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Abstract. The effect of diseases such as cancer and HIV among our societies is evident. Thus, from the mathemati-

cal point of view many models has been developed with the aim to contribute towards understanding the dynamics

of diseases. Therefore, in this paper we believe by extending a system of delay differential equations (DDEs)

model of HIV related cancer-immune system to a system of delay partial differential equations (DPDEs) model of

HIV related cancer-immune dynamics, we can contribute toward understanding the dynamics more clearly. Thus,

we analyse the extended models and use the qualitative features of the extended model to derive, analyse and im-

plement a fitted operator finite difference method (FOFDM) and present our results. This FOFDM is analyzed for

convergence and it is seen that it has has second-order accuracy. We present some numerical results for some cases

of the the model to illustrate the reliability of our numerical method.
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1. Introduction

The connection between HIV/AIDS and certain cancers diseases is not completely under-

stood, even though the link is likely to depend on a weakened immune system. However, it is

understood that most types of cancer begin when healthy cells change and grow out of control,

forming a mass called a tumor. A tumor can be cancerous or benign. A cancerous tumor is

malignant, meaning it can grow and spread to other parts of the body. A benign tumor means

the tumor can grow but will not spread to other parts of the body. Thus we hope and believe that

efforts to cure such diseases are underway all over the world, focusing more on the interface

and similarities between HIV cure and cancer research. Thus, as a way forward, toward under-

standing the connection between HIV/AIDS and certain cancers diseases, Foryś and Poleszczuk

in [9] derived a system of non-linear delay-differential equations (DDEs) model of HIV related

cancer-immune system dynamics as

Tt = r1T (t)− k1T (t)E(t),

Et = r2T (t)+α−µ1E(t)− k1T (t)E(t)+(1− ε)k1T (t− τ)E(t− τ)

−k′2E(t)I(t)− k3E(t)V (t),

It = k′2E(t)I(t)+ k3E(t)V (t)−µ2I(t),

Vt = Nδ I(t)− cV (t),



(1)

where, the subscript t denotes the partial derivative with respect to time t, T (t), E(t), I(t),

V (t) denote concentration of cancer cells, healthy effector cells (mainly CD4+ T-cells), effector

cells infected by the HIV virus, and free HIV viral particles in that order. Since the dynamics

of cancer cells are assumed to be governed by cancer cells proliferation, their interactions with

the immune system, then the term describing the influence of effector cells on cancer cells is

taken proportional to the product of both concentrations [11, 13]. Thus, the parameters r2, α ,

µ1 denote the antigenicity (difference between tumor and normal tissue) of the tumor, normal

rate of the flow of mature effector cells into the region of cancer cells localization [12], rate
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of elimination of effector cells, in that order. It is understood that the process of effector cells

regeneration after the injection of lytic granules into the target cells causes the cytotoxic T -

cells to kill target cells mainly using lytic granules containing perforin, granzymes and T NF ,

by binding to the surface of the target cell. This trigger the extracellular release of perforin

molecules from the granules. Thus, polymerize to form trans-membrane channels which may

facilitate lysis of the target by permitting entry of granzymes which induce apoptotic cell death

through activation of the caspase protease cascade and ultimate fragmentation of nuclear DNA

[7]. As a results, effector cells should regenerate lytic granules to this effect. Thus, the term τ

denotes the time needed by effector cells to regenerate lytic granules and the time required for

some small percentage (ε) to breach into the target T -cells.

The term describing the release of the new free viral particles by the infected cells is multi-

plied by the additional parameter N to represent the number of those particles released by the

single infected cell. Furthermore, Foryś and Poleszczuk in [9] assumed that the rate of change

of the free HIV viral particles is high relative to the rate of change of the concentration of

considered cellular populations. Hence, Foryś and Poleszczuk in [9] assumed that the rate of

change of the free HIV viral particles is high relative to the rate of change of the concentra-

tion of considered cellular populations. Therefore, during the whole process dV/dt ≡ 0, that is

V (t)≡Nδ/cI(t). This implies that the system of non-linear delay differential equations (DDEs)

in equation (1) reduces to the following system of three non-linear delay differential equations

(DDEs)

Tt = r1T (t)− k1T (t)E(t),

Et = r2T (t)+α−µ1E(t)− k1T (t)E(t)+(1− ε)k1T (t− τ)E(t− τ)

−k′2E(t)I(t),

It = k2E(t)I(t)−µ2I(t),



(2)
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where,

k2 = k′2 + k3
Nδ

c
.

