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Abstract: In this paper, we establish two mathematical models to study H1N1 influenza transmission dynamics.

One model is for the case of concurrent treatment, in which we assume that untreated individuals are detected

at random and moved to the treatment compartment at any time of their infected phase, and the other model

deals with the case of early diagnosis, in which we assume that with some probability σ ∈ [0,1], individuals are

diagnosed at the moment of infection and immediately moved to the treatment compartment. Both models are

analyzed including the derivation of the basic and control reproduction numbers, the proof of global stability of

disease-free equilibrium points, and demonstrating how the acquired reproduction number can be used to explain

the adverse effects associated with antiviral treatment. This effect is also explained using a quantity termed the total

control reproduction number. We also compare the differences between the two models in evaluating outcomes of

influenza. Numerical simulations are conducted to verify the theoretical analysis results.
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1. Introduction

Influenza (also known as flu) is a respiratory disease caused by certain RNA viruses of the

Orthomyxoviridae family [1]. RNA viruses lack means of correcting errors introduced during

replication and influenza has multiple hosts with which mutant and recombinant genotypes may

have selective advantage. Influenza viruses have coexisted with humans for centuries and have

historically been a cause of excessive morbidity and mortality [2].

H1N1 influenza is a type A flu virus of swine origin that was first detected in April, 2009.

The virus infected people and spread from person-to-person, sparking a growing outbreak of

flu in the United States [3]. An increasing number of cases are being reported internationally

as well. It is well-known that novel influenza A (H1N1) virus spreads in the same way as

regular seasonal influenza viruses spread, mainly through coughs and sneezes of people who

are infected. At the time of the outbreak in 2009, pandemic H1N1 was a new virus, to which

most people did not have immunity, and illness may have been more widespread as a result [4].

There is a need for effective treatment and control strategies in the event of pandemics. The

government of China took a series of emergency measures, such as setting up work mechanism

to prevent H1N1 influenza from spreading; adopting strict inspection and quarantine measures

in the ports of entry and exit; strengthening the management of close contacts; monitoring

and reporting infected individuals; and constantly adjusting and improving the diagnosis and

treatment of cases.

One of such strategies is treatment of affected patients with antiviral medication. Currently,

the drugs for H1N1 influenza are the same as those used for treating seasonal influenza. Two

types of antiviral drugs currently available are neuraminidase inhibitors and M2 channel block-

ers [5]. Neuraminidase inhibitors such as oseltamivir, zanamivir and tamiflu play an important

role in inhibiting the virus replication and dissemination. M2 channel blockers such as aman-

tadine and rimantadine can effectively inhibit replication of the virus in infected cells, block

the spread of the virus infection. Despite the effectiveness of these drugs in reducing influenza-

related morbidity and mortality, the emergence of drug resistance poses a critical limitation on

their application. Incidence of viral resistance to M2 channel blockers has been associated with
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an increasing rate in seasonal and H1N1 influenza, possibly through widespread or indiscrim-

inate use of the drugs [6]. Neuraminidase inhibitors are less prone to be selected for resistant

mutations [7], and therefore offer a better option for pandemic preparedness. However, the

emergence of oseltamivir resistance in 2006 has raised concerns about our preparation for an

influenza pandemic [8]. Recently, studies show that amantadine and rimantadine do not work

among individuals who have suffered drug abuse for a long time. But, oseltamivir, zanamivir

and tamiflu can effectively alleviate symptoms in some individuals. This is particularly im-

portant for preventing pandemics caused by the emergence of resistant viral mutants. Some

individuals who become resistant to single drug may continue to seek treatment with other

drugs to alleviate pain. After individuals become resistant to multiple drugs, antiviral treatment

will no longer be effective.

In this paper, we formulate two models to study the effect of drug treatment on the prevalence

of drug resistance. One considers treatment while ill, and the other considers diagnosis at the

moment of infection and immediate treatment with a given probability. We compare the differ-

ences between the two models, including their connection to parameters representing treatment

strategies and evaluation of the impact of drug treatment on the prevalence of resistance. We

examine the role of the acquired reproduction number, in the contribution of treatment failure

to the adverse effect of drug treatment.

The paper is organized as follows. Sections 2 and 3 present Model I and Model II, respec-

tively. Analyses of the two models are also included in these sections, including the derivation

of the basic and control reproduction numbers, which are shown to determine the stability of

equilibria. Section 4 is devoted to numerical simulations, and Section 5 compares the differ-

ences between two models. Finally, the findings and conclusions are summarized in Section

6.

2. Model I

The model is based on the transmission dynamics of H1N1 influenza. Assume that, for an

individual under treatment with a single drug, if drug resistance has developed, the individual

may continue to receive treatment with other drugs. For those individuals, multi-drug resistance
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may develop. Let f1 and f2 denote the treatment rate of a drug-sensitive individual and individ-

uals who are resistant to a single drug, respectively. Assume that fi = piki(i = 1,2), where ki

denote the rate at which an infected patient seeks a doctor, which can happen at any time of the

infection, and pi denote the proportion of patient who receive treatment.

