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Abstract. The paper deals with a prey predator model with infection and refuge in prey. It is assumed that the

predator is predating on both susceptible and infected prey. We have considered two models, one without refuge

and another with refuge. We have studied local stability, bifurcation and permanence of both models. Further, the

dynamics of the system is studied numerically on the basis of interaction rate of prey - predator (β ) and refuge

size (m). The study reveals that refuge sizes of susceptible and infected prey are key parameters that control the

dynamics of the system.
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1. INTRODUCTION

Eco-epidemiology deals with dynamics of disease spread in interacting species. The dynamic

relationship between interactive species is one of the dominant themes of mathematical ecol-

ogy [1]. The problems are often very complicated and challenging, although they seem to be

simple at first sight. Interactive species can be prey-predator, competitive species, etc. Many

researchers have studied problems related to such eco-epidemiological issues [2, 3, 4, 5, 6, 7, 8,
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9, 10, 11, 12, 13]. A prey-predator model with prey infection was investigated by Anderson and

May [2] who observed destabilization due to the spread of infectious diseases within animal

and plant communities. A comparative study on the role of prey infection in a prey-predator

system with several functional responses was studied by [13].

Modeling with differential equations for interactive species is a classical application of Math-

ematical biology. Theoretical observations on dynamics of prey refuges have two major influ-

ences on prey predator models. They can either stabilize or destabilize the system [13, 14, 15,

16, 17, 18, 19, 20]. A continuous time prey-predator model assuming the rate of prey moving

to refuges is proportional to predator density was studied by [16]. The author showed that prey

refuge has stabilizing effect on the dynamics of the system. Also, Wang and Jianzhong Wang

[23], studied a diffusive prey-predator system with Michaelis-Menten functional response sub-

ject to prey refuge. Olivares and Jiliberto [24] studied the dynamic consequences of the simplest

forms of refuge used by the prey by an analytical approach in which they incorporated prey

refuges in a widely known continuous model satisfying the principle of biomass conversion.

Further Ma. et al. [21] observed stabilizing and destabilizing effect in a prey-predator model

with the functional response incorporating effect of prey refuges.

In this paper, we have studied the extension of the above models by incorporating infection in

prey population. Also, we have assumed interaction between susceptible prey-infected prey can

be a bilinear mass action called as Holling Type I. This term assumes that an individual interact

with the whole other population and the product of both is the outcome. We also consider the

fact that infected prey is more vulnerable to predation in comparison to susceptible prey. But

the interactions between susceptible prey and infected prey with predator are technically by

Holling type II term.

The paper is organized as follows: In section 2, we give the formulation of infected prey-

predator with and without refuge. Boundedness of the above model is discussed in section 3.

The existence of equilibrium points and local stability of boundary equilibrium points of both
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the models have been discussed in section 4 and 5 respectively. In section 6, we have obtained

the local stability of interior equilibrium point and bifurcation around refuge m. Permanence of

models is discussed in section 7 followed by numerical simulation and conclusion in section 8

and 9 respectively.

Biological Background: Refugia can influence population dynamics to great extent. Ecological

effects of refuges can be seen in Coral reefs. Nearly 25 percent of ocean species is contained in

refuge-rich coral reefs. In order to minimize their chances of being caught by predator, many

prey animals systematically migrate between refuges and predator-rich feeding grounds, for

example, small European perch exhibit a daily horizontal migration in some lakes in Finland.

They move away from the vegetated areas, into more turbid open water areas, during the day

as predation threat in the clear water is great, moving back at night because of the greater

availability of zooplankton among the aquatic plants. Keeping in view the above points we

develop our model in the next section.

2. MATHEMATICAL MODEL

In this section, we discuss the development of mathematical models describing infected prey-

predator model with and without refuge.

Model A: Infected Prey-Predator Model Without Refuge

(1) The susceptible prey population is growing logistically at the rate r with carrying ca-

pacity K. It is assumed that the interaction between susceptible prey and infected prey

follows bilinear mass action called as Holling Type I. This term assumes that an in-

dividual interacts with whole other population and the product of both is the outcome.

Also, the interaction between susceptible prey and predator follows Holling type II term,

which assumes that processing of food and searching for food are mutually exclusive

behaviors. Thus, the equation is as follows:

(1)
dS
dτ

= rS(1− S
K
)−σSI− β1SP

1+a1S
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where, β1 is the rate of interaction of susceptible prey and predator, σ is infection rate

and 1/a1 is the density of susceptible prey necessary to achieve one half of that rate.

(2) The evolutionary equation for infected prey is as follows:

(2)
dI
dτ

= σSI− β2IP
1+a2I

− γ1I

where, β2 is the rate of interaction of infected prey and predator, γ1 is the natural death

rate of infected prey and 1/a2 is the density of infected prey necessary to achieve one

half of that rate.

(3) The equation for predator population is given as follows:

(3)
dP
dτ

=
c1β1SP
1+a1S

+
c2β2IP
1+a2I

− γ2P

where 0 < c1 < 1 is the conversion factor denoting the number of newly born predators

for each captured susceptible prey, 0 < c2 < 1 is the conversion factor denoting the

number of newly born predators for each captured infected prey, γ2 is the death rate of

predator population. Further, c1 < c2 as infected prey are more vulnerable to predation.