Since their models take no spacial effects, then in this paper we extend the system of DDEs in

equation (2) to a system of delayed partial differential equations (DPDEs) as

Tt−d1∆T = r1T (t)− k1T (t)E(t),

Et−d2∆E = r2T (t)+α−µ1E(t)− k1T (t)E(t)+(1− ε)k1T (t− τ)E(t− τ)

−k′2E(t)I(t),

It−d3∆I = k2E(t)I(t)−µ2I(t),

∂T
∂ν

(0, t) = ∂E
∂ν

(0, t) = ∂ I
∂ν

(0, t) = 0,

∂T
∂ν

(x f , t) = ∂E
∂ν

(x f , t) = ∂ I
∂ν

(x f , t) = 0, on (x, t) ∈Ω× (0,∞),

X j(x,0) = η j(x), on (x, t) ∈ Ω̄× [−τ,0], j = 1,2,3,



(3)

where d1,d2,d3 denote the cancer cells, healthy effector cells, HIV-infected cells constant diffu-

sion coefficients, ∆ denotes the Laplace operator, X j(x, t)= [T,E, I], j = 1,2,3, Ω∈RN denotes

a bounded domain with smooth boundary ∂Ω and ν denotes the outward unit normal on ∂Ω.

The initial function η j(x, t) is Holder continuous on [−τ,0] and the no-flux boundary conditions

are imposed to ensure the exclusion of external effects. More details on reaction rates can be

found in [9].

Many mathematical models such as those in [1, 2, 6, 13, 14, 16, 17, 21] has been derived in

order to shed more light as to how the dynamics of such virus takes place. While the authors

made the utmost efforts to include whatever we could, we would like to apologize if there are

any omissions which are totally unintentional.
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In this paper, our focus is on the model in which the issue of immune reaction against tumor

and HIV to dissemination arising from the work of Foryś and Pleszczuk in [9], in vivo. We also

would like to acknowledge the work done by Nunnari et al. [18], Resclgnow and Delisi [23] and

by Rong et al. [24], where a significant increase in the incidence of neoplasms accompany the

acquired immunodeficiency syndrome (AIDS), a delay in the formation of killer lymphocytes

was introduced to allow tumor development from a single cell, steps between viral infection of

CD+4T cells and the production of HIV−1 visions have been incorporated by an eclipse phase,

an HIV−1 dynamical model was developed which incorporate AIDS-related cancer cells in

which cancer cells, healthy CD4+ T lymphocytes and infected CD4+ T lymphocytes can have

six steady states, in that order.

Assuming that the cancer-immune system interactions dynamics is governed by cancer cells

proliferation and their interaction with the immune system, thus our first aim in this paper is to

present the fact that in the absence of the cancer and HIV infections, the governing dynamics

of the extended model tends to the expected physiological level and derive the corresponding

stability conditions of the extended model. Our second aim is to develop a fitted operator

numerical method, analyse, implement and present our numerical results with regard to the

governing dynamics.

The rest of paper is organized in the following way. In Section 2, we analyse the extended

model, whereas in Section 3 we derive, analyse our numerical method. We present our numeri-

cal results in Section 4 and conclude the paper with Section 5.

2. Mathematical analysis of the model

First and foremost, we verify that the extended model in equation (3) reflects the normal

physiological level (α/µ1) of the healthy effector cells E, as it is determined by Foryś and

Poleszczuk in [9]. To do that, we solve equation (3) in the absence of the cancer cells (T ≡ 0)

and HIV-infected effector cells (I ≡ 0). Thus, in such absence the system of DPDEs in equation

(3) reduces to,

dE
dt
−d2∆E +µ1E = α.(4)
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Following the techniques in [4], we have

E(x, t) = u(x)+w(x, t)(5)

where u := f (x) is independent of the time t and satisfies the boundary value problem (BVP)

−d2uxx +µ1u = α, with u′(0) = u′(x f ) = 0,(6)

and w := f (x, t), which satisfies the BVP

wt = d2wxx−µ1w, with w′(0) = w′(x f ) = 0 and w(x,0) =−u(x).(7)

Since the solution for the homogeneous ordinary differential equation (ODE) in equation (6) is

uc(x) = c1 exp
(
−
√

µ1

d2
x
)
+ c2 exp

(√
µ1

d2
x
)
,(8)

then we let the corresponding particular solution to the ODE in equation (6) to be

up(x) = c3x+ c4,(9)

where, c1,c2,c3,c4, are constants to be determined. Thus,

µ1(c3x+ c4) = α,⇒ µ1c3x+µ1c4 = α.(10)

Equating terms of same coefficients in equation (10), we find c3 = 0 and c4 =
α

µ1
, which implies

that the solution to the BVP in equation (6) becomes

u(x) = c1 exp
(
−
√

µ1

d2
x
)
+ c2 exp

(√
µ1

d2
x
)
+

α

µ1
.(11)