Let N denote the number of the population, which is divided into five subclasses: susceptible

S; infected but sensitive to drugs I1s; resistant to a single drug I1r; multi-drug resistant strains

I2r; and recovered R. Based on the above assumptions, we establish the following model(called

Model I) 

dS
dt = Λ+ωR−β1s

I1s
N S−β1r

I1r
N S−β2r

I2r
N S−µS,

dI1s
dt = β1s

I1s
N S−µI1s− f1I1s− γ1I1s,

dI1r
dt = β1r

I1r
N S+ f1(1− c1)I1s−µI1r− f2I1r− γ2I1r,

dI2r
dt = β2r

I2r
N S+ f2(1− c2)I1r−µI2r− γ3I2r,

dR
dt = f1c1I1s + γ1I1s + f2c2I1r + γ2I1r + γ3I2r−µR−ωR.

(2.1)

Table 1 Definitions of frequently used symbols

Parameters Description

Λ Recruitment rate of individuals

β1s Transmission rate of the drug-sensitive strain

β1r Transmission rate of strain with resistance to a single drug

β2r Transmission rate of strains resistant to multiple drugs

1
µ

Average life-span

fi(i = 1,2) Treatment rate

ci(i = 1,2) Fraction of treated individuals who recover

γi(i = 1,2,3) Recovery rate

1
ω

Average immunity period due to infection

Some of the main assumptions made in the formulation of the Model I are as follows:

(i) Homogeneous mixing in the populations;
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(ii) Individuals in the I1r class can still receive drug treatment but there is no antiviral drug to

treat I2r individuals, and assume that β1r > β2r;

(iii) Transmission rate from individuals in the I1r class is lower than that from individuals in

the I1s class due to the antiviral treatment, and so β1s > β1r;

(iv) Disease-induced mortality is ignored.

Note that the total population size

N = S+ I1s + I1r + I2r +R

has the following properties:

dN
dt

= Λ−µN, t→ ∞,N→ Λ

µ
.

It is easy to show that the following biologically-feasible region of Model I

Γ = {(S, I1s, I1r, I2r,R) ∈ R5
+ : 0≤ S+ I1s + I1r + I2r +R≤ Λ

µ
}

is positively-invariant and attracting.

The disease-free equilibrium is E10 = (Λ

µ
,0,0,0,0).

2.1. Global stability and reproduction numbers of Model I

We derive the reproduction numbers using the next generation matrix [14]. The three infected

variables are I1s, I1r, I2r. Let F and V denote the matrices corresponding to the new infection

terms and the transitions between stages, respectively. And for simplicity we introduce the

following notations:

hi = µ + fi + γi(i = 1,2).

Note that

F =


β1s 0 0

0 β1r 0

0 0 β2r

 ,
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V =


h1 0 0

− f1(1− c1) h2 0

0 − f2(1− c2) µ + γ3

 .

Then

FV−1 =


β1s
h1

0 0
β1r f1(1−c1)

h1h2

β1r
h2

0
β2r f1(1−c1) f2(1−c2)

h1h2(µ+γ3)
β2r f2(1−c2)
(µ+γ3)h2

β2r
µ+γ3

 .

The control reproduction number is

R1c = ρ(FV−1) = max{R1sc,R1rc,R1m},

where,

R1sc =
β1s

h1
,R1rc =

β1r

h2
,R1m =

β2r

µ + γ3
.

(i) The biological interpretations of these quantities R1sc,R1rc and R1m are as follows. R1sc and

R1rc represent the numbers of secondary sensitive cases produced by a drug-sensitive and single

drug-resistant strain, respectively, during the period of infection in a susceptible population.

While R1m explains the number of secondary multiple drug-resistant cases, during the period of

infection in a susceptible population, which is the basic reproduction number for the strain with

multi-drug resistance. From the formulation of R1sc and R1rc, we know treatment can reduce

infection period.

(ii) In the absence of treatment, i.e., fi = 0(i= 1,2), we can get the basic reproduction number

R10 = max{R1s,R1r,R1m},

where

R1s =
β1s

µ + γ1
,R1r =

β1r

µ + γ2
,R1m =

β2r

µ + γ3
.

The basic reproduction number Rr1 of drug-resistant strain can be written as Rr1 =max{R1r,R1m}.

R1s denotes the basic reproduction number of drug-sensitive strains.



TWO MATHEMATICAL MODELS FOR H1N1 INFLUENZA WITH ANTIVIRAL TREATMENT 7

Theorem 1. If R1c < 1, then the disease-free equilibrium E10 is locally asymptotically stable,

and unstable if R1c > 1.

Proof. The Jacobian of system (2.1) at E10 is

J|E10 =



−µ −β1s −β1r −β2r ω

0 h1(R1sc−1) 0 0 0

0 f1(1− c1) h2(R1rc−1) 0 0

0 0 f2(1− c2) (µ + γ3)(R1m−1) 0

0 f1c1 + γ1 f2c2 + γ2 γ3 −(µ +ω)


.