Model B: Infected Prey-Predator Model With Refuge

Now, we formulate infected prey-predator model with refuge. In model B, we incorporate

refuge in susceptible and infected prey, protecting mS of susceptible prey, and mI of infected

prey, where m ∈ [0,1) and is constant. Our aim is to study dynamics of the model under the

effect of refuge and infection in prey. We have discussed model with different refuge rates for

susceptible and infected prey, in brief in Appendix. Results obtained for the case when refuge

rate in susceptible prey is not same as refuge rate in infected prey are not much different from

the case when refuge rate is same in both susceptible and infected prey. Thus, to reduce the

complexity, we consider same refuge rate. The model with same refuge rate is as follows:

(4)
dS
dτ

= rS(1− S
K
)−σSI− β1(1−m)SP

1+a1(1−m)S
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(5)
dI
dτ

= σSI− β2(1−m)IP
1+a2(1−m)I

− γ1I

(6)
dP
dτ

=
c1β1(1−m)SP
1+a1(1−m)S

+
c2β2(1−m)IP
1+a2(1−m)I

− γ2P

In order to simplify the calculations, we now non-dimensionalise Model A by redefining the

variables.

s =
S
K
, i =

I
K
, p =

P
K
, t = rτ

Hence , equations in model A reduce to:

(7)
ds
dt

= s(1− s)−asi− bsp
s+ c

where a =
σK

r
,b =

β1

ra1
,c =

1
a1K

(8)
di
dt

= asi− eip
i+ f

−gi

where e =
β2

ra2
, f =

1
a2K

,g =
γ1

r

(9)
d p
dt

=
c1bsp
s+ c

+
c2eip
i+ f

−hp

where h =
γ2

r

Thus, the reduced model A is as follows:

(10)
ds
dt

= s(1− s)−asi− bsp
s+ c

(11)
di
dt

= asi− eip
i+ f

−gi

(12)
d p
dt

=
c1bsp
s+ c

+
c2eip
i+ f

−hp
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Similarly, Model B is reduced to the following:

(13)
ds
dt

= s(1− s)−asi− (1−m)bsp
(1−m)s+ c

where, a =
σK

r
,b =

β1

ra1
,c =

1
a1K

(14)
di
dt

= asi− eip(1−m)

(1−m)i+ f
−gi

where e =
β2

ra2
, f =

1
a2K

,g =
γ1

r

(15)
d p
dt

=
c1bsp(1−m)

(1−m)s+ c
+

c2eip(1−m)

(1−m)i+ f
−hp

where h =
γ2

r
Hence, the system is reduced to:

(16)
ds
dt

= s(1− s)−asi− (1−m)bsp
(1−m)s+ c

(17)
di
dt

= asi− eip(1−m)

(1−m)i+ f
−gi

(18)
d p
dt

=
c1bsp(1−m)

(1−m)s+ c
+

c2eip(1−m)

(1−m)i+ f
−hp

3. BOUNDEDNESS

In this section, we will establish that Model A and Model B described above are bounded. Let

w = s+ i+ p, then,

ẇ = ṡ+ i̇+ ṗ

= s(1− s)− bsp
s+ c

(1− c1)−
eip

i+ f
(1− c2)−gi−hp

≤ s(1− s)−gi−hp
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Let µ = min{g,h}. Now, we consider,

ẇ+µw≤ s(1− s)+µ(s+ i+ p)−gi−hp

≤ s− s2 +µs− (g−µ)i− (h−µ)p

≤ s− s2 +µs

≤ −s2 +(1+µ)s+(1+µ

2 )2− (1+µ

2 )2

≤ −(s− (1+µ

2 ))2 +(1+µ

2 )2

≤ (1+µ

2 )2 =C(Constant)

Hence, the system is bounded.

Boundedness of Model B will be on the same lines.

In the next section, we will discuss the existence of the boundary and interior equilibrium points

of Model A and Model B.

4. EXISTENCE OF EQUILIBRIUM POINTS

Model A: We will consider four boundary equilibrium points:

(i) trivial equilibrium point E0(0,0,0)

(ii) equilibrium point E1(1,0,0)

(iii) predator extinction equilibrium point E2(s̄, ī,0),where, s̄ =
g
a

and ī =
(a−g)

a2 provided

a > g i.e., R0 > 1 where, R0 =
a
g

(iv) disease-free equilibrium point E3(s̃,0, p̃)

where, s̃ =
hc

c1b−h
and p̃ =

cc1(c1b−h−hc)
(c1b−h)2 provided c1b− h > hc i.e R1 > 1 where R1 =

c1b
h(1+ c)

.

The interior equilibrium point E∗(s∗, i∗, p∗) is given by the following equation:

Q1x3 +Q2x2 +Q3x+Q4 = 0

where,

Q1 = ah(c1b+ c2e−h)

Q2 =(c2eg−gh)(bc1−h)+(h−bc1−hc)(c1ae−c2ae+ah)+(ec1− f ah)(bc1a−bc2a−ha)−
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ec1(bc2g−hac)

Q3 = (bc2g−hac)(ec1− f ah)+ f gh(bc1a−bc2a−ah)+(h−bc1−hc)(c2eg−gh)+hc(c1ae−

c2ae+ah)

Q4 = hc(c2eg−gh)+ f gh(bc2g−hac)

By Descrate’s rule of sign change, interior equilibrium point exists if either of the two conditions

hold:

(i) Q1,Q3 > 0 and Q2,Q4 < 0

(ii) Q1,Q3 < 0 and Q2,Q4 > 0

Model B: We will consider four boundary equilibrium points:

(i) trivial equilibrium point E0(0,0,0)

(ii) equilibrium point E1(1,0,0)

(iii) predator extinction equilibrium point E2(s̄, ī,0),where, s̄ =
g
a

and ī =
(a−g)

a2 provided

a > g i.e., R0 > 1 where, R0 =
a
g

(iv) disease-free equilibrium point E3(s̃,0, p̃)

where, s̃ =
hc

(c1b−h)(1−m)
and p̃ =

((c1b−h)(1−m)−hc))cc1

(c1b−h)2(1−m)2 provided (c1b−h)(1−m)>

hc i.e R̃1 > 1 where R̃1 =
c1b(1−m)

h(1+ c−m)
.

