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Abstract. In this paper, we consider a quasi non-linear reaction-diffusion model designed to mimic tumor cells’

proliferation and migration under the influence of their micro-environment in vitro. Since the model can be used

to generate hypotheses regarding the development of drugs which confine tumor growth, then considering the

composition of the model, we modify the model by incorporating realistic effects which we believe can shed more

light into the original model. We do this by extending the quasi non-linear reaction-diffusion model to a system

of discrete delay quasi non-linear reaction-diffusion model. Thus, we determine the steady states, provide the

conditions for global stability of the steady states by using the method of upper and lower solutions and analyze

the extended model for the existence of Hopf bifurcation and present the conditions for Hopf bifurcation to occur.

Since it is not possible to solve the models analytically, we derive, analyze, implement a fitted operator method

and present our results for the extended model. Our numerical method is analyzed for convergence and we find

that is of second order accuracy. We present our numerical results for both of the models for comparison purposes.
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1. Introduction

The study of cancer disease has led to the development of many cancer models see for in-

stance [14]. Most of the models are developed with one common goals, that is to understand

how cancer cells functions. Since a cure to cancerous diseases is still not found, this makes the

study of cancer disease an ongoing process. As a result of that, in this paper we are interested in

the the study of an interaction of tumor cells, within its own micro-environment. We note that

such studies has led to the development of many research work such as optimal control for math-

ematical models of cancer therapies in [40], computational modeling of interactions between

multiple myeloma and the bone micro-environment in [45], the role of the micro-environment

in tumor growth and invasion in [24] and current trends in mathematical modeling of tumor-

micro-environment interactions: a survey of tools and applications in [34] in the past few recent

years. Thus, before highlighting the system of non linear reaction-diffusion models modeling

an in-vitro situation of tumor cells and their micro-environment with regard to its growth and

metastasis derived and experimented in [23] and simulated in [12], we would like to mention

that Friedman and Kim in [12] mentioned that tumor cells proliferate at different rates and mi-

grate in different patterns depending on the micro-environment in which they are embedded.

Thus, further work done in the direction of tumor cells embedded in their micro-environments,

are for instance the establishment in [6] that as a tumor invades an unsuspecting host, an ac-

cumulation of evidence points to an alternative paradigm, where the tumor micro-environment

is not an idle bystander, but actively participates in tumor progression and metastasis. In fact,

stromal cells and their cytokines coordinate critical pathways that exert important roles in the

ability of tumors to invade and metastasize. More information regarding the actively partici-

pation of tumor micro-environment in tumor progression and metastasis can also be traced in

[4, 26]. Thus understanding the relationship between tumor and its micro-environment may

lead to important new therapeutic approaches in controlling the growth and metastasis of can-

cer. However, tumor micro-environment includes various cell types such as epithelial cells,

fibroblasts, myofibroblasts, endothelial cells, and inflammatory cells. These cells communi-

cate with one another and influence each other behavior by means of the cytokines and growth
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factors they secrete. Thus, in an effort to understand the interaction between tumor cells, fibrob-

lasts and/or myofibroblasts at an early stage of cancer, Friedman and Kim in [12] simulated the

model derived in [23] an in-vitro model as

∂n
∂ t =

∂

∂x

(
Dn

∂n
∂x

)
︸ ︷︷ ︸
Random walk

− ∂

∂x

χnn
∂E
∂x√

1+(∂E
∂x /λE)2︸ ︷︷ ︸
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+a11
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Proliferation
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∂ f
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∂
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D f
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+ a22 f︸︷︷︸
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∂m
∂ t =

∂

∂x

(
Dm

∂m
∂x

)
︸ ︷︷ ︸
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− ∂
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
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+ a31m︸︷︷︸
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, −L/2 < x < 0,

∂E
∂ t =

∂

∂x

(
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∂E
∂x
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︸ ︷︷ ︸

Diffusion

+a41 f +Ba41m)︸ ︷︷ ︸
Production

− a43E︸︷︷︸
Decay

, −L/2 < x < L/2,

∂G
∂ t =

∂

∂x

(
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∂G
∂x

)
︸ ︷︷ ︸

Diffusion

+ a51n︸︷︷︸
Production

− a52G︸︷︷︸
Decay

, −L/2 < x < L/2,



(1)

where transformed epithelial cells (TECs) and fibroblasts, myfibroblasts are denoted by n and

f ,m respectively, in equation (1), are placed in a trans-well, separated by a semi-permeable

membrane. The membrane has small micro-holes (≈ 0.4µm diameter) to allow the epidermal

growth factor (EGF) and transformed growth factor (TGF-β )) to pass through the membrane



4 K.M. OWOLABI, K.C. PATIDAR, A. SHIKONGO

from one compartment to another. These molelcules are denoted by E and G, respectively, and

the length of the compartment is denoted by L in equation (1). Friedman and Kim [12] main

conclusions’ are

(i) fibroblasts enhance proliferation of breast cancer cell lines,

(ii) transformed epithelial cells (TECs) population is sensitive to membrane permeability

and to the transformation rate from fibroblasts to myofibroblasts,

(iii) interaction between transformed epithelial cells (TECs) and fibroblasts promotes not

only transformed epithelial cells (TECs) proliferation but also the proliferation of fi-

broblasts and/or myofibroblasts and the transformation from fibroblasts into myofibrob-

lasts.