The eigenvalues are−µ,−(µ+ω),h1(R1sc−1)< 0,h2(R1rc−1)< 0,(µ+γ3)(R1m−1)< 0,

respectively, that means all eigenvalues of J|E10 have negative real parts, hence E10 is locally

asymptotically stable. �

Recall that total population size N(t) satisfies the equation dN
dt = Λ− µN and N(t)→ Λ

µ
as

t → ∞. Using results from Castillo-Chavez and Thieme [15] and Mischaikow et al. [16], we

can obtain analytical results by considering the following limiting system

dS
dt = Λ+ω(Λ

µ
−S− I1s− I1r− I2r)−β1s

µ

Λ
I1sS−β1r

µ

Λ
I1rS−β2r

µ

Λ
I2rS−µS,

dI1s
dt = β1s

µ

Λ
I1sS−µI1s−h1I1s,

dI1r
dt = β1r

µ

Λ
I1rS+ f1(1− c1)I1s−h2I1r,

dI2r
dt = β2r

µ

Λ
I2rS+ f2(1− c2)I1r−µI2r− γ3I2r,

dR
dt = f1c1I1s + γ1I1s + f2c2I1r + γ2I1r + γ3I2r− (µ +ω)(Λ

µ
−S− I1s− I1r− I2r).

(2.2)

If R1c < 1, then R1sc < 1 and R1rc < 1. From Theorem 2.1, the disease-free equilibrium E10

is locally asymptotically stable. In order to verify the global stability of E10, we only need to

prove that E10 is a global attractor.

From the first equation in (2.2), it follows that

S′ ≤ (µ +ω)Λ

µ
− (µ +ω)S.



8 X. J. WANG, D. WANG, J. F. GAO, J. A. CUI, X. P. WANG

By the comparison principle, we have S(t)≤ Λ

µ
+(S(0)− Λ

µ
)e−(µ+ω)t . Without loss of general-

ity, we can assume that S(t)≤ Λ

µ
. Then it follows from the second and third equations of (2.2)

that 
I′1s ≤ (β1s−h1)I1s,

I′1r ≤ (β1r−h2)I1r + f1(1− c1)I1s.

Then by the comparison principle [15], it is easy to show that I1s(t)→ 0 and I1r(t)→ 0 as

t→+∞ when R1sc < 1 and R1rc < 1. From the fourth equation of (2.2), we have

I′2r ≤ (β2r−µ− γ3)I2r + f2(1− c2)I1r.

Since I1s(t)→ 0, I1r(t)→ 0 as t→+∞ and R1m < 1, we have I2r(t)→ 0 as t→+∞. Similarly,

from the fifth equation of (2.2) it is easy to obtain that R(t)→ 0 as t → +∞. Substitution of

these into the first equation of(2) gives S(t)→ Λ

µ
as t→+∞. This implies that the disease free

equilibrium E10 is a global attractor. Then we have the following theorem.

Theorem 2. If R1c < 1, the disease-free equilibrium E10 is globally asymptotically stable.

2.2. More on reproduction numbers of Model I

We define R1sc and R1rc as drug-sensitive and single drug-resistant strain control reproduction

number, respectively. R1m denotes the basic reproduction number of multi-drug resistant strains.

Then we rewrite the expression of R1sc and R1rc as follows

R1sc =
β1s

µ + p1k1 + γ1
,R1rc =

β1r

µ + p2k2 + γ2
.

Considering the partial derivative of R1sc and R1rc with respect to the proportion pi(i = 1,2)

of patients who receive treatment, which yields

∂R1sc

∂ p1
=

−β1sk1

(µ + p1k1 + γ1)2 < 0,
∂R1rc

∂ p2
=

−β1rk2

(µ + p2k2 + γ2)2 < 0.

Clearly, R1sc and R1rc are decreasing functions of pi(i = 1,2), that mean the more infected

patients to seek antiviral treatment, the easier disease and the epidemic size may be controlled.

At the same time, we notice that R1m is independent of pi(i= 1,2), that implies if drug resistance

has developed, antiviral treatment will no longer be effective. But this can not capture the
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nonlinear relationship with pi(i = 1,2), which suggests that more about reproduction number

need to be considered. The paper [12] gives a new idea about acquired reproduction number,

which can be used to explain the adverse effects associated with antiviral treatment. When a

person is infected with H1N1 drug-sensitive strain, the number of secondary cases consists of

five components given below:

1© S0

N0 (1− p1)
β1s

µ + γ1
; 2© S0

N0 p1c1
β1s

h1
; 3© S0

N0 p1(1− c1)(1− p2)
β1r

µ + γ2
;

4© S0

N0 p1(1− c1)p2c2
β1r

h2
; 5© S0

N0 p1(1− c1)p2(1− c2)
β2r

µ + γ3
.

If the total population size N0 is sufficiently large so that the number of infected cases is rela-

tively small, then S(t)
N(t) can be closely approximated by S0

N0 , and S0

N0 can be closely approximated

1. The component 1© represents the number of new sensitive cases if the person is untreated.

The component 2© represents the number of new sensitive cases if the person is treated and

recover. The component 3© represents the number of cases who have not been cured and do

not continue to seek treatment. The component 4© represents the cases of single drug resistant

when the person continue to seek treatment and recover. The component 5© represents the cases

who continue to seek treatment and finally develop multi-drug resistant strains. We denote the

sum of components 3©, 4© and 5© by RAR, which refers to the acquired reproduction number

and can be used to explain the adverse effects associated with antiviral treatment. So we get

RAR = p1(1− c1)(1− p2)
β1r

µ + γ2
+ p1(1− c1)p2c2

β1r

h2
+ p1(1− c1)p2(1− c2)

β2r

µ + γ3
.