Using the boundary conditions in equation (6) we find

u′(x) =−c1

√
µ1

d2
exp
(
−
√

µ1

d2
x
)
+ c2

√
µ1

d2
exp
(√

µ1

d2
x
)
,(12)

so that at x = 0, we have

u′(0) =−c1

√
µ1

d2
+ c2

√
µ1

d2
= 0,(13)

which implies that

c1 = c2.(14)
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Similarly, At x = x f , we find

u′(x f ) =−c1

√
µ1

d2
exp
(
−
√

µ1

d2
x f

)
+ c2

√
µ1

d2
exp
(√

µ1

d2
x f

)
= 0,(15)

which is equivalent to

c2

√
µ1

d2
exp
(

2
√

µ1

d2
x f

)
= c1

√
µ1

d2
.(16)

In view of equation (14), equation (16) becomes

c2 exp
(

2
√

µ1

d2
x f

)
= c2,⇒ c2 = 0.(17)

Hence, the solution in equation (11) becomes,

u(x) =
α

µ1
.(18)

Let w(x, t) = X(x)T (t), then applying the method of separation of variables [4] to the BVP in

(7), we have

X(x)T ′(t) = T (t)
(
d2X ′′(x)−µ1X(x)

)
,⇒ T ′(t)

T (t)
=

d2X ′′(x)−µ1X(x)
X(x)

=−ρ
2,(19)

where ρ is an arbitrary separation constant. Solving for T (t) we have

d
dt

(
T (t)exp(ρ2t)

)
= 0,(20)

which is equivalent to

T (t)exp(ρ2t) = c5,(21)

where c5 is a constant of integration. Hence,

T (t) = c5 exp(−ρ
2t).(22)

Solving for X(x) in equation (19), we have

X ′′(x)+
(ρ2−µ1)

d2
X(x) = 0,

⇒ X(x) = c6 cos

√(ρ2−µ1)

d2
x

+ c7 sin

√(ρ2−µ1)

d2
x

 .(23)
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Thus,

w(x, t) = c5 exp(−ρ
2t)

c6 cos

√(ρ2−µ1)

d2
x

+ c7 sin

√(ρ2−µ1)

d2
x

 .(24)

Applying the boundary conditions in equation (7) to the equation in (24), we have

w′(x, t) = −c5c6

√
(ρ2−µ1)

d2
exp(−ρ

2t)sin

√(ρ2−µ1)

d2
x


+c7c5

√
(ρ2−µ1)

d2
exp(−ρ

2t)cos

√(ρ2−µ1)

d2
x

 .(25)

Assuming that c5 6= 0, then at x = 0, equation (25) becomes

0 = c7c5

√
(ρ2−µ1)

d2
exp(−ρ

2t),⇒ c7 = 0.(26)

Thus, at x = x f , we see that c6 6= 0, so that

0 = −c5c6

√
(ρ2−µ1)

d2
exp(−ρ

2t)sin

√(ρ2−µ1)

d2
x


⇐⇒ sin

√(ρ2−µ1)

d2
x f

= 0.(27)

Hence, for j = 1,2,3, . . . , we have from equation (27) that√
(ρ2−µ1)

d2
x f =± jπ.(28)

This implies that

w(x, t) = c j exp(−ρ
2t)sin( jπx) , for j = 1,2,3, . . . .(29)

Thus, in view of the solutions in (18) and (29) the equation in (5) clearly present the fact that

in the absence of the tumor and HIV-infected effector cells, the solution E(t) in equation (5) of

the extended model in equation (3) converges to the normal physiological level α/µ1 as t→∞.

This implies that our extended model in equation (3) reflects the normal physiological level

(α/µ1) of the healthy effector cells E, as it is determined by Foryś and Poleszczuk in [9] for the

model in equation (1).



HIV RELATED CANCER-IMMUNE SYSTEM 9

Stability analysis of the equilibria when τ = 0

When the regeneration of lytic granules by the effector cells and breaching of some effector

cells into T -cells happens instantaneously, Foryś and Poleszczuk in [9] established that when

there is no HIV-infected cells, the set D = R2
+ is invariant for system (3) at the unique strictly

positive steady state (T̄ , Ē) = ( µ1r1−αk1
k1(r2−εr1)

, r1
k1
), which implies that the immune system is capable

to successfully prevent further cancer development. Therefore, for every solution in D there is

E(t)≤max{E(0), r2
εk1

, r1
k1
}, such that, if r1 >

αk1
µ1

,

• for ε < r2
r1

, then the unique positive steady state (T̄ , Ē) is globally stable in D ,

• for ε > r2
r1

there is no positive steady state as T (t)→ ∞, ∀ t→ ∞.