and the interior equilibrium point E∗(s∗, i∗, p∗) is given by the following equation:

Q1x3 +Q2x2 +Q3x+Q4 = 0

where,

Q1 = (1−m)2ah(c1b+ c2e−h)

Q2 = (1−m)((c2eg−gh)(bc1−h)(1−m)+(h(1−m)−bc1(1−m)−hc)(c1ae−c2ae+ah))+

(1−m)(ec1(1−m)− f ah)(bc1a−bc2a−ha)− ec1(1−m)(bc2g(1−m)−hac)

Q3 = (bc2g(1−m)−hac)(ec1(1−m)− f ah)+ f gh(1−m)(bc1a−bc2a−ah)+(1−m)((h(1−

m)−bc1(1−m)−hc)(c2eg−gh)+hc(c1ae− c2ae+ah))
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Q4 = (1−m)hc(c2eg−gh)+ f gh(bc2g(1−m)−hac)

By Descarte’s rule of sign change, interior equilibrium point exists if either of the two conditions

hold:

(i) Q1,Q3 > 0 and Q2,Q4 < 0

(ii) Q1,Q3 < 0 and Q2,Q4 > 0

5. DYNAMICAL BEHAVIOR

In this section, we discuss the local stability of boundary equilibrium points of Model A and

Model B.

Theorem: Define R̄1 =
1
h

(
c1bg

g+ac
+

c2e(a−g)
a−g+ f a2

)
, R∗1 =

ahc f (c1b−h)
ecc1(c1b−h−hc)+g f (c1b−h)2 , and

R∗2 =
(c1b−h)c1b

2hcc1b+(c1b−h−hc)(c1b−h)
then, for Model A we have the following:

(i) E0(0,0,0) is always unstable.

(ii) E1(1,0,0) is locally stable if R0 < 1 and R1 < 1 and unstable if R0 > 1 or R1 > 1.

(iii) If R0 > 1 and R̄1 < 1, then predator extinction equilibrium point E2(s̄, ī,0) is locally

stable. If R̄1 > 1 then E2(s̄, ī,0) is unstable.

(iv) If R∗1 < 1 and R∗2 < 1, then disease free equilibrium point E3(s̃,0, p̃) is locally asymptot-

ically stable.

(v) If R∗1 > 1 or R∗2 > 1, then disease free equilibrium point E3(s̃,0, p̃) is unstable.

Proof. At any point Ei(s, i, p), jacobian matrix formed for our system is given by

(19)


1−2s−ai− bpc

(s+ c)2 −as − bs
s+ c

ai as− ep f
(i+ f )2 −g − ei

i+ f
c1bpc
(s+ c)2

c2 f ep
(i+ f )2

c1bs
s+ c

+
c2ei
i+ f

−h


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The jacobian corresponding to E0(0,0,0) is
1 0 0

0 −g 0

0 0 −h


The corresponding eigenvalues with respect to the Jacobian are:

λ1 = 1, λ2 = −g and λ3 = −h . Since, one of the eigen values is always positive, therefore E0

is always unstable.

The jacobian corresponding to E1 is
−1 −a − b

1+ c
0 a−g 0

0 0
c1b

1+ c
−h


The corresponding eigenvalues with respect to the jacobian are:

λ1 = −1, λ2 = a− g and λ3 =
c1b

1+ c
− h . Thus, E1 is attractor and hence locally stable only

if a < g and
c1b

1+ c
< h i. e., R0 < 1 and R1 < 1, and unstable if R0 > 1 or R1 > 1. Thus, if

E1(1,0,0) is locally stable then E2 and E3 does not exist.

The jacobian matrix for E2 is given by:
−g

a
−g − bg

g+ ca

1− g
a

0 − e(a−g)
a−g+ f a2

0 0
c1bg

g+ac
+

c2e(a−g)
a−g+ f a2 −h


The eigenvalues for the above matrix are:
c1bg

g+ac
+

c2e(a−g)
a−g+ f a2 −h and roots of equation λ

2 +
g
a

λ +g(1− g
a
) = 0.

It can be easily seen that roots of the quadratic equation are negative as sum of roots is negative

and product of roots is positive, when, a > g .ie., R0 > 1.
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Also,
c1bg

g+ac
+

c2e(a−g)
a−g+ f a2 −h is negative, when

c1bg
g+ac

+
c2e(a−g)
a−g+ f a2 < h, i.e., R̄1 < 1. Hence,

E2 is locally asymptotically stable, if R0 > 1 and R̄1 < 1 and unstable if R̄1 > 1.

The jacobian corresponding to E3(s̃,0, p̃) is:
1−2s̃− bp̃c

(s̃+ c)2 −as̃
−h
c1

0 as̃− ep̃
f
−g 0

c1bp̃c
(s̃+ c)2

c2ep̃
f

0


One of the eigenvalue for the above matrix is,
ecc1(c1b−h−hc)+g f (c1b−h)2

f (c1b−h)2

(
ahc f (c1b−h)

ecc1(c1b−h−hc)+g f (c1b−h)2 −1
)

and the other two

are given by roots of the equation:

λ
2−A1λ +A2 = 0

where,

A1 = 1− 2hcc1b+(c1b−h−hc)(c1b−h)
(c1b−h)c1b

A2 =
hbp̃c

(s̃+ c)2

E3(s̃,0, p̃) will be stable if
ahc f (c1b−h)

ecc1(c1b−h−hc)+g f (c1b−h)2 −1 < 0 i.e., R∗1 < 1, and

1− 2hcc1bc1b+(c1b−h−hc)(c1b−h)
(c1b−h)c1b

< 0 i.e., R∗2 < 1 and A2 > 0.