Eventhough Friedman and Kim [12], did not present their simulation results explicitly, we re-

alised that thier findings are in agreement with assertion in [7, 22], that when epithelial cells

are in the breast duct, they are transformed by genetic mutations, from which they begin to

form aggregates that secrete higher concentrations of transformed growth factor (TGF-β ) and

this results into transformation of fibroblasts into myofibroblasts. Consequently, the increased

concentration of transformed growth factor (TGF-β ) also triggers the fibroblasts and myofi-

broblasts to secrete higher concentrations of epidermal growth factor (EGF) than in a healthy

tissue.

Thus, to capture the higher concentrations of epidermal growth factor (EGF), we believe one

has to consider the time required for a complete aggregation of the epithelial cells through the

secretion of higher concentrations of epidermal growth factor (EGF) than in a healthy tissue.

Denoting the required time by τ , this implies that we extend the quasi non-linear reaction-

diffusion model simulated in [12] to mimic tumor cells’ proliferation and migration under the

influence the micro-environment in vitro in equation (1), to a discrete delay quasi non-linear

reaction-diffusion model
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(
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+a41 f (x, t− τ)+Ba41m(x, t− τ)−a43E, −L/2 < x < L/2,
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∂ t = ∂

∂x

(
DG

∂G
∂x

)
+a51n(x, t− τ)−a52G, −L/2 < x < L/2,



(2)

with uniform delay τ . We do not include a delay term τ , in the first equation in equation (2)

because we believe the attraction of transformed epithelial cells (TECs) in the direction of the

concentration gradient of the epidermal growth factor (EGF) can be observed from the adjusted

terms. Thus, the time τ is required for the proliferation of fibroblast into myfibroblasts, which

in turn requires some time τ for an increased concentration of transformed growth factor (TGF-

β ) to triggers the fibroblasts and myofibroblasts to secrete higher concentrations of epidermal

growth factor (EGF) should reflects its effects in the growth of the transformed epithelial cells,

than in a healthy tissue.

Delay differential equations (DDEs) are widely used for analysis and predictions in various

areas of life sciences, see for instance [1], epidemiology see for instance [15], immunology

see for instance [35], physiology see for instance [38], and neural networks see for instance

[10, 18]. Since time-delays and/or time-lags, can be related to the duration of certain hidden

processes like the stages of the life cycle, the time between infection of a cell and the production

of new viruses, the duration of the infectious period, the immune period, then introduction of

such time-delays in a differential model significantly increases the complexity of the model.
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Therefore, our first aim in this paper is to investigate how the uniform time delay τ affects the

dynamics of the models in equation (4). By applying the Poincaré normal form and the center

manifold theorem as in [16] we find conditions on the functions and derive formulas which

determine the properties of Hopf bifurcation. More specifically, we show that the semi-positive

equilibrium point losses its stability and the system exhibits Hopf bifurcation under certain

conditions. Considering the stiffness of system of equations in equation (4), our second aim

is therefore, to develop a fitted operator numerical method based on the qualitative features of

the models in equation (4), in such a way that the numerical method has wider stability region

despite the computational complexities associated with it.

Therefore, the boundary conditions for the original model remain unchanged as provided in

[12]. That is the fact that the semi-permeable membrane allows concentrations of epidermal

growth factor (EGF) and transformed growth factor (TGF-β ) to cross over, is represented by

the following boundary conditions at the membrane x = 0 as

(
Dn∆n−χnn ∆E√

1+(|∆E|/λE)2

)
·υ = 0 at x = 0+,

D f ∆ f ·υ = 0
(

Dm∆m−χmm ∆G√
1+(|∆G|/λG)2

)
·υ = 0 at x = 0−,


(3)

and

∂E+

∂x = ∂E−
∂x , −∂E+

∂x + γ(E+−E−) = 0,

∂G+

∂x = ∂G−
∂x , −∂G+

∂x + γ(g+−g−) = 0,

(4)

where

E(x) =


E+(x) if x > 0,

E−(x) if x < 0,

G(x) =


G+(x) if x > 0,

G−(x) if x < 0,
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υ is the outward normal, and γ is a positive parameter which is determined by the size and

density of the holes in the membrane. The initial conditions [23] become

n(x,0) = 1.0exp(−40(x−1.0)2), on [0,L/2]× [−τ,0],

f (x,0) = 1.0exp(−40x2)r f , on [−L/2,0]]× [−τ,0],

m(x,0) = 0.00, on [−L/2,0]× [−τ,0],

E(x,0) = 1.0, on [−L/2,L/2]× [−τ,0],

G(x,0) = 1.0, on [−L/2,L/2]× [−τ,0].



(5)

The rest of the paper is organized as follow. Mathematical analysis of the main model is pre-

sented in Section 2. A robust numerical scheme based on the fitted finite difference technique

is formulated in Section 3, analysis of the basic properties of this scheme is also examined for

convergence. To justify the effectiveness of the proposed schemes, we present some numerical

results in Section 4. Section 5 concludes the paper.

2. Mathematical analysis of the model

In this section, we carry out the local stability and Hopf Bifurcation analysis and global

stability analysis of the steady states.

Local stability and Hopf Bifurcation analysis

At the steady states the in-vitro trans-well model in equation (2) becomes
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a11
E4

k4
E+E4 n(1−n/κ) = 0, 0 < x < L/2,

−a21G f +a22 f = 0, −L/2 < x < 0,

a21G f +a31m = 0, −L/2 < x < 0,

a41 f +Ba41m−a43E = 0, −L < x < L,

a51n−a52G = 0, −L < x < L.