Thus, the rate of tumor growth reflected by the parameter r1 and rate of cancer elimination by the

immune system, reflected by the parameter value k1, plays an integral part in the investigation

of the governing dynamics of our model. When the concentration of HIV-infected effector cells

is present, Foryś and Poleszczuk in [9] showed that the set D = R3
+ is invariant for system (3)

at the unique strictly positive steady state (T̄ , Ē, Ī) = ( µ1r1−αk1
k1(r2−εr1)

, r1
k1
,0). That is, if r1 >

αk1
µ1

, then

(0, αk1
µ1

,0) is unstable. In addition if r1 <
µ2k1
k2

,

• if ε < r2
r1

then ( µ1−αk1
k1(r2−εr1)

, r1
k1
,0) is locally asymptotic stable,

• if α > µ1µ2
k2

, then (0, µ2
k2
, αk2−µ1µ2

µ2k2
) is locally asymptotic stable.

Thus, the above facts present that there is no steady state describing the coexistence of the

concentration of cancer and HIV-infected effector cells in vivo, even at the instantaneously

pace.

Stability analysis of the equilibria when τ > 0

In this section we examine the case for the regeneration of lytic granules by the effector cells

and breaching of some effector cells into T -cells require sometimes to take place, with respect

to the governing dynamics in the previous section. In view of the governing dynamics in the

previous section, we see that the steady states for the system in (3) is same as the steady states of

the corresponding reduced system in equation (3). Therefore, it suffices to consider the stability

for the positive steady states of the equation in (3). Thus, for the extended model in equation
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(3), the jacobian matrix is

∆(λ ,τ) =


d1 0 0

0 d2 0

0 0 d3



+


0 −k1T̄ 0

r2− r1 +(1− ε)r1 exp(−λτ) −µ1− k1T̄ +(1− ε)k1T̄ exp(−λτ) −k2Ē

0 0 k2Ē−µ2



=


d1 −k1T̄ 0

r2− r1 +(1− ε)r1 exp(−λτ) d2− (µ1 + k1T̄ − (1− ε)k1T̄ exp(−λτ)) −k2Ē

0 0 d3− (µ2− k2Ē)

 .

Hence, the characteristic matrix for the steady state for cancer-immune system interactions

with the concentration of HIV-infected effector cells is

det(∆(λ ,τ)) = (d1−λ )[(d2− (µ1 + k1T̄ − (1− ε)k1T̄ exp(−λτ))−λ ](d3− (µ2− k2Ē))−λ )

+k1T̄ [(r2− r1 +(1− ε)r1 exp(−λτ)](d3− (µ2− k2Ē))−λ ),

in which we let

W (λ ,τ) = det(∆(λ ,τ)) = (d3− (µ2− k2Ē))−λ )W2(λ ,τ),

W2(λ ,τ) = P(λ )+Q(λ )exp(−λτ),(30)

where W2 denotes the characteristic quasi-polynomial for the reduced two-variable system in

(3) with I ≡ 0,

P(λ ) = (d1−λ )(d2− (µ1 + k1T̄ )−λ )+(r2− r1)k1T̄ ,

= λ
2 +(µ1 + k1T̄ − (d1 +d2))λ +(r2− r1)k1T̄ +d1d2.

and

Q(λ ) = k1T̄ (1− ε)(−λ + r1),

= −k1T̄ λ + εk1T̄ λ + r1k1T̄ − εr1k1T̄ .



HIV RELATED CANCER-IMMUNE SYSTEM 11

Since exp(−λτ)> 0 for all values of λ and τ , then we have

P(λ )+Q(λ ) = λ
2 +(µ1 + εk1T̄ − (d1 +d2))λ + r2k1T̄ − εr1k1T̄ +d1d2.

However, the Routh-Hurwitz criteria requires that, all the roots of (30) have negative real parts.

This implies that

(d3− (µ2− k2Ē))> 0, (µ1 + εk1T̄ − (d1 +d2))> 0 and r2k1T̄ − εr1k1T̄ +d1d2 > 0,

which is equivalent to

µ2 < k2Ē−d3, (µ1 + εk1T̄ )> d1 +d2, r2k1T̄ +d1d2 > εr1k1T̄ .

This enable us to obtain the following results.