�

Now, we will establish the following theorem:

Theorem: Define ¯RB1 =
1
h

(
c1bg(1−m)

g(1−m)+ac
+

c2e(a−g)(1−m)

(a−g)(1−m)+ f a2

)
,

R∗B1
=

ahc f (c1b−h)
ecc1((c1b−h)(1−m)−hc)+g f (c1b−h)2(1−m)

and

R∗B2
=

(c1b−h)(1−m)c1b
2hcc1b+(c1b−h)((c1b−h)(1−m)−hc)

, then for Model B, we have the following:

(i) E0(0,0,0) is always unstable.

(ii) E1(1,0,0) is locally stable if R0 < 1 and R̃1 < 1 and unstable if R0 > 1 or R̃1 > 1.
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(iii) If R0 > 1 and R̄B1 < 1, then predator extinction equilibrium point E2(s̄, ī,0) is locally

stable. If R̄B1 > 1 then E2(s̄, ī,0) is unstable.

(iv) If R∗B1
< 1 and R∗B2

< 1, then disease free equilibrium point E3(s̃,0, p̃) is locally asymp-

totically stable.

(v) If R∗B1
> 1 or R∗B2

> 1, then disease free equilibrium point E3(s̃,0, p̃) is unstable.

Proof. :

At any point Ei(s, i, p), the jacobian matrix formed for our system is given by:

(20)
1−2s−ai− bpc(1−m)

(s(1−m)+ c)2 −as −−bs(1−m)

s(1−m)+ c

ai as− ep f (1−m)

(i(1−m)+ f )2 −g − ei(1−m)

i(1−m)+ f
c1bpc(1−m)

(s(1−m)+ c)2
c2 f ep(1−m)

(i(1−m)+ f )2
c1bs(1−m)

s(1−m)+ c
+

c2ei(1−m)

i(1−m)+ f
−h


The jacobian corresponding to E0(0,0,0) is:

1 0 0

0 −g 0

0 0 −h


The corresponding eigenvalues with respect to the Jacobian are:

λ1 = 1, λ2 =−g and λ3 =−h . Since, one of the eigenvalues is always positive, therefore E0 is

locally asymptotically unstable.

The jacobian corresponding to E1 is:
−1 −a − b(1−m)

(1−m)+ c

0 a−g 0

0 0
c1b(1−m)

(1−m)+ c
−h


The corresponding eigenvalues with respect to the jacobian are:

λ1 = −1, λ2 = a− g and λ3 =
c1b(1−m)

(1−m)+ c
− h . Thus, E1 is attractor and hence locally stable

only if a < g and
c1b(1−m)

(1−m)+ c
< h i. e., R0 < 1 and R̃1 < 1, and unstable if R0 > 1 or R̃1 < 1.

Thus, if E1(1,0,0) is locally stable then E2 and E3 does not exist.
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The jacobian matrix for the above system with the equilibrium point E2(s̄, ī,0) is given by:
−g

a
−g − bg(1−m)

g(1−m)+ ca

1− g
a

0 − e(a−g)(1−m)

(a−g)(1−m)+ f a2

0 0
c1bg(1−m)

g(1−m)+ac
+

c2e(a−g)(1−m)

(a−g)(1−m)+ f a2 −h


The eigenvalues for the above matrix are:

c1bg(1−m)

g(1−m)+ac
+

c2e(a−g)(1−m)

(a−g)(1−m)+ f a2 −h and roots

of equation λ
2 +

g
a

λ +g(1− g
a
) = 0.

It can be easily seen that the roots of the quadratic equation are negative as sum of the roots is

negative and product of roots is positive, when, a > g, .i.e. R0 > 1. Also,
c1bg(1−m)

g(1−m)+ac
+

c2e(a−g)(1−m)

(a−g)(1−m)+ f a2 − h is negative, when
c1bg(1−m)

g(1−m)+ac
+

c2e(a−g)(1−m)

(a−g)(1−m)+ f a2 < h, i.e.

R̄B1 < 1.

Hence, E2 is locally asymptotically stable when R0 > 1 and R̄B1 < 1 and unstable when R̄B1 > 1.

The jacobian corresponding to E3(s̃,0, p̃):

(21)


1−2s̃− bp̃c(1−m)

(s̃(1−m)+ c)2 −as̃ − h
c1

0 as̃− ep̃(1−m)

f
−g 0

c1bp̃c(1−m)

(s̃(1−m)+ c)2
c2ep̃(1−m)

f
0


One of the eigenvalues of the above matrix is,
ecc1((c1b−h)(1−m)−hc)+g f (c1b−h)2(1−m)

f (c1b−h)2(1−m)

(
R∗B1
−1
)

where, R∗B1
=

ahc f (c1b−h)
ecc1((c1b−h)(1−m)−hc)+g f (c1b−h)2(1−m)

and the other two eigenval-

ues are given by roots of equation λ 2 +A1λ +A2 = 0, where,

A1 = 1− 2hcc1b+(c1b−h)((c1b−h)(1−m)−hc)
(c1b−h)(1−m)c1b

A2 =
hbp̃c(1−m)

(s̃(1−m)+ c)2
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E3(s̃,0, p̃) will be stable if
ahc f (c1b−h)

ecc1((c1b−h)(1−m)−hc)+g f (c1b−h)2(1−m)
−1< 0 i.e R∗B1

<

1 and 1− 2hcc1b+(c1b−h)((c1b−h)(1−m)−hc)
(c1b−h)(1−m)c1b

< 0 i.e., R∗B2
< 1 and A2 > 0. �

In the next section, we will study the local stability analysis of interior equilibrium point.

