
sinh2

(
ρw∆x

2

)
, ρw :=

√
γw

Dw
, φ

2
n :=

D̃n∆x
χn

[
exp(

χn∆x
D̃n

)−1
]
,

φ
2
m :=

Dm∆x
χm

[
exp(

χm∆x
Dm

)−1
]
, φ

2
c :=

4
ρ2

c
sinh2

(
ρc∆x

2

)
, ρc :=

√
γc

Dc
,

where φw→∆x,φn→∆x,φm→∆x,φc→∆x, as ∆x→ 0. Let t f be a positive integer and j = 1/t f

where 0 < t < t f . Discretizing the time interval [0, t f ] through the points

0 = t0 < t1 < · · ·< t f ,

where

ti+1− ti = ∆t, i = 0,1, . . . ,(t f −1).

We approximate the time derivative at ti by

∂w
∂ t (x, ti)≈

W i+1
j+1−W i

j
ψw

, ∂n
∂ t (x, ti)≈

Ni+1
j+1−Ni

j
∆t , ∂h

∂ t (x, ti)≈
H i+1

j+1−H i
j

∆t ,

∂a
∂ t (x, ti)≈

Ai+1
j+1−Ai

j
∆t , ∂m

∂ t (x, ti)≈
Mi+1

j+1−Mi
j

∆t , ∂ f
∂ t (x, ti)≈

F i+1
j+1−F i

j
∆t ,

∂g
∂ t (x, ti)≈

Gi+1
j+1−Gi

j
∆t , ∂c

∂ t (x, ti)≈
Ci+1

j+1−Ci
j

ψc
,


(37)
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where

ψw = ψw(∆t) = (1− exp(−γw∆t))/γw, ψc = (1− exp(−γc∆t))/γc,

where ψw→ ∆t,ψc→ ∆t as ∆t→ 0. The denominator functions in equations (36) and (37) are

used explicitly to remove the inherent stiffness in the central finite derivatives parts and can be

derived by using the theory of nonstandard finite difference methods, see, e.g., [10, 16, 17] and

references therein.

Combining the equation (36) for the spatial with equation (37) for time derivatives, we obtain

W i+1
j+1−W i

j
ψw

−Dw
W i+1

j−1−2W i+1
j +W i+1

j+1
φ 2

w
= αwMi

j(1−W i
j)−βw(Ni

j +H i
j +Mi

j)W
i
j

−γwW i
j ,

Ni+1
j+1−Ni

j
∆t − [Dn max{N j− vc,0}+Dm]

Ni+1
j−1−2Ni+1

j +Ni+1
j+1

φ 2
n

=

D+
(

χnNi
jD
−F i

j

)
+αnNi

j(vmax−V i
j)−αhH (wh−W i

j)N
i
j +

αh
10 H (W i

j −wh)H i
j

−γnNi
jC

i
j,

H i+1
j+1−H i

j
∆t = αhH (wh−W i

j)N
i
j−

αh
10 H (W i

i −wh)H i
j−βhH (wa−W i

j)H
i
j,

Ai+1
j −Ai

j
∆t = βhH (wa−W i

j)H
i
j + γnNi

jC
i
j,

Mi+1
j+1−Mi

j
∆t −Dm

Mi+1
j−1−2Mi+1

j +Mi+1
j+1

φ 2
m

= D+(Mi
jχmD−Gi

j)+αmMi
jG

i
j(vmax−V i

j),
F i+1

j+1−F i
j

∆t =−β f Ni
jF

i
j ,

Gi+1
j+1−Gi

j
∆t −Dg

Gi+1
j−1−2Gi+1

j +Gi+1
j+1

(∆x)2 = αgH i
j−βgMi

jG
i
j,

Ci+1
j+1−Ci

j
ψc

−Dc
Ci+1

j−1−2Ci+1
j +Ci+1

j+1
φ 2

c
= 100∑

5
k=0 exp(−4(tk− (200+2k))2)Mi

j(1−Ci
j)

−γcCi
j− kγnNi

jC
i
j,

W i
1 =W n

−1, Ni
1 = Ni

−1, H i
1 = H i

−1, Ai
1 = Ai

−1, Mi
1 = Mi

−1, F i
1 = F i

−1, Gi
1 = Gi

−1,

Ci
1 =Ci

−1,

W i
x f
=W i

x f−1, Ni
x f
= Ni

x f−1, H i
x f
= H i

x f−1, Ai
x f
= Ai

x f−1, Mi
x f
= Mi

x f−1,

F i
x f
= F i

x f−1, Gi
x f
= Gi

x f−1,Ci
x f
=Ci

x f−1,

W 0
j = 1.0, N0

j = 0.93exp(−200x2
j), H0

j = A0
j = 0.0, M0

j = 0.01,

F0
j = 1−N0

j −M0
j −0.05, G0

j = 0.0,C0
j ∈ [0,1].