Corollary 2.1. If r2k1T̄ +d1d2 > εr1k1T̄ and

• µ2 < k2Ē − d3, then if ( µ1−αk1
k1(r2−εr1)

, r1
k1
) is stable as a steady state in the two-variable

system, then ( µ1−αk1
k1(r2−εr1)

, r1
k1
,0) is stable as a steady state for system in equation (3),

• µ2 > k2Ē−d3, then ( µ1−αk1
k1(r2−εr1)

, r1
k1
,0) is unstable.

Since there is no steady state describing the coexistence of the tumor cells with the HIV

infection in vivo and in view of the results in Corollary (), we see that the steady states for the

system in (3) under the governing dynamics are the same as for the governing dynamics without

the infection, then in the next section it suffices to examine the existence of Hopf bifurcation

for the reduced (two-variable) system in equation (3).

Existence of Hopf bifurcation

If r2k1T̄3 + d1d2 > εr1k1T̄3, then ( µ1−αk1
k1(r2−εr1)

, r1
k1
) is stable for τ = 0. Therefore, for stability

switches we follow the ideas from Cooke and Driessche in [5], that the necessary condition for

stability switches is the existence of purely imaginary eigenvalue

λ = iω, ω > 0 for some threshold value τth.

If iω is an eigenvalue for τth, then

W2(iω,τth) = 0⇒ P(iω) =−Q(iω)exp(iωτth)
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which implies

‖P(iω)‖= ‖Q(iω)‖.

Defining

F(ω) = ‖P(iω)‖2−‖Q(iω)‖2,

where

F(y) = y2 +Ay+B, y = ω
2,

A = ε(2− ε)k2
1T̄ 2 +2(µ1− r2 + r1)k1T̄ +µ

2
1 −2(µ1 + k1T̄ )d1d2 +d2

1d2
2 > 0,

B = (r2− r1(2− ε))(r2− r1ε)k2
1T̄ 2 > 0,

if r2− r1ε > 0, ε < 1, and if

• r2− r1(2− ε)> 0, then there is no positive roots of F .

• r2− r1(2− ε)< 0, then F has exactly one positive root ȳ.

These above two facts enable us to state the following results.

Theorem 2.1. Assume that the steady state ( µ1−αk1
k1(r2−εr1)

, r1
k1
) exists. Then if

• r2− r1(2− ε)> 0, then (T̄ , Ē) is stable for any positive delay τ > 0.

• r2−r1(2−ε)< 0, then there exists the threshold dealy τth > 0 such that (T̄ , Ē) is stable

for τ < τth, loses stability at τ = τth in which Hopf bifurcation occurs.

Remark 2.1. From the analysis presented above it is obvious that the state ( µ1−αk1
k1(r2−εr1)

, r1
k1
,0)

cannot recover stability for larger values of τ .

3. Derivation and analysis of the numerical method

In this section, we describe the derivation of the fitted numerical method for solving the

system in equation (3). We determine an approximation to the derivatives of the functions

T (t,x),E(t,x) and I(t,x) with respect to the spatial variable x.
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Let Nx be a positive integer. Discretize the interval [0,x f ] through the points

x0 = 0 < x1 < x2 < · · ·< xNx = x f ,

where the step-size ∆x = x j+1− x j = x f /Nx, j = 0,1, . . . ,Nx. Let T j(t),E j(t),I j(t) denote

the numerical approximations of T (t, j),E(t, j), I(t, j), then we approximate the second order

spatial derivative terms by

∆T (t,x j)≈
T j+1−2T j +T j−1

φ 2
T

, ∆E(t,x j)≈
E j+1−2E j +E j−1

φ 2
E

, ∆I(t,x j)≈
I j+1−2I j +I j−1

φ 2
j

,

(31)

where

φ
2
T =

(exp(σT ∆x)−1)
σT

, (φE) j =
4

σ2
E

sinh2
(

σE∆x
2

)
, φI =

4
σ2

I
sinh2

(
σI∆x

2

)
,

and

σT =

√
r1

d1
, σE =

√
µ1

d2
, σI =

√
µ2

d3
.

It is not that difficult to see that φT → ∆x, φE → ∆x and φI → ∆x, as ∆x→ 0.

Let Nt be a positive integer and ∆t = H/Nt where 0 < t < H. Discretizing the time interval

[0,H] through the points

0 = t0 < t1 < · · ·< tNt = H,

where

tn+1− tn = ∆t, n = 0,1, . . . ,(Nt−1).