6. INTERIOR EQUILIBRIUM POINT AND ITS LOCAL STABILITY

The jacobian of Model A, for the interior point E∗(s∗, i∗, p∗) is:
1−2s∗−ai∗− bp∗c

(s∗+c)2 −as∗ − bs∗
s∗+c

ai∗ as∗− ep∗ f
(i∗+ f )2 −g − ei∗

i∗+ f
c1bp∗c
(s∗+c)2

c2 f ep∗

(i∗+ f )2
c1bs∗
s∗+c +

c2ei∗
i∗+ f −h


Now,the Jacobian matrix for the interior point E∗(s∗, i∗, p∗) can be written as:

A11 A12 A13

A21 A22 A23

A31 A32 A33


where,

A11 = 1−2s∗−ai∗− bp∗c
(s∗+ c)2 =

bsp
(s+ c)2 − s, A12 =−as∗,

A13 =−
bs∗

s∗+ c
, A21 = ai∗,

A22 = as∗− ep∗ f
(i∗+ f )2 −g =

epi
(i+ f )2 , A23 =−

ei∗

i∗+ f

A31 =
c1bp∗c
(s∗+ c)2 , A32 =

c2 f ep∗

(i∗+ f )2 , A33 =
c1bs∗
s∗+c +

c2ei∗
i∗+ f −h = 0

we can form a characteristic equation of the jacobian in the following way:

λ
3 +σ1λ

2 +σ2λ +σ3 = 0

where,

σ1 = −(A11 +A22)

σ2 = A11A22−A23A32−A12A21−A13A31

σ3 = A11A23A32 +A13A31A22−A12A23A31−A13A21A32

By substituting values of A’s, we can see that, σ1 > 0, if s >
bsp

(s+ c)2 +
epi

(i+ f )2 .
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Now, we will evaluate the value of (σ1σ2−σ3), which is as follows:

σ1σ2−σ3 =A11(−A11A22+A12A21+A13A31)+A22(−A11A22+A12A21+A23A32)+A12A23A31+

A13A21A32.

It is easy to see that, σ1σ2−σ3 > 0, if (−A11A22+A12A21+A13A31)< 0,(−A11A22+A12A21+

A23A32)> 0 and A12A23A31 +A13A21A32 > 0.

Now, (−A11A22 +A12A21 +A13A31)< 0 if,

(22) (s− bsp
(s+ c)2 )(

epi
(i+ f )2 )−a2si− bs

s+ c
cc1bp
(s+ c)2 < 0

Also, (−A11A22 +A12A21 +A23A32)> 0, if,

(23) (s− bsp
(s+ c)2 )(

epi
(i+ f )2 )−a2si− ei

i+ f
c2 f ep
(i+ f )2 > 0

From (22), (23) and by substituting values of all A’s in A12A23A31 +A13A21A32 > 0 it is easy to

compute that, σ1σ2−σ3 > 0 if following conditions hold.

(i)
c2 f ie2 p
(i+ f )3 <

(
s− bsp

(s+ c)2 )(
epi

(i+ f )2

)
−a2si <

cc1b2sp
(s+ c)3

(ii) cc1(i+ f )− c2 f (s+ c)> 0

As, A11A23A32 > 0, we can see that, σ3 > 0 if,

(24) A13A31A22−A12A23A31−A13A21A32 > 0.

Again substituting values of A’s in (24), we can easily compute that σ3 > 0 if (−c1cbp−

ac1c(s+ c)(i+ f )+ac2 f (s+ c)2)> 0.

Since, sufficient conditions of Routh Hurwitz criteria are satisfied, thus E∗(s∗, i∗, p∗) is locally

asymptotically stable for Model A.

Now, we will establish the conditions for local stability of interior equilibrium point of Model B.
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The jacobian of Model B, for the interior point E∗(s∗, i∗, p∗) is:


A11 A12 A13

A21 A22 A23

A31 A32 A33


where,

A11 = 1−2s∗−ai∗− (1−m)bp∗c
((1−m)s∗+ c)2 =

(1−m)2bsp
((1−m)s+ c)2 − s, A12 =−as∗,

A13 =−
(1−m)bs∗

(1−m)s∗+ c
, A21 = ai∗,

A22 = as∗− (1−m)ep∗ f
((1−m)i∗+ f )2 −g =

(1−m)2epi
((1−m)i+ f )2 , A23 =−

(1−m)ei∗

(1−m)i∗+ f

A31 =
(1−m)c1bp∗c
((1−m)s∗+ c)2 , A32 =

(1−m)c2 f ep∗

((1−m)i∗+ f )2 ,

A33 =
(1−m)c1bs∗

(1−m)s∗+ c
+

(1−m)c2ei∗

(1−m)i∗+ f
−h = 0

The local stability analysis of interior equilibrium point for Model B will be on the same lines.

E∗(s∗, i∗, p∗) is locally asymptotically stable for Model B if following conditions hold:

(i) s >
(1−m)2bsp

((1−m)s+ c)2 +
(1−m)2epi

((1−m)i+ f )2 .

(ii)
(1−m)2c2 f ie2 p
((1−m)i+ f )3 <

(
s− (1−m)2bsp

((1−m)s+ c)2 )(
(1−m)2epi

((1−m)i+ f )2

)
−a2si<

(1−m)2cc1b2sp
((1−m)s+ c)3

(iii) cc1((1−m)i+ f )− c2 f ((1−m)s+ c)> 0

(iv) −(1−m)2c1cbp−ac1c((1−m)s+ c)((1−m)i+ f )+ac2 f ((1−m)s+ c)2 > 0.

Now, we will study the dynamical behavior of interior equilibrium point of Model B, depending

upon parameter m.

6.1. Transverslity condition for Hopf Bifurcation

The system enters into the Hopf-bifurcation around the positive equilibrium E∗ for the param-

eter m = m∗ if the transversality criteria [26]

[
dRe(λ (m))

dm
]m=m∗ 6= 0
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holds .