(38)

) We refer to the scheme in (38) as a semi-fitted operator finite difference numerical method (FOFDM),

whereas when all the denominator functions in (36) and (37) are replaced with the uniform step sizes,

the scheme becomes standard finite difference method (SFDM).
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Let

Lww≡ ∂w
∂ t (x, t)−Dw

∂ 2w
∂x2 ,

Lnn≡ ∂n
∂ t (x, t)−

∂

∂x

(
(Dn max{n− vc,0}+Dm)

∂n
∂x −χnn ∂ f

∂x

)
,

Lhh≡ ∂h
∂ t (x, t),

Laa≡ ∂a
∂ t (x, t),

Lmm≡ ∂m
∂ t (x, t)−

∂

∂x

(
Dm

∂m
∂x −mχm

∂g
∂x

)
,

L f f ≡ ∂ f
∂ t (x, t),

Lgg≡ ∂g
∂ t (x, t)−Dg

∂ 2g
∂x2 ,

Lcc≡ ∂c
∂ t (x, t)−Dc

∂ 2c
∂x2 ,


and denoting the piecewise approximations of

w(x j, ti),n(x j, ti),h(x j, ti),a(x j, ti),m(x j, ti), f (x j, ti),g(x j, ti),c(x j, ti)

in the interval [x j, ti] with wi
j,n

i
j,h

i
j,a

i
j,m

i
j, f i

j,g
i
j,c

i
j, then we let

Fw ≡ αwmi
j(1−wi

j)−βw(ni
j +hi

j +mi
j)w

i
j− γwwi

j,

Fn ≡ αnni
j(vmax− vi

j)−αhH (wh−wi
j)n

i
j +

αh
10 H (wi

j−wh)h− γnni
jc

i
j,

Fh ≡ αhH (wh−wi
j)n

i
j−

αh
10 H (wi

j−wh)hi
j−βhH (wa−wi

j)h
i
j,

Fa ≡ βhH (wa−wi
j)h

i
j + γnni

jc
i
j,

Fm ≡ αmmi
jg

i
j(vmax− vi

j),

F f ≡−β f ni
j f i

j,

Fg ≡ αghi
j−βgmi

jg
i
j,

Fc ≡ 100∑
5
k=0 exp(−4(t− (200+2k))2)mi

j(1− ci
j)− γcci

j− kγnni
jc

i
j.


Thus, in view of the FOFDM, we see that the local truncation errors (ςw,ςn,ςh,ςa,ςm,ς f ,ςg,ςc) are given

by
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(ςw)
i
j = (Lww)i

j− (Fw)
i
j = (Aw(w−W ))i

j,

(ςn)
i
j = (Ln)

i
j− (Fn)

i
j = (An(n−N))i

j,

(ςh)
i
j = (Lh)

i
j− (Fh)

i
j = (h−H)i

j,

(ςa)
i
j = (Laa)i

j− (Fa)
i
j = (a−A)i

j,

(ςm)
i
j = (Lm)

i
j− (Fm)

i
j = (Am(m−M))i

j,

(ς f )
i
j = (L f )

i
j− (F f )

i
j = (A f ( f −F))i

j,

(ςg)
i
j = (Lg)

i
j− (Fg)

i
j = (Ag(g−G))i

j,

(ςc)
i
j = (Lc)

i
j− (Fc)

i
j = (Ac(c−C))i

j,



(39)

where

Aw = Tri
(
−Dw

φ 2
w
,

1
ψw

+
Dw

φ 2
w
,−Dw

φ 2
w

)
, An = Tri

(
− D̃n

φ 2
n
,

1
∆t

+
D̃n

φ 2
n
,− D̃n

φ 2
n

)
,

Am = Tri
(
−Dm

φ 2
n
,

1
∆t

+
Dm

φ 2
m
,−Dm

φ 2
m

)
, Ag = Tri

(
−

Dg

(∆x)2 ,
1
∆t

+
Dg

(∆x)2 ,−
Dg

(∆x)2

)
,

Ac = Tri
(
−Dc

φ 2
c
,

1
ψc

+
Dc

φ 2
c
,−Dc

φ 2
c

)
.