We approximate the time derivative at tn by

dT j(tn)
dt

≈
T n+1

j −T n
j

ψT
,

dE j(tn)
dt

≈
E n+1

j −E n
j

ψE
,

dI j(tn)
dt

≈
I n+1

j −I n
j

ψI
,(32)

where

ψT = (1− exp(−r1∆t)−1)/r1, ψE = (exp(µ1∆t)−1)/µ1, ψI = (exp(µ2∆t)−1)/µ2,

where we see that ψT → ∆t, ψE → ∆t and ψI → ∆t as ∆t→ 0.
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The denominator functions in (31) and (32) are used explicitly to remove the inherent stiffness

in the central finite derivatives parts and are derived by using the theory of nonstandard finite

difference methods, see, e.g., [15, 19, 20] and references therein.

Combining the equation (31) for the spatial derivatives with equation (32) for time deriva-

tives, we obtain

T n+1
j −T n

j
ψT

= d1
T n+1

j+1 −2T n+1
j +T n+1

j−1

φ 2
T

+ r1T
n
j − k1T

n
j E n

j ,

E n+1
j −E n

j
ψE

= d2
E n+1

j+1 −2E n+1
j +E n+1

j−1

φ 2
E

+ r2T
n
j −µ1E

n
j − k1T

n
j E n

j +(1− ε)k1(HT )
n
j(HE)

n
j

−k′2E
n
j I n

j +α,

I n+1
j −I n

j
ψI

= d3
I n+1

j+1 −2I n+1
j +I n+1

j−1

φ 2
I

+ k2E
n
j I n

j −µ2I
n
j ,

T n
1 = T n

−1, T
n

1 = T n
−1, T

n
1 = T n

−1, and T n
Nx

= T n
Nx−1, T

n
Nx

= T n
Nx−1, T

n
Nx

= T n
Nx−1,

E 0
j = 780, T 0

j = 10, I 0
j = 10.



(33)

where

(HT )
n
j ≈ T (tn− τ,x j) and (HE)

n
j ≈ E(tn− τ,x j),(34)

are the history functions corresponding to the equations in T and E for j = 1,2, . . . ,Nx− 1,

n = 0,1, . . . ,Nt−1.

The system in equation (33) can be further be simplified as

− d1
φ 2

T
T n+1

j−1 +
(

1
ψT

+ 2d1
φ 2

T

)
T n+1

j − d1
φ 2

T
T n+1

j+1 =
(

1
ψT

+ r1

)
T n

j − k1T
n
j E n

j ,

− d2
φ 2

E
E n+1

j−1 +
(

1
ψE

+ 2d2
φ 2

E

)
E n+1

j − d2
φ 2

E
E n+1

j+1 = r2T
n
j

+
(

1
ψE
−µ1

)
E n

j − k1T
n
j E n

j +(1− ε)k1(HT )
n
j(HE)

n
j − k′2E

n
j I n

j +α,

− d3
φ 2

I
I n+1

j−1 +
(

1
ψI

+ 2d3
φ 2

I

)
I n

j −
d3
φ 2

I
I n+1

j+1 = k2E
n
j I n

j +
(

1
ψI
−µ2

)
I n

j .


(35)
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Consequently, the system in equation (35) can be written as a tridiagonal system given by

AT T n+1
j =

(
1

ψT
+ r1

)
T n

j − k1T
n
j E n

j ,

AEE n+1
j = r2T

n
j +

(
1

ψE
−µ1

)
E n

j − k1T
n
j E n

j +(1− ε)k1(HT )
n
j(HE)

n
j

−k′2E
n
j I n

j +α,

AII
n+1
j = k2E

n
j I n

j +
(

1
ψI
−µ2

)
I n

j ,


(36)

where j = 1, . . . ,Nx−1, n = 0, . . . ,Nt−1 and

AT = Tri
(
− d1

φT )2 ,
1

ψT
+ 2d1

φ 2
T
,− d1

φ 2
T

)
, AE = Tri

(
d2
φ 2

E
, 1

ψE
+ 2d2

φ 2
E
, d2

φ 2
E

)
,

AI = Tri
(
− d3

φ 2
I
, 1

ψI
+ 2d3

φ 2
I
,− d3

φ 2
I

)
.


On the interval [0,τ] the delayed arguments tn− τ belong to [−τ,0], and therefore the delayed

variables in equation (36) are evaluated directly from the history functions T 0(t,x),E0(t,x) as

(HT )
n
j ≈ T 0(tn− τ,x j) and (HE)

n
j ≈ E0(tn− τ,x j),(37)

and equation (36) becomes

AT T n+1
j =

(
1

ψT
+ r1

)
T n

j − k1T
n
j E n

j ,

AEE n+1
j = r2T

n
j +

(
1

ψE
−µ1

)
E n

j − k1T
n
j E n

j

+(1− ε)k1T 0(tn− τ,x j)E0(tn− τ,x j)− k′2E
n
j I n

j +α,

AII
n+1
j = k2E

n
j I n

j +
(

1
ψI
−µ2

)
I n

j .