(6)

which implies that

n∗ = 0, n∗ = κ and G∗ = a51
a52


0 if n∗ = 0,

a51
a52

κ, if n∗ = κ,

on 0 < x < L/2,

f ∗ = m∗ = 0, on −L/2 < x < 0,E∗ = 0, on −L/2 < x < L/2.


(7)

Therefore, the transwell model in equation (2) has a trivial equilibrium (0,0,0,0,0) and a semi-

positive equilibrium (κ,0,0,0, a51
a52

κ). To analyze the stability of the semi-positive equilibrium

(κ,0,0,0, a51
a52

κ), the first step is to linearize the in-vitro trans-well model in equation (2) at the

steady states (n∗, f ∗,m∗,E∗,G∗) as follow:

∂U(t)
∂ t

= d∆U(t)+L(Ut),(8)

where

d∆ =


∂

∂x

(
Dn

∂n
∂x

)
− ∂

∂x

(
χnn

∂E
∂x√

1+( ∂E
∂x /λE)2

)
, ∂

∂x

(
D f

∂ f
∂x

)
,

∂

∂x

(
Dm

∂m
∂x

)
− ∂

∂x

(
χmm

∂G
∂x√

1+( ∂G
∂x /λG)2

)
, ∂

∂x

(
DE

∂E
∂x

)
, ∂

∂x

(
DG

∂G
∂x

)
 ,

dom(d∆) =
{
(n, f ,m,E,G)T : (n, f ,m,E,G) ∈C([−L/2,L/2]),R

}
,
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such that the given boundary conditions are satisfied in [−L/2,L/2] and L : C([−τ,0],X)→ X

is defined as

L(φ) =



0φ1(0)

a22φ2(0)−a21G∗φ2(−τ)−a21 f ∗φ5(−τ)

a31φ3(0)+a21G∗φ2(−τ)+a21 f ∗φ5(−τ)

−a43φ3(0)+a41φ2(−τ)+Ba41φ3(−τ)

−a52φ5(0)+a51φ5(−τ)


,(9)

for φ = (φ1,φ2,φ3,φ4,φ5)
T ∈C([−τ,0],X). The characteristic equation of equation in (8) is

λy−d∆−L(exp(λy) = 0, where y ∈ dom(d∆), y 6= 0.(10)

Since the boundary conditions in equation (3-4) are of Nuemann type, then the operator−∆ has

eigenvalues 0 = µ1 ≤ µ2 ≤ µ3 ≤ µ4 . . .µi ≤ µi+1 ≤ . . . and limi→∞ µi = ∞, with the correspond-

ing eigenfunctions Φ(x). Substituting

y =
∞

∑
i=0

Φ(x)



y1i

y2i

y3i

y4i

y5i


(11)

into equation (10) we obtain

0φ1(0)−Dnµi

a22−D f µi−a21G∗ exp(−λτ)−a21 f ∗ exp(−λτ)

a31−Dmµi +a21G∗ exp(−λτ)+a21 f ∗ exp(−λτ)

−a43−DE µi +a41 exp(−λτ)+Ba41 exp(−λτ)

−a52−DGµi +a51 exp(−λτ)





y1i

y2i

y3i

y4i

y5i


= λ



y1i

y2i

y3i

y4i

y5i


.(12)

The stability of the positive equilibrium can be determined by the distribution of the roots of

(13). It is locally asymptotically stable if all the roots of equation (12) have negative real parts

for all i = 0,1,2,3, . . . . Obviously, zero is not a root of (12) for all i = 0,1,2,3, . . . . When τ = 0,
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we obtain the eigenvalues as

λ =−Dnµi,−D f µi−a21G∗+a22,−Dmµi +a31,−Deµi,−Dgµi.(13)

The eigenvalues in equation (13) are unconditionally asymptotic stable for the steady state

(0,0,0,0,0) and conditionally asymptotic stable for the steady state (κ,0,0,0, a51
a52

κ) when a22 <

a21a51
a52

κ . Thus, the following results.

Theorem 2.1.

(i) The trivial (0,0,0,0,0) steady state is unconditional asymptotic stable.

(ii) If a22 <
a21a51

a52
κ holds, the interior equilibrium (κ,0,0,0, a51

a52
κ) of the transwell model

in equation (2) is asymptotically stable.

When τ 6= 0, we assume that λ = iω,(ω > 0). In view of equation (13), we have

iω +D f µk +a21G∗(cos(ωτ)+ isin(ωτ))−a22 = 0,(14)

Separating the real and imaginary parts in equation (14), we have

iω + ia21G∗ sin(ωτ) = 0, D f µk +a21G∗ cos(ωτ)−a22 = 0,(15)

which implies that

τi =
1
ω

cos−1
(

a22−D f µk

a21G∗
+2iπ

)
, ∀i = 0,1,2,3, . . . ,(16)

and we can show that

Sign
[

Re
(

∂λ

∂τ

)]
= Sign

[
Re
(

∂λ

∂τ

)−1
]
.(17)

Squaring on both sides of equation (15), we have

ω
2 +2ωa21G∗ sin(ωτ)+(a21G∗)2 sin2(ωτ) = 0,

(D f µk−a22)
2 +2(D f µk−a22)(a21G∗ cos(ωτ))+(a21G∗)2 cos2(ωτ) = 0,(18)

Adding the two equations in (18) and simplify we obtain

ω =
√

3(D f µk−a22)2 +(a21G∗).(19)

Let τ0 = min{τi}, the we are able to state the following results.