We will show that in our case, if the following conditions hold, then the transversality criteria

is satisfied and the system transits into instability i.e., we find the point at which there exists a

pair of conjugate symmetric eigenvalues on the imaginary axis. The conditions are as follows:

(i ) σ1(m∗)> 0.

(ii) σ1(m∗)σ2(m∗)−σ3(m∗) = 0.

(iii) (σ1(m∗)σ2(m∗))
′
< σ

′
3(m

∗).

Let m be the refuge rate. We assume that the interior point E∗ is asymptotically stable. Our

interest is on the parameter m that whether E∗ loses its stability with the change in the parameter

m i.e., we assume m as the bifurcation parameter, then there exists a critical value m∗ such that

σ1(m∗) > 0, σ1(m∗)σ2(m∗)−σ3(m∗) = 0, [σ1(m∗)σ2(m∗)]
′
< σ3

′(m∗). For the occurrence of

Hopf-bifurcation, the characteristic equation must be obtained of the kind,:

(25) (λ 2 (m∗)+σ2(m∗))(λ (m∗)+σ1(m∗)) = 0

which has corresponding eigenvalues λ1(m∗)= i
√

σ2(m∗), λ2 =−i
√

σ2(m∗), λ3 =−σ1(m∗)<

0.

The roots for all m tends to be in the form:

λ1(m) = µ(m)+ iν(m),

λ2(m) = µ(m)− iν(m),

λ3(m) =−σ1(m)

Now, the transversality condition [
dRe(λ j(m))

dm ]m=m∗ 6= 0, j = 1,2 will be verified on substituting

λ j(m) = µ(m)± iν(m) in the equation (25) and then the derivative is calculated, we get

(26) F(m)µ
′
(m)−G(m)ν

′
(m)+H(m) = 0

(27) G(m)µ
′
(m)+F(m)ν

′
(m)+ I(m) = 0
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where,

F(m) = 3µ
2(m)+2σ1(m)µ(m)+σ2(m)+σ2(m)−3ν

2(m)

G(m) = 6µ(m)ν(m)+2σ1(m)ν(m)

H(m) = µ
2(m)σ ′(m)+σ

′
2(m)µ(m)+σ

′
(m)−σ

′
1(m)ν2(m)

I(m) = 2µ(m)ν(m)σ ′1(m)+σ
′
2(m)ν(m)

We Know that µ(m∗) = 0, ν(m∗) =
√

σ2(m∗), which results in

F(m∗) =−2σ2(m∗)

G(m∗) = 2σ1(m∗)
√

σ2(m∗)

H(m∗) = σ
′
3(m

∗)−σ
′
1(m

∗)σ2(m∗)

I(m∗) = σ
′
2(m

∗)
√

σ2(m∗)

We now determine the value for µ ′(m∗) using the equation (26),(27) we get,

[
dRe(λ j(m))

dm
]m=m∗ = µ

′
(m)m=m∗ =−

G(m∗)I(m∗)+F(m∗)H(m∗)
F2(m∗)+G2(m∗)

(28) =
σ ′3(m∗)−σ

′
1(m

∗)σ2(m∗)−σ1(m∗)σ
′
2(m

∗)

σ2
1 (m

∗)+σ2(m∗)
> 0

If [σ1(m∗)σ2(m∗)]
′
<σ

′
3(m

∗) and λ3(m∗)=−σ1(m∗)< 0 which clearly implies that the transver-

sality conditions hold. So, therefore,at m = m∗, the Hopf-bifurcation will take place.
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Remark: Notice that (28) is a stronger statement than the transversality condition since it im-

plies that at critical value, the eigenvalues cross the imaginary axis from left to right with non-

zero velocity, i.e., the system transits from stability to instability via Hopf bifurcation. We note

that the system transits into instability when the very first conjugate pair of eigenvalues, crosses

the imaginary axis from left to right (as dictated by the positivity of the derivative in (28)).

7. PERMANENCE

In this section, we will establish the permanence of Model A and Model B.

Theorem: If R0 > 1, R1 > 1, R̄1 > 1 and R∗1 > 1, then Model A is permanent.

Proof. We consider the average Lyapunov function V = sa1ia2 pa3 where ai > 0 (i= 1,2,3) then,

V̇
V

= a1
ṡ
s +a2

i̇
i +a3

ṗ
p

= a1(1− s−ai− bp
s+ c

)+a2(as− ep
i+ f

−g)+a3(
c1bs
s+ c

+
c2ei
i+ f

−h) = ψ(s, i, p)

Let a1 > a2g+a3h. Then,

ψ(E0) = a1−a2g−a3h > 0

ψ(E1) = a2(a−g)+a3(
c1b
1+c −h)> 0 when R0 > 1 and R1 > 1

ψ(E2) = a3(R̄1−1)> 0 when R̄1 > 1

ψ(E3) = a2(R∗1−1)> 0 when R∗1 > 1

�

Thus, Model A is permanent if R0 > 1, R1 > 1, R̄1 > 1 and R∗1 > 1 by [22].

Proof for permanence of Model B will follow on similar lines.

8. NUMERICAL EXAMPLE

In this section, we have studied numerically dynamical behavior of the following systems:

(a) Model without infection and without refuge (m = 0)
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(b) Model without infection and with refuge (m = 0.5, m = 0.34)

(c) Model with infection and without refuge (m = 0)

(d) Model with infection and with refuge (m = 0.5)

The above models have been studied with the following set of parameters: r = 10,m= 0,0.34,0.5,β1 =

0.2,0.6,β2 = 0.6,K = 100,γ = 0.09,c1 = 0.01,c2 = 0.02,a = 0.02

(1) Model without infection and without refuge is showing an oscillatory behavior, but as

we increase m (refuge), oscillations have damped and by further increasing m to 0.5 the

model exhibits stable behavior (Figure 1, 2, 3), which means that if 0 ≤ m ≤ 0.5, then

the system is unstable and becomes stable by increasing m (refuge).