Define RTC as the total control reproduction number, which is equal to the sum of both R1sc

and RAR, then we have

RTC =
β1s

h1
+ p1(1− c1)(1− p2)

β1r

µ + γ2
+ p1(1− c1)p2c2

β1r

h2
+ p1(1− c1)p2(1− c2)

β2r

µ + γ3
.

Clearly, RTC = RTC(p1, p2). Note that

∂RTC

∂ p1
=− k1R1sc

µ + p1k1 + γ1
+(1− c1)(1− p2)R1r +(1− c1)p2c2R1rc +(1− c1)p2(1− c2)R1m.

From ∂RTC
∂ p1

= 0, we obtain

p∗1 =
R1sc

(1− c1)(1− p2)R1r +(1− c1)p2c2R1rc +(1− c1)p2(1− c2)R1m
− µ + γ1

k1
,



10 X. J. WANG, D. WANG, J. F. GAO, J. A. CUI, X. P. WANG

and let

p1c =


0 p∗1 ≤ 0;

p∗1 0 < p∗1 < 1;

1 p∗1 ≥ 1.

Moreover
∂ 2RTC

∂ 2 p1
|p1=p∗1 =

k2
1R1sc

(µ + p∗1 + γ1)2 > 0.

Thus, the dependence of RTC on p1 is nonlinear, and there may be a critical value p1c such

that RTC decreases for 0 < p1 < p1c and increases for p1c < p1 < 1. In addition,

∂RTC

∂ p2
=−p1(1−c1)R1r+ p1(1−c1)c2R1rc− p1(1−c1)p2c2

k2R1rc

µ + γ2 + p2k2
+ p1(1−c1)(1−c2)R1m.

Define

p∗2 =
(µ + γ2)(−R1mc2 +R1rcc2−R1r +R1m)

k2(R1mc2 +R1r−R1m)
,

and

p2c =


0 p∗2 ≤ 0;

p∗1 0 < p∗2 < 1;

1 p∗2 ≥ 1.

Moreover
∂ 2RTC

∂ 2 p2
|p2=p∗2 =

−p1(1− c1c2)k2(µ + γ2)R1rc

(µ + γ2 + p∗2k2)2 < 0.

Then, the dependence of RTC on p2 is nonlinear, there may be a critical value p2c such that

RTC increases for 0 < p2 < p2c and decreases for p2c < p2 < 1.

Thus, the dependence of RTC on pi(i = 1,2) is nonlinear, there may be two critical values p∗1

and p∗2, such that ∂RTC
∂ pi

= 0(i = 1,2).

3. Model II

In Model I, ki(i=1,2) denote the rate at which an infected patient seeks a doctor, that can

happen at any time of the infection. Next, we study the model dealing with the case of early

diagnosis, in which we assume that with some probability σ ∈ [0,1] individuals are diagnosed

at the moment of infection and immediately moved to the treatment compartment. As usual

the population is divided into susceptible S, infected I and recovered R. Here, the infected
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are further subdivided into untreated individuals I1U , individuals I1T who receive treatment,

individuals I1r who are resistant to a single drug and multi-drug resistant strains I2r. Based on

the above assumptions, we develop the following model(called Model II)

dS
dt = Λ+ωR−β1U

I1U
N S−β1T

I1T
N S−β1r

I1r
N S−β2r

I2r
N S−µS,

dI1U
dt = (1−σ)(β1U

I1U
N S+β1T

I1T
N S)−µI1U − γ1I1U ,

dI1T
dt = σθ1(β1U

I1U
N S+β1T

I1T
N S)−µI1T − γ2I1T ,

dI1r
dt = σθ2(β1U

I1U
N S+β1T

I1T
N S)+β1r

I1r
N S−µI1r− γ3I1r,

dI2r
dt = σθ3(β1U

I1U
N S+β1T

I1T
N S)+β2r

I2r
N S−µI2r− γ4I2r,

dR
dt = γ1I1U + γ2I1T + γ3I1r + γ4I2r−µR−ωR,

θ1 +θ2 +θ3 = 1.

(3.1)

The meanings of parameters µ,γi(i = 1,2,3) are the same as those in Model I.

Note that the total population size

N = S+ I1U + I1T + I1r + I2r +R

has the following properties:

dN
dt

= Λ−µN, t→ ∞,N→ Λ

µ
.

It is easy to show that the following biologically-feasible region of Model II

Γ = {(S, I1U , I1T , I1r, I2r,R) ∈ R6
+ : 0≤ S+ I1U + I1T + I1r + I2r +R≤ Λ

µ
}.

is positively-invariant and attracting.

The disease-free equilibrium is E20 = (Λ

µ
,0,0,0,0,0).