TUMOR CELLS DYNAMICS 11

Lemma 2.1.

(i) If a22 < a21a51
a52

κ hold for i = 0,1,2, . . . , then the equilibrium (κ,0,0,0, a51
a52

κ) of the

transwell model in equation (2) is asymptotically stable for all τ ≥ 0.

(ii) If 0≤ τ0, then the equilibrium (κ,0,0,0, a51
a52

κ) of the transwell model in equation (2) is

asymptotically stable.

(iii) If τ > τ0, then the equilibrium (κ,0,0,0, a51
a52

κ) of the transwell model in equation (2) is

unstable.

(iv) The transwell model in equation (2) undergoes a Hopf bifurcation at the equilibrium

(κ,0,0,0, a51
a52

κ) for τ = τi, where i = 0,1,2, . . . .

Global stability analysis

In this section we mainly prove that the equilibrium (κ,0,0,0, a51
a52

κ) is globally asymptoti-

cally stable with the upper and lower solution method in [30, 31]. Let ϑE = E4

k4
E+E4 , then denoting

the reaction functions in equation (2) by h j(n, f ,m,E,G) for j = 1,2,3,4,5, then from equation

(6) we have

h1 = a11ϑEn(1−n/κ) = 0, 0 < x < L/2,

h2 =−a21G f +a22 f = 0, −L/2 < x < 0,

h3 = a21G f +a31m = 0, −L/2 < x < 0,

h4 = a41 f +Ba41m−a43E = 0, −L/2 < x < L/2,

h5 = a51n−a52G = 0, −L/2 < x < L/2,



(20)

and let S⊂ R5
+ such that S = {u ∈ R5

+ : u≤ 0≤ ū} and K j be any positive constant satisfying

K ≥max{K j} ≥max
{
−∂h j

∂u j
: u = (n, f ,m,E,G) ∈ S

}
, j = 1,2,3,4,5.

then we have the following results.
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Lemma 2.2. Let

∂n
∂ t −

∂

∂x

(
Dn

∂n
∂x

)
+ ∂

∂x

(
χnn

∂E
∂x√

1+( ∂E
∂x /λE)2

)
≤ K1, 0 < x < L/2,

∂ f
∂ t −

∂

∂x

(
D f

∂ f
∂x

)
≤ K2, −L/2 < x < 0,

∂m
∂ t −

∂

∂x

(
Dm

∂m
∂x

)
+ ∂

∂x

(
χmm

∂G
∂x√

1+( ∂G
∂x /λG)2

)
≤ K3, −L/2 < x < 0,

∂E
∂ t −

∂

∂x

(
DE

∂E
∂x

)
≤ K4, −L/2 < x < L/2,

∂G
∂ t −

∂

∂x

(
DG

∂G
∂x

)
≤ K5, −L/2 < x < L/2,



(21)

then

lim
t→∞

n(x, t) = K1, lim
t→∞

f (x, t) = K2, lim
t→∞

m(x, t) = K3,

lim
t→∞

E(x, t) = K4, lim
t→∞

G(x, t) = K5.

Theorem 2.2. If a22 <
a21a51

a52
κ for the transwell model in equation (2) implies that the equilib-

rium (κ,0,0,0, a51
a52

κ) is globally asymptotically stable.

Proof: From the maximum principle of parabolic equations, it is known that for any initial

value (n0(t,x), f0(t,x),m0(t,x),E0(t,x),G0(t,x))> (0,0,0,0,0) the corresponding non-negative

solution (n(t,x), f (t,x),m(t,x),E(t,x),G(t,x)) is strictly positive for t > 0 . Since a22 <
a21a51

a52
κ ,

then we choose ε0 ∈ (0,1). Then according to Lemma (2.2.) and the comparison principle of

parabolic equations, there exists t1 > 0 such that, for any t > t1,
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n(x, t)≤ K1 + ε0 := n̄(x, t), 0 < x < L/2,

f (x, t)≤ K2 + ε := f̄ (x, t), −L/2 < x < 0,

m(x, t)≤ K3 + ε := m̄(x, t), −L/2 < x < 0,

E(x, t)≤ K4 + ε := Ē(x, t), −L/2 < x < L/2,

G(x, t)≤ K5 + ε := Ḡ(x, t), −L/2 < x < L/2,



(22)

and

n(x, t)≥ K1− ε0 := n(x, t), 0 < x < L/2,

f (x, t)≥ K2− ε := f (x, t), −L/2 < x < 0, ,

m(x, t)≥ K3− ε := m(x, t), −L/2 < x < 0,

E(x, t)≥ K4− ε := E(x, t), −L/2 < x < L/2,

G(x, t)≥ K5− ε := G(x, t), −L/2 < x < L/2.



(23)

Thus, for t > t0, it is possible to obtain

n(x, t) ≤ n(x, t)≤ n̄(x, t), 0 < x < L/2, f (x, t)≤ f (x, t)≤ f̄ (x, t), −L/2 < x < 0,

m(x, t) ≤ m(x, t)≤ m̄(x, t), −L/2 < x < 0, E(x, t)≤ E(x, t)≤ Ē(x, t), −L/2 < x < L/2,

G(x, t) ≤ G(x, t)≤ Ḡ(x, t), −L/2 < x < L/2.