(2) Model with infection and without refuge exhibits oscillatory behavior (Figure 4, 5).

Although, Model with infection and with refuge ( m = 0.5) also exhibits oscillatory be-

havior (Figure 6, 7) but oscillations have damped thus showing that refuge can decrease

chaos in the system but still the system is not stable due to infection (Figure 3, 6). Also,

the graphs show that the survival of the predator is more when there is no refuge as more

prey is available for predation (Figure 4, 6, 5, 7).

(3) Interaction rate of predator with susceptible(β1) and infected prey (β2) also plays a very

important role in shaping the dynamics of the system. If β1 < β2 , then the oscillations

of prey population are more damped in comparison to the case (β1 = β2) for the model

with infection and with refuge. (Figure 6, 7).
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FIGURE 1. Without Infection, m =0, β1 = 0.6 , K= 100, γ = 0.09
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FIGURE 2. Without Infection, m =0.34, β1 = 0.6, K= 100, γ = 0.09
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FIGURE 3. Without Infection, m =0.5, β1 = 0.6, K= 100, γ = 0.09

0 20 40 60 80 100
−10

0

10

20

30

40

50

60

70

80

Time

S
I
P

FIGURE 4. With Infection m = 0, β1 = 0.6,β2 = 0.6, K= 100, γ = 0.09
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FIGURE 5. With Infection m = 0, β1 = 0.2,β2 = 0.6, K= 100, γ = 0.09
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FIGURE 6. With Infection m = 0.5, β1 = 0.6,β2 = 0.6, K= 100, γ = 0.09
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FIGURE 7. With Infection m = 0.5, β1 = 0.2,β2 = 0.6, K= 100, γ = 0.09

9. CONCLUSION

The prime focus of this paper is to study the effect of refuge and infection on a prey-predator

model. It is assumed, that the prey is infected and infected prey is more vulnerable to predation

as compared to susceptible prey. The existence and local stability analysis of the model with and

without refuge has also been studied. The parameter m (refuge) plays a vital role in shaping the

dynamics of the model. Interior equilibrium point of the system is unstable in the range 0≤m<

0.5 and approaches stability when m≥ 0.5 in case of model without infection. In case of model

with infection, the system exhibits oscillatory behavior even at m = 0.5 due to the effect of

infection. Availability of refuge for prey population can control the oscillatory behavior of prey

predator system. Further, if the interaction rate between susceptible and predator population β1

is less than the interaction rate between infected and predator population β2, as is the case in

most real life situations where infected is less likely to defend itself from predation, then the

interior equilibrium point is S = 2.5974, I = 15.6748,P = 6.2930 (Figure 7) whereas β1 = β2,
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then the interior equilibrium point is S= 1.4991, I = 16.067,P= 4.1647 (Figure 6) which means

more susceptible, and less infected will survive in the case when β1 < β2 as expected. Lastly,

the persistence of the system has also been studied.

Conflict of Interests

The authors declare that there is no conflict of interests.

REFERENCES

[1] A. A. Berryman, The Orgins and Evolution of Predator-Prey Theory, Ecology, 73(5) (1992), 1530 –1535.

[2] R. M. Anderson & R. M. May, The invasion, persistence and spread of infectious diseases within animal and

plant communities, Philos. Trans. R. Soc. Lond., Ser. B, 314(1167) (1986), 533 –570.

[3] K. P. Hadeler & H. I. Freedman, Predator-prey populations with parasitic infection, J. Math. Biol. 27(6)

(1989), 609 –631.

[4] X. Liu, Bifurcation of an eco-epidemiological model with a nonlinear incidence rate, Appl. Math. Comput.

218(5) (2011), 2300 –2309.

[5] J. Chattopadhyay & O. Arino, A predator-prey model with disease in the prey, Nonlinear Anal., Theory

Methods Appl. 36(6) (1999), 747 –766.

[6] J. Chattopadhyay & N. Bairagi, Pelicans at risk in Salton sea - an eco-epidemiological model, Ecol. Model.

136(2-3) (2001), 103 –112.

[7] X. Niu, T. Zhang & Z. Teng, The asymptotic behavior of a nonautonomous eco-epidemic model with disease

in the prey, Appl. Math. Model. 35(1) (2011), 457 –470.

[8] X. Shi, J. Cui & X. Zhou, Stability and Hopf bifurcation analysis of an eco-epidemic model with a stage

structure, Nonlinear Anal., Theory Methods Appl. 74(4) (2011), 1088 –1106.

[9] E. Venturino, Epidemics in predator-prey models: disease in the predators, IMA Journal of Mathematics

Appl. Med. Biol. 19(3) (2002), 185 –205.

[10] H. W. Hethcote, W. Wang, L. Han & Z. Ma, A predator prey model with infected prey, Theor. Popul. Biol.

66(3) (2004), 259 –268.
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APPENDIX

In this section, we consider the case where refuge rate in susceptible prey is not same as in

infected prey, i.e., m1 6= m2. In this case, the system is as follows:

(29)
ds
dt

= s(1− s)−asi− (1−m1)bsp
(1−m1)s+ c

(30)
di
dt

= asi− eip(1−m2)

(1−m2)i+ f
−gi

(31)
d p
dt

=
c1bsp(1−m1)

(1−m1)s+ c
+

c2eip(1−m2)

(1−m2)i+ f
−hp

Above model will have the following four boundary equilibrium points:

(i) trivial equilibrium point E0(0,0,0)

(ii) equilibrium point E1(1,0,0)