3.1. Reproduction numbers of Model II

We derive the reproduction numbers using the next generation matrix [9]. The four infected

variables are I1U , I1T , I1r, I2r, the matrices F and V denote the matrices corresponding to the new

infection terms and the transitions between stages, respectively.
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Note that

F =


(1−σ)β1U (1−σ)β1T 0 0

σθ1β1U σθ1β1T 0 0

σθ2β1U σθ2β1T β1r 0

σθ3β1U σθ3β1T 0 β2r

 ,

V =


µ + γ1 0 0 0

0 µ + γ2 0 0

0 0 µ + γ3 0

0 0 0 µ + γ4

 .

Then

FV−1 =



(1−σ)β1U
µ+γ1

(1−σ)β1T
µ+γ2

0 0
σθ1β1U
µ+γ1

σθ1β1T
µ+γ2

0 0
σθ2β1U
µ+γ1

σθ2β1T
µ+γ2

β1r
µ+γ3

0
σθ3β1U
µ+γ1

σθ3β1T
µ+γ2

0 β2r
µ+γ4

 .

The control reproduction number is

R2c = ρ(FV−1) = max{R2sc,Rr2}.

where

R2sc =
θ1σβ1T

µ + γ2
+

(1−σ)β1U

µ + γ1
,R2r =

β1r

µ + γ3
,R2m =

β2r

µ + γ4
,

and

Rr2 = max{R2r,R2m}.

Here, R2m represents the number of secondary infection cases produced by multi-drug resistant

strains during the period of infection in a susceptible population.

Let

R2U =
β1U

µ + γ1
,R2T =

β1T

µ + γ2
.

The biological interpretations of these quantities R2U and R2T are as follows. R2U and R2T

represent the numbers of secondary infection cases produced by an untreated and treated case,

respectively, during the period of infection in a susceptible population.

3.2. Global stability and more on reproduction numbers of Model II
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As discussed in Model I, we consider more about the reproduction number to capture the

nonlinear relationship with σ and show that adverse effects associated with antiviral treatment.

In some cases, the level of infection may actually get higher when treatment rate is increased.

To prove this, we consider the partial derivative of R2sc with respect to σ .

∂R2sc

∂σ
= θ1R2T −R2U .

From 0 < θ1 < 1 and γ2 > γ1, we know that R2T < R2U , and hence, ∂R2sc
∂σ

< 0. Thus, R2sc is a

decreasing function of σ . Referring to the expression of Rr2, we know that Rr2 does not depend

on σ . Similarly, this can not capture the nonlinear relationship between R2sc and σ , which

suggests that more about reproduction number need to be considered [12].

When a person is infected with H1N1 influenza, the number of secondary cases consists of

the following four components:

1© S0

N0 (1−σ)
β1U

µ + γ1
, 2© S0

N0 σθ1
β1T

µ + γ2
, 3© S0

N0 σθ2
β1r

µ + γ3
, 4© S0

N0 σθ3
β2r

µ + γ4
.

If the total population size N0 is sufficiently large so that the number of infected cases is

relatively small, then S(t)
N(t) can be closely approximated by S0

N0 and closely approximated 1. The

component 1© represents the cases of new infected H1N1 influenza cases who are untreated.

The component 2© represents the cases of new infected H1N1 who are treated and do not de-

velop drug resistance. The component 3© represents the cases of new infected H1N1 influenza

with drug resistant due to antiviral treatment. The component 4© represents the cases of new

infected H1N1 influenza with multi-drug resistant strains due to antiviral treatment. Clearly,

the quantity R2sc is the sum of the first two components. Therefore, R2sc underestimates the

number of secondary infections by a sensitive case. For ease of reference, we denote the sum of

components 3© and 4© by RAR, which refers to the acquired reproduction number, and hence,

RAR = σθ2
β1r

µ + γ3
+σθ3

β2r

µ + γ4
.

Let RTC denote the sum of both R2sc and RAR, it follows that

RTC =
θ1σβ1T

µ + γ2
+

(1−σ)β1U

µ + γ1
+σθ2

β1r

µ + γ3
+σθ3

β2r

µ + γ4
.
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Obviously, RTC is a function of σ . Notice that

∂RTC

∂σ
= θ1R2T −R2U +θ2R2r +θ3R2m,

which is independent of σ . Thus, RTC is a linear function of σ . Furthermore, RTC is always

a monotone function of σ . While, paper [12] finds that this relationship can not capture the

nonlinear relationship with σ , that suggests that more generations of infections need to be con-

sidered.

For the purpose of presentation, denote RTC as the second generation in which new infections

are produced. Let R[3]
TC denote the number of tertiary infected cases, from the paper of Qiu and

Feng [12], we know the expression of R[3]
TC as follows

R[3]
TC = R2scR2sc +(R2sc +Rr2)RAR,

the first and second items in the above expression represent the numbers of tertiary sensitive and

resistant cases, respectively, produced in the third generation by a typical sensitive case. The

derivative of R[3]
TC with respect to σ is

∂R[3]
TC

∂σ
=(θ1R2T−R2U)(2θ1σR2T +2(1−σ)R2U +σθ2R2r+σθ3R2m)+(θ1σR2T +(1−σ)R2U +

Rr2)(θ2R2r +θ3R2m).