Since h j(n, f ,m,E,G) in equation (20) is a C1 function of n, f ,m,E,G, where h1 is quasi-

monotone non-decreasing in f ,m,E,G, h2 is quasi-monotone non-increasing in n,m,E,G, h3 is

quasi-monotone non-increasing in n, f ,E,G, h4 is quasi-monotone non-decreasing in n, f ,m,G

and h5 is quasi-monotone non-decreasing in n, f ,m,E, then by the method of upper and lower
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solutions we know that the system in (2) has a unique global non-negative solution n, f ,m,E,G,

[30]. Thus,

n, n̄, f , f̄ ,m, m̄,E, Ē,G, Ḡ,(24)

satisfy

a11
κ

Ē4n̄(1− n̄)≤ 0≤ a11
κ

En(1−n), 0 < x < L/2,

−a21G f̄ +a22 f̄ ≤ 0≤−a21Ḡ f +a22 f , −L/2 < x < 0,

a21G f +a31m̄≤ 0≤ a21Ḡ f̄ +a31m, −L/2 < x < 0,

a41 f̄ +Ba41m̄−a43Ē ≤ 0≤ a41 f +Ba41m−a43E, −L < x < L,

a51n̄−a52Ḡ≤ 0≤ a51n−a52G, −L < x < L.



(25)

Therefore, (n̄, f̄ , m̄, Ē, Ḡ) and (n, f ,m,E,G), are a pair of coupled upper and lower solutions of

system (2),[50], respectively. Thus, for any (n, f ,m,E,G)≤ (n1, f1,m1,E1,G1) and

(n2, f2,m2,E2,G2)≤ (n̄, f̄ , m̄, Ē, Ḡ) we have∣∣∣a11E4
1 n1

k4
E+E4

1
(1− n1

κ
)− (

a11E4
2 n2

k4
E+E4

2
(1− n2

κ
))
∣∣∣≤ K(|E1−E2|+ |n1−n2|),0 < x < L/2,

|−a21G1 f1 +a22 f1− (−a21G2 f2 +a22 f2)| ≤ K(|G1−G2|+ | f1− f2|),−L/2 < x < 0,

|a21G1 f1 +a31m1− (a21G2 f2 +a31m2)| ≤ K(G1−G2|+ |m1−m2|) = 0,−L/2 < x < 0,

|a41 f1 +Ba41m1−a43E1− (a41 f2 +Ba41m2−a43E2))≤ K( f1− f2|+ |m1−m2|),−L < x < L,

|a51n1−a52G1− (a51n2−a52G2)| ≤ K(|n1−n2|+ |G2−G2|),−L < x < L.


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Defining two iteration sequences (n̄, f̄ , m̄, Ē, Ḡ) and (n, f ,m,E,G) for i≥ 1,

n̄(i) = n̄(i−1)+(a11
κ

Ē(i−1)n̄(i−1)(1− n̄(i−1)))/K, 0 < x < L/2,

f̄ (i) = f̄ (i−1)+(−a21G(i−1) f̄ (i−1)+a22 f̄ (i−1))/K,

m̄(i) = m̄(i−1)+(a21G(i−1) f (i−1)+a31m̄(i−1))/K, −L/2 < x < 0,

Ē(i) = Ē(i−1)+(a41 f̄ (i−1)+Ba41m̄(i−1)−a43Ē(i−1))/K, −L < x < L,

Ḡ(i) = Ḡ(i−1)+(a51n̄(i−1)−a52Ḡ(i−1))/K, −L < x < L,

n(i) = n(i−1)+(a11
κ

E(i−1)n(i−1)
1 (1−n(i−1)

1 ))/K, 0 < x < L/2,

f (i) = f (i−1)+(−a21Ḡ(i−1) f (i−1)+a22 f (i−1))/K, −L/2 < x < 0,

m(i) = m(i−1)+(a21Ḡ(i−1) f̄ (i−1)+a31m(i−1))/K, −L/2 < x < 0,

E(i) = E(i−1)+(a41 f (i−1)+Ba41m(i−1)−a43E(i−1))/K, −L < x < L,

G(i) = G(i−1)+(a51n(i−1)−a52G(i−1))/K, −L < x < L,



(26)

where (n̄(0), f̄ (0), m̄(0), Ē(0), Ḡ(0))= (n̄, f̄ , m̄, Ē, Ḡ) and (n(0), f (0),m(0),E(0),G(0))= (n, f ,m,E,G).

Thus, for i≥ 1

(n, f ,m,E,G)≤ (n(i), f (i),m(i),E(i),G(i))≤ (n(i+1), f (i+1),m(i+1),E(i+1),G(i+1))

≤ (n̄(i+1), f̄ (i+1), m̄(i+1), Ē(i+1), Ḡ(i+1) ≤ (n̄(i), f̄ (i), m̄(i), Ē(i), Ḡ(i))≤ (n̄, f̄ , m̄, Ē, Ḡ),

and there exist (ñ(0), f̃ (0), m̃(0), Ẽ(0), G̃(0))> (0,0,0,0,0) and

(n̂(0), f̂ (0), m̂(0), Ê(0), Ĝ(0))> (0,0,0,0,0) such that

lim
i→∞

n̄ = ñ, lim
i→∞

f̄ = f̃ , lim
i→∞

m̄ = m̃, lim
i→∞

Ē = Ẽ, lim
i→∞

Ḡ = G̃,

and

lim
i→∞

n = n̂, lim
i→∞

f = f̂ , lim
i→∞

m = m̂, lim
i→∞

E = Ê, lim
i→∞

G = Ĝ,
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and

a11
κ

Ẽñ(1− ñ) = 0, a11
κ

Ên̂(1− n̂) = 0, 0 < x < L/2,

−a21Ê f̃ +a22 f̃ = 0, −a21G̃ f̂ +a22 f̂ = 0, −L/2 < x < 0,

a21Ĝ f̂ +a31m̃ = 0, a21G̃ f̃ +a31m̂ = 0, −L/2 < x < 0,

a41 f̃ +Ba41m̃−a43Ẽ = 0, a41 f̂ +Ba41m̂−a43Ê = 0, −L < x < L,

a51ñ−a52G̃ = 0 a51n̂−a52Ĝ = 0, −L < x < L.