Thus,

max1≤i≤St ,1≤ j≤Sx |wi
j−W i

j | ≤ ||(Aw)
−1||max1≤i≤St ,1≤ j≤Sx |(ςw)

i
j|,

max1≤i≤St ,1≤ j≤Sx |ni
j−Ni

j| ≤ ||(An)
−1||max1≤i≤St ,1≤ j≤Sx |(ςn)

i
j|,

max1≤i≤St ,1≤ j≤Sx |hi
j−H i

j| ≤max1≤i≤St ,1≤ j≤Sx |(ςh)
i
j|,

max1≤i≤St ,1≤ j≤Sx |ai
j−Ai

j| ≤max1≤i≤St ,1≤ j≤Sx |(ςa)
i
j|,

max1≤i≤St ,1≤ j≤Sx |mi
j−Mi

j| ≤ ||(Am)
−1||max1≤i≤St ,1≤ j≤Sx |(ςm)

i
j|,

max1≤i≤St ,1≤ j≤Sx | f i
j−F i

j | ≤max1≤i≤St ,1≤ j≤Sx |(ς f )
i
j|,

max1≤i≤St ,1≤ j≤Sx |gi
j−Gi

j| ≤ ||(Ag)
−1||max1≤i≤St ,1≤ j≤Sx |(ςg)

i
j|,

max1≤i≤St ,1≤ j≤Sx |ci
j−Ci

j| ≤ ||(Ac)
−1||max1≤i≤St ,1≤ j≤Sx |(ςc)

i
j|,



(40)
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where

max1≤i−1≤St ,1≤ j≤Sx−1 |(ςw)
i
j| ≤ ∆t

2 |wtt(ζ )|+Dw
(∆x)2

12 |wxxxx(ξ )|,

max1≤i−1≤St ,1≤ j≤Sx−1 |(ςn)
i
j| ≤ ∆t

2 |ntt(ζ )|

+[Dn max{N j− vc,0}+Dm]
(∆x)2

12 |nxxxx(ξ )|,

max1≤i−1≤St ,1≤ j≤Sx−1 |(ςh)
i
j| ≤ ∆t

2 |htt(ζ )|,

max1≤i−1≤St ,1≤ j≤Sx−1 |(ςa)
i
j| ≤ ∆t

2 |att(ζ )|,

max1≤i−1≤St ,1≤ j≤Sx−1 |(ςm)
i
j| ≤ ∆t

2 |mtt(ζ )|+Dm
(∆x)2

12 |mxxxx(ξ )|,

max1≤i−1≤St ,1≤ j≤Sx−1 |(ς f )
i
j| ≤ ∆t

2 | ftt(ζ )|,

max1≤i−1≤St ,1≤ j≤Sx−1 |(ςg)
i
j| ≤ ∆t

2 |gtt(ζ )|+Dg
(∆x)2

12 |gxxxx(ξ )|,

max1≤i−1≤St ,1≤ j≤Sx−1 |(ςc)
i
j| ≤ ∆t

2 |ctt(ζ )|+Dc
(∆x)2

12 |cxxxx(ξ )|,



(41)

for ti−1 ≤ ζ ≤ ti+1, x j−1 ≤ ξ ≤ x j+1 and by [18] we have

||(Aw)
−1|| ≤ Ξw, ||(An)

−1|| ≤ Ξn, ||(Am)
−1|| ≤ Ξm,

||(Ag)
−1|| ≤ Ξg. ||(Ac)

−1|| ≤ Ξc.(42)

Using (41) and (42) in (40), we obtain

max1≤i≤St ,1≤ j≤Sx |wi
j−W i

j | ≤ Ξw[
∆t
2 |wtt(ζ )|+Dw

(∆x)2

12 |wxxxx(ξ )|],

max1≤i≤St ,1≤ j≤Sx |ni
j−Ni

j| ≤ Ξn[
∆t
2 |(ntt(ζ )|

[Dn max{N j− vc,0}+Dm]
(∆x)2

12 |nxxxx(ξ )|],

max1≤i≤St ,1≤ j≤Sx |hi
j−H i

j| ≤ ∆t
2 |htt(ζ )|,

max1≤i≤St ,1≤ j≤Sx |ai
j−Ai

j| ≤ ∆t
2 |att(ζ )|,

max1≤i≤St ,1≤ j≤Sx |mi
j−Mi

j| ≤ Ξm[
∆t
2 |mtt(ζ )|+Dm

(∆x)2

12 |mxxxx(ξ )|],

max1≤i≤St ,1≤ j≤Sx | f i
j−F i

j | ≤ ∆t
2 | ftt(ζ )|,

max1≤i≤St ,1≤ j≤Sx |gi
j−Gi

j)| ≤ Ξg[
∆t
2 |gtt(ζ )|+Dg

(∆x)2

12 |gxxxx(ξ )|],

max1≤i≤St ,1≤ j≤Sx |ci
j−Ci

j)| ≤ Ξc[
∆t
2 |ctt(ζ )|+Dc

(∆x)2

12 |cxxxx(ξ )|].