(38)

Let s be the largest integer such that τs ≤ τ . By using the system equation (38) we can compute

T n
j ,E

n
j ,I

n
j for 1≤ n≤ s. Up to this stage, we interpolate the data

(t0,T 0
j ), (t1,T

1
j ), . . . ,(ts,T

s
j ) and (t0,E 0

j ), (t1,E
1
j ), . . . ,(ts,E

s
j ),

using an interpolating cubic Hermite spline ϕ j(t). Then

T n
j = ϕT (tn,x j) and E n

j = ϕE(tn,x j),
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for all n = 0,1, . . . ,s and j = 1,2, . . . ,Nx−1.

For n = s+ 1,s+ 2, . . . ,Nt − 1, when we move from level n to level n+ 1 we extend the

definitions of the cubic Hermite spline ϕ j(t) to the point (tn +∆t,T n
j ,E

n
j ). Then the history

terms (HT )
n
j and (HE)

n
j can be approximated by the functions ϕ j(tn − τ) for n ≥ s. This

implies that,

(HT )
n
j ≈ (ϕT ) j(tn− τ) and (HE)

n
j ≈ (ϕE) j(tn− τ),(39)

and equation (33) becomes

AT T n+1
j =

(
1

ψT
+ r1

)
T n

j − k1T
n
j E n

j ,

AEE n+1
j = r2T

n
j +

(
1

ψE
−µ1

)
E n

j − k1T
n
j E n

j +(1− ε)k1ϕT (tn− τ)ϕE(tn− τ)

−k′2E
n
j I n

j +α,

AII
n+1
j = k2E

n
j I n

j +
(

1
ψI
−µ2

)
I n

j ,


(40)

where

ϕT (tn− τ) = [(HT )
n
1,(HT )

n
2 . . . ,(HT )

n
Nx−1]

′, ϕE(tn− τ) = [(HE)
n
1,(HE)

n
2 . . . ,(HE)

n
Nx−1]

′.

Our FOFDM is then consists of equations (33)-(41). Re-writing the scheme in (41) in a form of

a system of equations

AT T = FT ,

AEE = FE ,

AII = FI,


(41)
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we see that the local truncation errors (ςT )
n
j ,(ςE)

n
j ,(ςI)

n
j are given by

(ςT )
n
j = (AT T )n

j − (FT )
n
j = (AT (T −T ))n

j ,

(ςE)
n
j = (AE)

n
j − (FE)

n
j = (AE(E−E ))n

j ,

(ςI)
n
j = (AII)n

j − (FI)
n
j = (AI(I−I ))n

j ,


(42)

Thus,

maxn, j |T n
j −T n

j | ≤ ||A
−1
T ||maxn, j |ςT |,

maxn, j |En
j −E n

j | ≤ ||A
−1
E ||maxn, j |ςE |,

maxn, j |In
j −I n

j | ≤ ||A
−1
I ||maxn, j |ςI|,


(43)

where

maxn, j |ςT | ≤ ∆t
2

∣∣Ttt(ξ ,x j)
∣∣+ (∆x)2

12 |Txxxx(tn,ζ )| ,

maxn, j |ςE | ≤ ∆t
2

∣∣Ett(ξ ,x j)
∣∣+ (∆x)2

12 |Exxxx(tn,ζ )| ,

maxn, j |ςI| ≤ ∆t
2

∣∣Itt(ξ ,x j)
∣∣+ (∆x)2

12 |Ixxxx(tn,ζ )| ,


(44)

tn−1 ≤ ξ ≤ tn+1,x j−1 ≤ ζ ≤ x j+1 and by the result in [25], we obtain

||A−1
T || ≤ ΞT ,

||A−1
E || ≤ ΞE ,

||A−1
I || ≤ ΞI.


(45)

Using (46) and (45) into (43), we obtain the following results.

Theorem 3.1. Let FT (x, t),FE(x, t),FI(x, t) be sufficiently smooth functions so that

T (x, t),E(x, t), I(x, t)∈C1,2([1,Nx]×[1,Nt ]). Let (T n
j ,E

n
j ,I

n
j ), j = 1,2, . . .Sx,n= 1,2, . . .Nt be
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the approximate solutions to (3), obtained using the FOFDM with T 0
j = T 0

j ,E
0
j =E0

j ,I
0
j = I0

j ,.