(27)

Since, (κ,0,0,0, a51
a52

κ) is the unique positive constant equilibrium of system (2), it must hold

for

(ñ, f̃ , m̃, Ẽ, G̃) = (n̂, f̂ , m̂, Ê, Ĝ) = (κ,0,0,0,
a51

a52
κ).(28)

Thus, by [30, 31], the solution (n(x, t), f (x, t),m(x, t),E(x, t),G(x, t)) of system (2) satisfies

lim
t→∞

n(x, t) = n∗, lim
t→∞

f (x, t) = f ∗, lim
t→∞

m(x, t) = m∗, lim
t→∞

E(x, t) = E∗,

lim
t→∞

G(x, t) = G∗.(29)

Hence, the constant equilibrium (κ,0,0,0, a51
a52

κ) is globally asymptotically stable.

3. Derivation and analysis of the numerical method

In this section, we describe the derivation of the fitted operator method for solving the

system in equation (2). We determine an approximation to the derivatives of the functions

n(t,x), f (x, t),m(x, t),E(x, t),G(x, t), with respect to the spatial variable x.

Let Sx be a positive integer. Discretize the interval [−L/2,L/2] through the points

−L/2 = x0 < x1 < x2 < · · ·< xs−1 < xs < xs+1 · · ·< xSx−2 < xSx−1 < xSx = L/2,

where the step-size ∆x = x j+1− x j = (L/2+L/2)/Sx, j = 0,1, . . . ,xSx . Let

N j(t),F j(t),M j(t),E j(t),G j(t),(30)
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denote the numerical approximations of n(t,x), f (x, t),m(x, t),E(x, t),G(x, t). Then we approx-

imate the spatial derivative in the system in (2) by

∂

∂x

(
Dn

∂n
∂x −χnn

∂E
∂x√

1+( ∂E
∂x /λE)2

)
(t,x j)≈ Dn

N j+1−2N j+N j−1
φ 2

n

−χn(D−x N j)
(D−x E j)√

1+
(

D−x E j
λE

)2

−χnN j
D+

x (D
−
x E j)(

1+
(

D−x E j
λE

)2
)3/2 ,

∂

∂x

(
D f

∂ f
∂x

)
(t,x j)≈ D f

F j+1−2F j+F j−1

φ 2
f

,

∂

∂x

(
Dm

∂m
∂x −χmm

∂G
∂x√

1+( ∂G
∂x /λG)2

)
≈ Dm

M j+1−2M j+M j−1
φ 2

m

−χm(D−x M j)
(D−x G j)√

1+
(

D−x G j
λG

)2

−χmM j
D+

x (D
−
x G j)(

1+
(

D−x G j
λG

)2
)3/2 ,

∂

∂x

(
DE

∂E
∂x

)
(t,x j)≈ DE

E j+1−2E j+E j−1

φ 2
E

,

∂

∂x

(
DG

∂G
∂x

)
(t,x j)≈ DG

G j+1−2G j+G j−1

φ 2
G

,



(31)

where

D+(·) j =
(·) j+1− (·) j

∆x
, D−(·) j =

(·) j− (·) j−1

∆x
,

and the denominator functions

φ
2
n :=

Dn∆x
χn

[
exp(

χn∆x
Dn

)−1
]
, φ

2
f :=

4
ρ2

f
sin
(

ρ f ∆x
2

)2

, ρ f :=
√

a22

D f
,

φ
2
m :=

Dm∆x
χm

[
exp(

χm∆x
Dm

)−1
]
, φ

2
E :=

4
ρ2

e
sinh

(
ρe∆x

2

)2

, ρe :=
√

a43

De
,

φ
2
G :=

4
ρ2

g
sinh

(
ρg∆x

2

)2

, ρg :=
√

a52

Dg
.
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Let St be a positive integer and ∆t = T/St where 0 < t < T . Discretizing the time interval [0,T ]

through the points

0 = t0 < t1 < · · ·< tSt = T,

where

ti+1− ti = ∆t, i = 0,1, . . . ,(tSt −1).

We approximate the time derivative at ti by

∂n
∂ t (x, ti)≈

N i+1
j+1 −N i

j
∆t , ∂ f

∂ t (x, ti)≈
F i+1

j+1−F i
j

ψ f
, ∂m

∂ t (x, ti)≈
M i+1

j+1−M i
j

ψm
,

∂E
∂ t (x, ti)≈

E i+1
j+1−E i

j
ψE

, ∂G
∂ t (x, ti)≈

G i+1
j+1−G i

j
ψG

,

(32)

where

ψ f = (1− exp(−a22∆t))/a22, ψE = (1− exp(−a43∆t))/a43,

ψG = (1− exp(−a52∆t))/a52,ψm = (1− exp(−a31∆t))/a31,

where we see that ψ f →∆t,ψE→∆t,ψG→∆t, ψm→∆t as ∆t→ 0. The denominator functions

in equations (31) and (32) are used explicitly to remove the inherent stiffness in the central

finite derivatives parts and can be derived by using the theory of nonstandard finite difference

methods, see, e.g., [28, 32, 33] and references therein.