Let

σ
∗ =

(R2U −θ1R2T )R2U − (R2U +Rr2)(θ2R2r +θ3R2m)

(θ1R2T −R2U)2

and

σc =


0 σ∗ ≤ 0;

σ∗ 0 < σ∗ < 1;

1 σ∗ ≥ 1.

We can show that if

θ1R2T −R2U +θ2R2r +R2m < 0,

we have
∂ 2R[3]

TC
∂ 2σ

|σ=σ∗>0,

Similarly, if

θ1R2T −R2U +θ2R2r +R2m > 0,
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we get

∂ 2R[3]
TC

∂ 2σ
|σ=σ∗<0,

Thus, the dependence of R[3]
TC on σ is nonlinear, there may be a critical value σc such that

R[3]
TC decreases for 0 < σ < σc and increases for σc < σ < 1.

The key difference between R[3]
TC and RTC in terms of their functional relationships with σ

suggests that R[3]
TC can provide a more accurate description on how treatment can negatively

impact the disease dynamics.

We observe that Model I does not separate untreated and treated individuals, and there are

more parameters than that in Model II, and we can not capture the nonlinear relationship of

treatment until the second generation. However, Model II separates untreated and treated in-

dividuals immediately, and we can not capture the nonlinear relationship of treatment until the

tertiary generation. There are some other differences between the two models, which will be

given in the section 4.

Now, for convenience we denote µ + γi(i = 1,2,3,4) by µi(i = 1,2,3,4).

Theorem 3. If R2c < 1, the disease-free equilibrium E20 is locally asymptotically stable, and

unstable if R2c > 1.

Proof. The Jacobian of system (3.1) at E20 is

J|E20 =



−µ −β1U −β1T −β1r −β2r ω

0 µ1[(1−σ)R2U −1] (1−σ)β1T 0 0 0

0 σθ1β1U µ2(σθ1R2T −1) 0 0 0

0 σθ2β1U σθ2β1T µ3(R2r−1) 0 0

0 σθ3β1U σθ3β1T 0 µ4(R2m−1) 0

0 γ1 γ2 γ3 γ4 −(µ +ω)


.

Obviously, we can calculate that four of the eigenvalues are −µ,−(µ +ω),µ3(R2r− 1) <

0,µ4(R2m− 1) < 0, and the other two eigenvalues are determined by the following quadratic

equation

λ
2−{µ2(σθ1R2T −1)+µ1[(1−σ)R2U −1]}λ +µ1µ2(1−R2sc) = 0.
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From

λ1 +λ2 = µ2(σθ1R2T −1)+µ1[(1−σ)R2U −1]< 0,

and

λ1λ2 = µ1µ2(1−R2sc)> 0,

we can conclude that both λ1 and λ1 have negative real parts, thus all eigenvalues of J|E20 have

negative real parts, hence E20 is locally asymptotically stable. �

The total population size N(t) satisfies the equation dN
dt = Λ− µN and N(t)→ Λ

µ
as t → ∞.

Similar to the proof of Theorem 2.2, we can obtain the following limiting system

dS
dt = Λ+ω(Λ

µ
−S− I1U − I1T − I1r− I2r)−β1U

µ

Λ
SI1U

−β1T
µ

Λ
SI1T −β1r

µ

Λ
SI1r−β2r

µ

Λ
SI2r−µS,

dI1U
dt = (1−σ)(β1U

µ

Λ
SI1U +β1T

µ

Λ
SI1T )−µ1I1U ,

dI1T
dt = σθ1(β1U

µ

Λ
SI1U +β1T

µ

Λ
SI1T )−µ2I1T ,

dI1r
dt = σθ2(β1U

µ

Λ
SI1U +β1T

µ

Λ
SI1T )+β1r

µ

Λ
SI1r−µ3I1r,

dI2r
dt = σθ3(β1U

µ

Λ
SI1U +β1T

µ

Λ
SI1T )+β2r

µ

Λ
SI2r−µ4I2r,

dR
dt = γ1I1U + γ2I1T + γ3I1r + γ4I2r−µR−ωR,

θ1 +θ2 +θ3 = 1.

(3.2)

If R2c < 1, then R2sc < 1 and R2m < 1. From Theorem 3.1, the disease-free equilibrium E20

is locally asymptotically stable. In the following, we only need to prove that E20 is a global

attractor.

It follows from the first equation of (4) that

S′ ≤ (µ +ω)Λ

µ
− (µ +ω)S.

By the comparison principle, we have S(t)≤ Λ

µ
+(S(0)− Λ

µ
)e−(µ+ω)t . Without loss of general-

ity, we can assume that S(t)≤ Λ

µ
. Then it follows from the second and third equations of (3.2)

that 
I′1U ≤ [(1−σ)β1U −µ1]I1U +(1−σ)β1T I1T ,

I′1T ≤ σθ1β1U I1U +(σθ1β1T −µ2)I1T .



TWO MATHEMATICAL MODELS FOR H1N1 INFLUENZA WITH ANTIVIRAL TREATMENT 17

Based on the comparison principle [15], it is easy to show that I1U(t)→ 0 and I1T (t)→ 0 as

t→+∞ if R2sc < 1. From the fourth and fifth equation of (3.2), we get
I′1r ≤ σθ2(β1U +β1T )+(β1r−µ3)I1r,

I′2r ≤ σθ3(β1U +β1T )+(β2r−µ4)I2r.