Then there exists ΞT ,ΞE ,ΞI independent of the step sizes ∆t and ∆x such that

maxn, j |T n
j −T n

j | ≤ ΞT [
∆t
2

∣∣Ttt(ξ ,x j)
∣∣+ (∆x)2

12 |Txxxx(tn,ζ )|],

maxn, j |En
j −E n

j | ≤ ΞE [
∆t
2

∣∣Ett(ξ ,x j)
∣∣+ (∆x)2

12 |Exxxx(tn,ζ )|],

maxn, j |In
j −I n

j | ≤ ΞI[
∆t
2

∣∣Itt(ξ ,x j)
∣∣+ (∆x)2

12 |Ixxxx(tn,ζ )|].


(46)

Hence, we conclude our analysis with the following result.

Theorem 3.2. (Fatunla [8], Trefethen [26]) A difference scheme is said to be convergent if and

only if it is consistent and stable.

4. Numerical results and discussions

Taking the diffusion constants d1,d2,d3 in [10−1,10−20], using the parameter values in Table

1, and using the fact that the regeneration of lytic granules by the effector cells and the breaching

of some effector cells into T -cells requires time τ to happened, then we present our numerical

solutions for the case when τ 6= 0 and τ = 0 as follows. In (a) and (b), we have the situation

when a host is infected by the concentration of cancer cells only, (c) and (d), the situation when

a host is infected by the concentrations of cancer cells, then becomes infected with HIV at a

later stage, whereas in (e) and (f) we have the case when a host is infected with HIV then at a

later stage becomes infected with cancer too.

In (a) we see the immune cells raising to their steady states, whereas the cancer cells drasti-

cally being reduced to nothing. We also see similar interactions in (b) even though the immune

healthy effector healthy cells start with a slow decrease due to the infection inflicted by the

cancer cells, before it converges to its steady state.

In (c) and (d) the situation which is depicted in (a) and (b) changes, due to the introduction of

the HIV-infected effector cells. In (c), we see healthy effector cells raises before the introduction

of the HIV-infected effector cells. We also see that HIV-infected cells raised to some magnitude

which causes the healthy cells to drastically drop to a low steady state. As soon as the healthy
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effector cells drops low so does the HIV-infected cells. This we see that it paves the way for

cancer cells to raise. In (d) we see similar behaviors to the behaviors in (c) at a magnified pace.

In (e) we see HIV-infected cells raising causing the healthy immune cells to flactuate towards

their steady states. Such flactuations can be seen in the behaviour of the HIV-infected cells

due to the strength of the immune healthy cells. However, the introduction of cancer cells

weaken the immune healthy cells which in turn subject the HIV-infected cells to raise high.

The dynamics in (f) are straight forward a except that the HIV-infected cells eventual converge

to their low staedy state. This is due to the impaired healthy immune healthy cells by both

infections.

5. Conclusion

In this paper, we investigated the extended model arising in HIV related cancer-immune

system dynamics and we were able to show that the physiological level of our extended model

coincides with the original model in equation (1). Our numerical results present a clear fact

played by the inclusion of a delay term (τ) in the dynamics of our extended model. We also

see the crucial agreement of our results that the healthy immune system is able to successfully

prevent the development of the cancer infection in a host and unable to do so when a host is

infected by an additional infection, such as HIV. However, when a host is infected with HIV our

results clearly shows that the healthy immune system is unable to prevent further development

of the HIV-infected cells. Consequently, our results also present the fact that the weakened

immune system cannot prevent the growth of the cancerous cells. Thus, the work in this paper,

should be seen as the first attempt to provide an in depth information about the growth rate

of tumor cells is relatively larger than the rate of elimination of cancerous cells by the healthy

immune system..
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TABLE 1. The ranges of parameters values and corresponding references

r1[13] k1[13] r2 α/µ1[10] k′2[13] k3[6]

0.05∼ 0.5 10−5 ∼ 10−3 0∼ 0.05 800∼ 1200 10−5 ∼ 5×10−4 2.4×10−5

µ2[13] δ [21] c[21] µ1 ε[2] N[6]

0.3 0.3∼ 0.7 2.1∼ 3.8 0.03 0.1 100∼ 2000

r1 k1 r2[11] α/µ1 k′2 k3

0.1 10−4 0.03 800 5×10−5 2.4×10−5

µ2 δ c µ1[11] ε N

0.3 0.3 3.8 0.03 0.1 275
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FIGURE 1. Numerical solution of the concentrations of cancer, HIV-infected

and healthy effector cells interaction model. Plots (a-f) correspond to the con-

centrations of cancer and healthy effector cells with delay = 5, without delay,

with introduction of HIV-infected effector cells with delay = 5, with introduc-

tion of HIV-infected effector cells without delay, with the introduction of the

concentration of cancer cells with delay = 5, and the introduction of the concen-

tration of cancer cells without delay. Parameters are given in Table 1