Combining the equation (31) for the spatial derivatives with equation (32) for time deriva-

tives, we obtain
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N i+1
j −N i

j
∆t −Dn

N i+1
j+1 −2N i+1

j +N i+1
j−1

φ 2
n

=−χn(D+
x ni

j)
(D−x E i

j )√
1+
(

D−x E i
j

λE

)2

−χnN i
j

D+
x (D

−
x E i

j )(
1+
(

D−x E i
j

λE

)2)3/2

+
a11(E

4)i
jN

i
j

k4
E+(E 4)i

j
(1− N i

j
κ
), x ∈ [xs,L/2],

F i+1
j −F i

j
ψ f

−D f
F i+1

j+1−2F i+1
j +F i+1

j−1

φ 2
f

=−a21(HG)
i
j(H f )

i
j

+a22(H f )
i
j, x ∈ [−L

2 ,xs],

M i+1
j −M i

j
ψm

−Dm
M i+1

j+1−2M i+1
j +M i+1

j−1
φ 2

m
=−χm(D+

x M i
j)

(D−x G i
j )√

1+
(

D−x G i
j

λG

)2

−χmM i
j

D+
x (D

−
x G i

j )(
1+
(

D−x G i
j

λG

)2)3/2

+a21(HG)
i
j(H f )

i
j +a31M i

j , x ∈ [−L
2 ,xs],

E i+1
j −E i

j
ψE

−DE
E i+1

j+1−2E i+1
j +E i+1

j−1

φ 2
E

= a41(H f )
i
j +Ba41(Hm)

i
j−a43E i

j , x ∈ [−L
2 ,

L
2 ],

G i+1
j −G i

j
ψG

−DG
G i+1

j+1−2G i+1
j +G i+1

j−1

φ 2
G

= a51(Hn)
i
j−a52G

i
j ,x ∈ [−L

2 ,
L
2 ],

F i
−L
2 +1

= F i
−L
2 −1

, G i
L
2 +1

= G i
L
2−1

+2γ∆x
(
(G +) L

2
− (G −) L

2

)
,

G i
−L
2 −1

= (G −)i
−L
2 +1

(1+2∆xγ),

M i
−L
2 +1

= M i
−L
2 −1

+2∆xχmM i
−L
2


G i
−L
2 +1
−G i

−L
2 −1

2∆x

√√√√√1+

 G i
−L
2 +1

−G i
−L
2 −1

2∆xλG

2

 ,

E i
−L
2 −1

= (E −)i
−L
2 +1

(1+2∆xγ), E i
L
2 +1

= E i
L
2−1

+2γ∆x
(
(E +) L

2
− (E −) L

2

)
,

N i
L
2 +1

= N i
L
2−1

+2∆xχnN i
L
2


E i

L
2 +1
−E i

L
2−1

2∆x

√√√√√1+

 E i
L
2 +1

−E i
L
2−1

2∆xλE

2

 , F i
xs+1 = F i

xs−1,

M i
xs+1 = M i

xs−1−2∆xχmM i
xs

 G i
xs+1−G i

xs−1

2∆x

√
1+
(

G i
xs+1−G i

xs−1
2∆xλG

)2

 ,

N i
xs−1 = N i

xs+1−2∆xχnN i
xs

 E i
xs+1−E i

xs−1

2∆x

√
1+
(

E i
xs+1−E i

xs−1
2∆xλE

)2

 ,

N 0
x j
= exp(−40(x j−1)2), F 0

x j
= exp(−40x2

j)r f , M 0
x j
= 0.00, E 0

x j
= G 0

x j
= 1.00,



(33)
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where,the no-flux boundary conditions are discretised by means of the central finite difference

[5], j =−L/2,2, . . . ,L/2−1, i = 0,1, . . . ,T −1 and

(Hn)
i
j ≈ N(ti− τ,x j), (H f )

i
j ≈ F(ti− τ,x j), (HG)

i
j ≈ G(ti− τ,x j),

(Hm)
i
j ≈ M(ti− τ,x j),(34)

are denoting the history functions corresponding to n, f ,m,G. The system in equation (33) can

further be simplified as

−Dn
φ 2

n
N i+1

j−1 +
(

1
∆t +

2Dn
φ 2

n

)
N i+1

j − Dn
φ 2

n
N i+1

j+1

=−χn(D−x ni
j)

(D−x E i
j )√√√√1+

(
D−x E i

j
λE

)2
−χnN i

j
D+

x (D
−
x E i

j )1+

(
D−x E i

j
λE

)2
3/2

+a11
(E 4)i

j

k4
E+(E 4)i

j
N i

j (1−N i
j /κ)+

N i
j

∆t ,

−D f

φ 2
f
F i+1

j−1 +

(
1

ψ f
+

2D f

φ 2
f

)
F i+1

j − D f

φ 2
f
F i+1

j+1

=−a21(HG)
i
j(H f )

i
j +a22(H f )

i
j +

F i
j

ψ f
,

−Dm
φ 2

m
M i+1

j−1 +
(

1
ψm

+ 2Dm
φ 2

m

)
M i+1

j − Dm
φ 2

m
M i+1

j+1

=−χm(D−x M i
j)