Since I1U(t)→ 0, I1T (t)→ 0 as t→+∞ and R2m < 1 holds, we obtain I1r(t)→ 0, I2r(t)→ 0 as

t →+∞. Similarly, from the sixth equation of (3.2), it is easy to get that R(t)→ 0 as t →+∞.

Substitution of these into the first equation of (3.2) gives S(t)→ Λ

µ
as t→+∞. This implies that

the disease-free equilibrium E20 is a global attractor. Thus, we obtain the following theorem.

Theorem 4. If R2c < 1, the disease-free equilibrium E20 is globally asymptotically stable.

4. Numerical simulations

In this section, we present some numerical simulation results, which confirm or extend the

analytic results and illustrate the effect of new infections with sensitive strain and treatment

( fi(i = 1,2)) on controlling the infection.

We consider the situation in which the population size has reached the steady-state Λ

µ
=

105. Assume that the life span is 1
60 , then µ ≈ 0.00005. According to [13], the immunity

obtained from infection about one year, so we choose ω = 1
365 ≈ 0.003. Estimating of the basic

reproduction number for H1N1 influenza ranges from 1.75 to 3.96 in 2009-2010 year [14]. In

this paper, we set R10 = 1.75. The baseline transmission coefficient (β1s) for drug-sensitive case

can be calculated from the formula for R10, which gives β1s = 0.3. During H1N1 influenza,

several percentage of individuals who receive adamantanamine treatment may develop drug-

resistant and when drug-resistant strain develops, some individuals can not recover, they will

continue to seek other drugs for treatment, so we choose reasonable c1 and c2. We assume an

average period of infection to be 6 days, so the recovery rate γi(i = 1,2,3) = 0.1667 [12]. The

basic reproduction number of the drug-resistant strain Rr1 can be either greater or smaller than

that of the sensitive strain R1s. Here, we consider the case Rr1
R1s

< 1, and assume Rr1 = 0.9∗R1s =

1.5, those parameter values are summarized in Table 2.
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Table 2 Parameter values for system (2.1)

Parameter Estimated value Unit resources

Λ

µ
100000 number [12]

µ 0.00005 day−1 [12]

ω 0.003 day−1 [13]

β1s 0.3 day−1 [14]

β1r 0.25 - [15]

β2r Variable - [16]

fi(i = 1,2) Variable - [12]

Firstly, we only consider the Model I, and perform some simulations.

Fig 1: Numerical solutions for I1s, I1r, I2r of Model I, with treatment rate f1 = f2 = 0.

Fig 1 shows the proportion of sensitive, single and multi-drug resistant cases among total pop-

ulation, respectively, without treatment. Consider the fact that few individuals can develop the

multi-drug resistant, hence, we assume R1m < 1. From Fig 1, we also note that there appears

three peaks, which declines in return, but the disease has long duration. The reason for this

phenomenon may be some individuals have immunity for the H1N1 influenza, perhaps they

have recovered or they have injected the vaccine of H1N1. There exists only one epidemic peak

among single resistant individuals. The time of arriving peak of sensitive cases is almost the

same as single resistant cases. Finally, the multi-drug resistant dies out.

When the treatment rate is greater than 0.12, the basic reproduction number is less than one,

which implies the control measures can effectively prevent disease outbreaks. So we consider
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the case that the treatment rate is less than 0.12. Firstly, we consider f2 = 0 and vary the

treatment rate f1.

Fig 2: The change of infected drug sensitive, single and multi-drug resistant individuals with different

treatment rate f1.

From the first picture of Fig 2, we find that the rebound phenomenon can vanish, the size

of disease can be decreased and the duration of disease becomes shorter with the increase of

treatment rate. The arriving of peak can be delayed, which is beneficial for the development

of the vaccine. These are the benefits of effective treatments for disease. However, by the

second picture of Fig 2, we notice the adverse effects of treatment. With the larger of treatment

rate, more individuals become single-drug resistant and when the treatment rate arrived 0.1, the

peak time puts forward, which can cause more serious burden to the society. Meanwhile, we

calculate the acquired reproduction number and the total control reproduction number, both of

them are increasing, which explains the adverse effects on treatment well. Due to R1m < 1 and

f2 = 0, there is no effect on multi-drug resistant individuals.

Fig 3: The change of infected drug sensitive, single and multiple drug-resistant individuals with

different treatment rate f2.

Next, fix treatment rate f1 = 0.01 and vary f2. For the purpose of observing the influence on

multi-drug resistant clearly, we consider the case of R1r > R1m > 1. We observe the difference
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between Fig 2 and Fig 3. Adopting repeated treatment can not eliminate the disease rebound

phenomenon in sensitive cases class, but can reduce the size of epidemic disease in single drug

resistant cases class. Meanwhile, the adverse effects of treatment is more obvious in multi-

drug resistant cases class. Whether taking repeated treatment measures should be considered

carefully.

Subsequently, we perform some simulations for Model II. We suppose that Model I and

Model II have the same characteristics, such as the basic reproduction number, immunity and

recovery rate. Because that the classification of drug sensitive cases from both two model is

different, we find that the basic reproduction number is less than one, when the treatment rate

exceeds σ = 0.4, which implies the control measures can effectively prevent disease outbreaks.