(43)

Hence, we obtain the following results. Theorem 3.1. Let

Fw(x, t),Fn(x, t),Fh(x, t),Fa(x, t),Fm(x, t),F f (x, t),Fg(x, t),Fc(x, t),

be sufficiently smooth functions so that w(x, t),n(x, t),h(x, t),a(x, t),m(x, t), f (x, t),g(x, t),c(x, t)∈C1,2([1,Sx]×

[1,St ]). Let (W i
j ,N

i
j,H

i
j,A

i
j,M

i
j,F

i
j ,G

i
j,C

i
j), j = 1,2, . . .Sx, i = 1,2, . . .St be the approximate solutions to

(1), obtained using the semi-FOFDM with W 0
j = w0

j ,N
0
j = n0

j ,H
0
j = h0

j ,A
0
j = a0

j ,M
0
j = m0

j ,F
0
j = f 0

j ,G
0
j =
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g0
j ,c

0
j = c0

j . Then there exists Ξw,Ξn,Ξh,Ξa,Ξm,Ξ f ,Ξg,Ξc independent of the step sizes ∆t and ∆x such

that

max1≤i≤St ,1≤ j≤Sx |wi
j−W i

j | ≤ Ξw[
∆t
2 |wtt(ζ )|+Dw

(∆x)2

12 |wxxxx(ξ )|],

max1≤i≤St ,1≤ j≤Sx |ni
j−Ni

j| ≤ Ξn[
∆t
2 |ntt(ζ )|

+[Dn max{N j− vc,0}+Dm]
(∆x)2

12 |nxxxx(ξ )|],

max1≤i≤St ,1≤ j≤Sx |hi
j−H i

j| ≤ ∆t
2 |htt(ζ )|,

max1≤i≤St ,1≤ j≤Sx |ai
j−Ai

j| ≤ ∆t
2 |att(ζ )|,

max1≤i≤St ,1≤ j≤Sx |mi
j−Mi

j| ≤ Ξm[
∆t
2 |mtt(ζ )|+Dm

(∆x)2

12 |mxxxx(ξ )|],

max1≤i≤St ,1≤ j≤Sx | f i
j−F i

j | ≤ ∆t
2 | ftt(ζ )|,

max1≤i≤St ,1≤ j≤Sx |gi
j−Gi

j| ≤ Ξg[
∆t
2 |gtt(ζ )|+Dg

(∆x)2

12 |gxxxx(ξ )|],

max1≤i≤St ,1≤ j≤Sx |ci
j−Ci

j| ≤ Ξc[
∆t
2 |ctt(ζ )|+Dc

(∆x)2

12 |cxxxx(ξ )|].



(44)

4. Numerical results and discussions

Since the stability conditions in equations (21) and (22) are partially related to the core behaviors of

tumor cells as mentioned in [6, page 526], then based on these conditions, it suffices to demonstrate the

robustness of our numerical method through t = 5 and t = 10 for all the models. Thus, setting t = 5,

x f = xt = 1 (for 50 number of sub-intervals) and using the parameters in Table 1, we present the baseline

model’s numerical results for t = 5 in Figure 1 and for t = 10, the numerical results is presented in Figure

2. For the anti-angiogenic chemotherapy model’s at t = 5, the numerical results are presented in Figure

3 and for t = 10 are in Figure 4. Numerical results for anti-cytotoxic chemotherapy at t = 5 are present

in Figure 5, whereas for t = 10 are presented in Figure 6.

Baseline model: At t = 5, we see that the oxygen concentration (w) is at its maximum level but

as time passes we see a sharp decrease of the oxygen concentration (w), while the normoxic cells (n)

start of slightly very low before they rise sharply to their highest point just before they start to decrease

sharply. Despite the sharp decrease of the normoxic cells (n), we also see hypoxic cells (h) emerging

slowly towards its highest peak just before its turning point, hypoxia early behaviors are slightly similar

to the apoptic cells’ (a) behaviors expect that apoptic cells (a) emerges slightly after the hypoxic cells has

already started establishing themselves in a host. Moreover the apoptic cells (a) have no turning point

as we see for the hypoxic cells profile(h). The endothelial cells (m) start off at higher peak, with a slight

increase which is capped by the sudden decrease. Similar behavior can also be seen on the extra-cellular
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matrix ( f ) profile. The angiogenic cells (m) have the same behaviors as the apaoptic cells (a). At t = 10

in Figure 2, we see that the above-mentioned behaviors are taking place at a later stage than at t = 5.