(iii) predator extinction equilibrium point E2(s̄, ī,0),where, s̄ =
g
a

and ī =
(a−g)

a2 provided

a > g i.e., R0 > 1 where, R0 =
a
g

(iv) disease-free equilibrium point E3(s̃,0, p̃)

where, s̃ =
hc

(c1b−h)(1−m1)
and p̃ =

((c1b−h)(1−m1)−hc))cc1

(c1b−h)2(1−m1)2 provided (c1b− h)(1−

m1)> hc i.e R̃1 > 1 where R̃1 =
c1b(1−m1)

h(1+ c−m1)
.

and the interior equilibrium point E∗(s∗, i∗, p∗) is given by the following equation:

Q1x3 +Q2x2 +Q3x+Q4 = 0

where,

Q1 = (1−m1)(1−m2)ah(c1b+ c2e−h)

Q2 = (1−m2)((c2eg− gh)(bc1− h)(1−m1)+ (h(1−m1)− bc1(1−m1)− hc)(c1ae− c2ae+

ah))+(1−m1)(ec1(1−m2)− f ah)(bc1a−bc2a−ha)− ec1(1−m2)(bc2g(1−m1)−hac)

Q3 =(bc2g(1−m1)−hac)(ec1(1−m2)− f ah)+ f gh(1−m1)(bc1a−bc2a−ah)+(1−m2)((h(1−

m1)−bc1(1−m1)−hc)(c2eg−gh)+hc(c1ae− c2ae+ah))
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Q4 = (1−m2)hc(c2eg−gh)+ f gh(bc2g(1−m1)−hac)

By Descarte’s rule of sign change, interior equilibrium point exists if either of the two conditions

hold:

(i) Q1,Q3 > 0 and Q2,Q4 < 0

(ii) Q1,Q3 < 0 and Q2,Q4 > 0

Also, we will get the following theorem:

Theorem: Define ¯RB1 =
1
h

(
c1bg(1−m1)

g(1−m1)+ac
+

c2e(a−g)(1−m2)

(a−g)(1−m2)+ f a2

)
,

R∗B1
=

ahc f (c1b−h)(1−m1)

ecc1(1−m2)((c1b−h)(1−m1)−hc)+g f (c1b−h)2(1−m1)2 and

R∗B2
=

(c1b−h)(1−m1)c1b
2hcc1b+(c1b−h)((c1b−h)(1−m1)−hc)

, then for the above model, we have the fol-

lowing:

(i) E0(0,0,0) is always unstable.

(ii) E1(1,0,0) is locally stable if R0 < 1 and R̃1 < 1 and unstable if R0 > 1 or R̃1 > 1.

(iii) If R0 > 1 and R̄B1 < 1, then predator extinction equilibrium point E2(s̄, ī,0) is locally

stable. If R̄B1 > 1 then E2(s̄, ī,0) is unstable.

(iv) If R∗B1
< 1 and R∗B2

< 1, then disease free equilibrium point E3(s̃,0, p̃) is locally asymp-

totically stable.

(v) If R∗B1
> 1 or R∗B2

> 1, then disease free equilibrium point E3(s̃,0, p̃) is unstable.

Proof. Proof of this theorem will be similar to the proof of the theorem for the case when

m1 = m2 = m. �

Now, we will establish the conditions for local stability of interior equilibrium point of the

above Model.

The jacobian of the above Model, for the interior point E∗(s∗, i∗, p∗) is:
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
A11 A12 A13

A21 A22 A23

A31 A32 A33


where,

A11 = 1−2s∗−ai∗− (1−m1)bp∗c
((1−m1)s∗+ c)2 =

(1−m1)
2bsp

((1−m1)s+ c)2 − s, A12 =−as∗,

A13 =−
(1−m1)bs∗

(1−m1)s∗+ c
, A21 = ai∗,

A22 = as∗− (1−m2)ep∗ f
((1−m2)i∗+ f )2 −g =

(1−m2)
2epi

((1−m2)i+ f )2 , A23 =−
(1−m2)ei∗

(1−m2)i∗+ f

A31 =
(1−m1)c1bp∗c
((1−m1)s∗+ c)2 , A32 =

(1−m2)c2 f ep∗

((1−m2)i∗+ f )2 ,

A33 =
(1−m1)c1bs∗

(1−m1)s∗+ c
+

(1−m2)c2ei∗

(1−m2)i∗+ f
−h = 0

E∗(s∗, i∗, p∗) is locally asymptotically stable, if following conditions hold:

(i) s >
(1−m1)

2bsp
((1−m1)s+ c)2 +

(1−m2)
2epi

((1−m2)i+ f )2 .

(ii)
(1−m2)

2c2 f ie2 p
((1−m2)i+ f )3 <

(
s− (1−m1)

2bsp
((1−m1)s+ c)2 )(

(1−m2)
2epi

((1−m1)i+ f )2

)
−a2si <

(1−m1)
2cc1b2sp

((1−m1)s+ c)3

(iii) cc1((1−m2)i+ f )− c2 f ((1−m1)s+ c)> 0

(iv) −(1−m1)(1−m2)c1cbp−ac1c((1−m1)s+ c)((1−m2)i+ f )+ac2 f ((1−m1)s+ c)2 > 0.

We can obtain conditions for Hopf-bifurcation in this case, which will be similar to the condi-

tions for Hopf-bifurcation in the case when m1 = m2 = m. Also, proof for permanence of the

model with different refuge rate will be on the same lines as for the case when m1 = m2 = m as

well.

Remark: We can see that values of ¯RB1,R
∗
B1
,R∗B2

in the case, when m1 6= m2 are not much dif-

ferent from the values of these parameters when m1 = m2 = m. Also, the conditions for stability

of interior equilibrium point are similar to the case of same refuge rate. Thus, we have studied

the model with same refuge rate in susceptible and infected prey, as our interest was to study

the effect of refuge on dynamics of the prey- predator model with infected prey.