So we consider the case that the treatment rate is less than 0.4.

Fig 4: The change of I1U + I1T , I1r and I2r with treatment rate σ = 0.

From Fig 4, we can obtain the same result as that in Model I.

Fig 5: The change of infected drug sensitive, single and multi-drug resistant individuals with different

treatment rate σ .

With the increase of treatment rate σ , infected sensitive cases decrease and the time of peak

arriving can be delayed. However, both the number of infected single and multi-drug resistant

cases increase, that can be explained for adverse effects on treatment. Furthermore, there may

appear rebound phenomena among infected multi-drug resistant.
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5. Comparison between Model I and Model II

We now discuss the difference between two models.

Fig 6: The proportion of cumulative incidence in the total population with treatment rate σ = 0.

By Fig 6, we notice that the Model II has higher cumulative incidence than Model I in case

of without treatment. The reason for this result may include two aspects: one is the time of

infected stages, the other is the infected individuals relationship about the treatment. Model I

reflecting the average overall time in the I1s compartment is 1
µ+ f1+γ1

, but in fact, some patients

do not seek antiviral treatment, and so the average overall time should be 1
µ+γ1

. From this

perspective, we will shorten the time of natural recovery. The similar conclusion holds for

I1r compartment. If the infected individuals, do not immediately seek treatment, but accept

treatment and recover later, hence, the overall average time is 1
k1
+ 1

µ+ f1+γ1
. Evidently, we have

repeated the calculation of the time of treatment. Because 1
k1

denotes the time of individuals

seeing doctors, and receiving antiviral treatment. Considering that individuals through treatment

develop multi-drug resistant strains I2r, Model I imposes the following constrains to balance the

times spent in the related stages (e.g., the total time spent from I1s to I2r equals the summation

of the times spent from I1s to I1r and from I1r to I2r), which will delay the time of developing

I2r.

Model II can avoid the accumulation of time, in which the infected individuals are divided

into two parts, including immediately seeking treatment and without treatment. Then, the time

is very clear. 1
µ+γ1

is the average overall time in the I1U compartment, 1
µ+γ2

is the average overall

time in the I1T compartment receiving treatment and recovering. Similarly, we can get 1
µ+γ3

and
1

µ+γ4
is the average overall time in the I1r compartment and I2r compartment, respectively. So

Model I is not sufficient to show relationship of time. In order to conquer this, we put forward
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Model II. Model I can not distinguish the infected individuals who receive treatment, however,

Model II can distinguish well. Which can be identified the force of infection and depict the

duration of disease well.

Fig 7: The proportion of cumulative incidence in the total population with treatment rate σ = 0.1

From Fig 7, we fix σ = 0.1, and note that the cumulative incidence of Model II is higher than

that of Model I. Because when treatment rate arrived 0.1, the basic reproduction number of

Model I is less than that of Model II. The arriving time of peak for the second outbreak of

Model II is earlier than that of Model I. In our view of this phenomenon, Model II has more

accurate time stages than Model I.

6. Discussion and Conclusion

In this paper, we study two mathematical models of H1N1 influenza transmission dynamics,

that incorporate drug-sensitive and drug-resistant strains. The main purpose of this study is to

examine the impact of antiviral treatment on the prevalence of drug resistance. A detailed sta-

bility analysis of the disease-free equilibria, and derivation of the basic and control reproduction

number are presented. We also Demonstrate how the acquired reproduction number can be used

to explain the adverse effects associated with antiviral treatment. This effect is interpreted using

a quantity termed the total control reproduction number.

One of the interesting findings is that, despite the key role that control reproduction numbers

play, they do not provide sufficient measures for examining the effect of antiviral treatment or

reflect the adverse effects of treatment. To reveal the role of antiviral treatment in controlling

H1N1 influenza, we need to consider the acquired reproduction number and the total control

reproduction number.
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The two models considered in this study have several different features, some of which allow

for unique insight into the disease dynamics including the influence of drug resistance on the

reproduction numbers. For example, in Model II, we derived the quantity R[3]
TC for the control

reproduction number, which has different properties than the conventional control reproduction

number due to the contribution of acquired resistance RAR. We showed that, under certain

conditions, there may exist a threshold value σ∗ such that R[3]
TC decreases with σ for σ < σ∗ but

increases with σ for σ > σ∗. This suggests that the number R[3]
TC may provide a better quantity

than R2sc for elevating the effect of treatment on the level of infection.

We develop two models with different assumptions about the timing of treatment. It is impor-

tant to examine the critical assumptions and better understand their possible impact on model

outcomes. It often happens that, when a model is formulated, certain assumptions are made

without consideration of their consequences. In this paper, we use the exponential waiting time

in disease stages. That is, the survival probability is described by a negative exponential func-

tion. Due to the memoryless property of exponential distribution, this leads to ODE models that

are easy to be analyzed. But models with exponentially distributed infectious stage can result in

misleading or incorrect evaluations of effectiveness. In the future, we will pay further attention

on the impact of non-exponentially distributed disease stages to epidemic control.
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