Anti-angiogenic chemotherapy model: For this model we only see a different profile for the oxygen

concentration. Therefore, we are only discussing the profile of the oxygen concentration, because others

profiles are the same as in the case of the baseline model. Thus, we see that the oxygen concentration

starts at its highest point just before it starts to decrease sharply to its low point. The low concentration

of oxygen is followed by the gradual increase in the concentration of the oxygen. At t = 10 in Figure 4,

we see that the above-mentioned behaviors are taking place at a later stage than at t = 5.

Cytotoxic chemotherapy model: All the figures are similar to the case of the anti-angiogenic chemother-

apy model, except that of the additional drug, the cytotoxic cells. The profile of the cytotoxic cells starts

of very higher, but as time passes, we see a very sharp decreasing profile of the cells, and at t = 10 in

Figure 6, the above-mentioned behaviors are taking place at a later stage than at t = 5.

3. Conclusion

In this paper, we examined the baseline, anti-angiogenic chemotherapy and cytotoxic chemotherapy

models. The lack of mathematical expositions of these model in the literature, as well as in [6] motivated

us to analyse these models. Thus, our mathematical analysis has revealed that the structural phenomena

of these models are mainly contained within the baseline model. Thus, as suggested by the stability

conditions of the models, our numerical results present an interesting features which goes hand in hand

with the derived stability conditions. In view of our mathematical analysis, we see that, there is no

condition on how to stabilize the apoptic and angeogenic growth. Thus, we see in all the figures that

the apoptic and angeogenic cells grows unabated or unarltered by any of the proposed treatment. This

has made it difficult for us to determine the parameter space, which can be used by the experimentalists

with regard to which parameters influence the tumor behavior most. It is this evidence, which we believe

that our numerical method succeeded in presenting the desire outcomes of our paper. Thus, though

the models considered are not solvable analytically, but our numerical findings are in good agreement

with the stability hypotheses. Thus, we believe that in this paper, we have lay the ground for further

investigation into the model proposed by Hinow et al. [6].
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TABLE 1. Parameter values

Dw = 0.58 αw = 1.00 βw = 0.57 γw = 0.025

βh = .32 wh = 0.05 wa = 0.03 β f = 0.50

Dn = 5.7600×10−5 vc = 0.8 χn = 1.4×10−4 Dm = 5.7600×10−05

Dg = 0.02 χm = 2.1×10−6 αm = 0.07 αg = 10.00

βg = 10.00 Dc = 0.5 vmax = 3 αh = 1.60

αn = log(2) γc = .21 k = 10.5 γn = 0.7
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FIGURE 1. Numerical solution of the baseline model at t = 5, presenting the

spatial distributions of: (a) oxygen, (b) normoxic, (c) hypoxic, (d) apoptic, (e)

endothelial, (f) extracellular matrix and (g) angiogenic cells. Parameter values

are as given in Table 1
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FIGURE 2. Numerical solution of the baseline model at t = 10, presenting the

spatial distributions of: (a) oxygen, (b) normoxic, (c) hypoxic, (d) apoptic, (e)

endothelial, (f) extracellular matrix and (g) angiogenic cells. Parameter values

are as given in Table 1
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FIGURE 3. Numerical solution of anti-angiogenic chemotherapy model at t = 5

presenting the spatial distributions of: (a) oxygen, (b) normoxic, (c) hypoxic, (d)

apoptic, (e) endothelial, (f) extracellular matrix and (g) angiogenic cells. Param-

eter values are as given in Table 1.
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FIGURE 4. Numerical solution of anti-angiogenic chemotherapy model at t =

10presenting the spatial distributions of: (a) oxygen, (b) normoxic, (c) hypoxic,

(d) apoptic, (e) endothelial, (f) extracellular matrix and (g) angiogenic cells. Pa-

rameter values are as given in Table 1.
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FIGURE 5. Numerical solution of anti-cytotoxic chemotherapy model at t =

5presenting the spatial distributions of: (a) oxygen, (b) normoxic, (c) hypoxic,

(d) apoptic, (e) endothelial, (f) extracellular matrix, (g) agiogenic and (h) cyto-

toxic cells. Parameter values are as given in Table 1.
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FIGURE 6. Numerical solution of anti-cytotoxic chemotherapy model at t =

10presenting the spatial distributions of: (a) oxygen, (b) normoxic, (c) hypoxic,

(d) apoptic, (e) endothelial, (f) extracellular matrix, (g) agiogenic and (h) cyto-

toxic cells. Parameter values are as given in Table 1.