(D−x G i
j)√√√√1+

(
D−x G i

j
λG

)2
−χmM i

j
D+

x (D
−
x G i

j)1+

(
D−x G i

j
λG

)2
3/2

+a21(HG)
i
j(H f )

i
j +a31M

i
j +

M i
j

∆t ,

−DE
φ 2

E
E i+1

j−1 +
(

1
ψE

+ 2DE
φ 2

E

)
E i+1

j − DE
φ 2

E
E i+1

j+1

= a41(H f )
i
j +Ba41(Hm)

i
j−a43E

i
j +

E i
j

ψE
,

−DG
φ 2

G
G i+1

j−1 +
(

1
ψG

+ 2DG
φ 2

G

)
G i+1

j − DG
φ 2

G
G i+1

j+1

= a51(Hn)
i
j−a52G

i
j +

G i
j

ψG
,



(35)
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which can be written as a tridiagonal system given by

AnN
i+1

j =−χn(D−x ni
j)

(D−x E i
j )√√√√1+

(
D−x E i

j
λE

)2
−χnN i

j
D+

x (D
−
x E i

j )1+

(
D−x E i

j
λE

)2
3/2

+a11
(E 4)i

j

k4
E+(E 4)i

j
N i

j (1−N i
j /κ)+

N i
j

∆t ,

A f F
i+1
j =−a21(HG)

i
j(H f )

i
j +a22(H f )

i
j +

F i
j

ψ f
,

AmM i+1
j =−χm(D−x M i

j)
(D−x G i

j)√√√√1+

(
D−x G i

j
λG

)2
−χmM i

j
D+

x (D
−
x G i

j)1+

(
D−x G i

j
λG

)2
3/2

+a21(HG)
i
j(H f )

i
j +a31M

i
j +

M i
j

∆t ,

AEE i+1
j = a41(H f )

i
j +Ba41(Hm)

i
j−a43E

i
j +

E i
j

ψE
,

AGG i+1
j = a51(Hn)

i
j−a52G

i
j +

G i
j

ψG
,



(36)

where

An = Tri
(
−Dn

φ 2
n
, 1

∆t +
2Dn
φ 2

n
,−Dn

φ 2
n

)
, A f = Tri

(
−D f

φ 2
f
, 1

ψ f
+

2D f

φ 2
f
,−D f

φ 2
f

)
,

Am = Tri
(
−Dm

φ 2
m
, 1

ψm
+ 2Dm

φ 2
m
,−Dm

φ 2
m

)
, AE = Tri

(
−DE

φ 2
E
, 1

ψE
+ 2DE

φ 2
E
,−DE

φ 2
E

)
,

AG = Tri
(
−DG

φ 2
G
, 1

ψG
+ 2DG

φ 2
G
,−DG

φ 2
G

)
.


(37)

On the interval [0,τ] the delayed arguments tn− τ belong to [−τ,0], and therefore the delayed

variables in equation (34) are evaluated directly from the history functions

n0(t,x), f 0(t,x),m0(t,x),G0(t,x),

as

(Hn)
i
j ≈ n0(ti− τ,x j), (H f )

i
j ≈ f 0(ti− τ,x j), (Hm)

i
j ≈ m0(ti− τ,x j),

(HG)
i
j ≈ G0(ti− τ,x j),(38)
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and equation (36) becomes

AnN
i+1

j =−χn(D−x ni
j)

(D−x E i
j )√√√√1+

(
D−x E i

j
λE

)2
−χnN i

j
D+

x (D
−
x E i

j )1+

(
D−x E i

j
λE

)2
3/2

+a11
(E 4)i

j

k4
E+(E 4)i

j
N i

j (1−N i
j /κ)+

N i
j

∆t ,

A f F
i+1
j =−a21G0(ti− τ,x) f 0(ti− τ,x)+a22 f 0(ti− τ,x)+

F i
j

ψ f
,

AmM i+1
j =−χm(D−x M i

j)
(D−x G i

j)√√√√1+

(
D−x G i

j
λG

)2
−χmM i

j
D+

x (D
−
x G i

j)1+

(
D−x G i

j
λG

)2
3/2

+a21G0(ti− τ,x) f 0(ti− τ,x)+a31M
i
j +

M i
j

∆t ,

AEE i+1
j = a41 f 0(ti− τ,x)+Ba41m0(ti− τ,x)−a43E

i
j +

E i
j

ψE
,

AGG i+1
j = a51n0(ti− τ,x)−a52G

i
j +

G i
j

ψG
.



(39)

Let s be the largest integer such that τs ≤ τ . By using the system equation (39) we can compute

N i
j ,F

i
j,M

i
j ,E

i
j ,G

i
j for 1≤ i≤ s. Up to this stage, we interpolate the data

(t0,N 0
j ), (t1,N

1
j ), . . . ,(ts,N

s
j ), (t0,F

0
j ), (t1,F

1
j ), . . . ,(ts,F

s
j ),

(t0,M 0
j ), (t1,M

1
j ), . . . ,(ts,M

s
j ), (t0,E

0
j ), (t1,E

1
j ), . . . ,(ts,E

s
j ), (t0,G

0
j ), (t1,G

1
j ), . . . ,(ts,G

s
j ),

using an interpolating cubic Hermite spline ϕ j(t). Then

N i
j = ϕn(ti,x j), F i

j = ϕ f (ti,x j), M i
j = ϕm(ti,x j), E i

j = ϕE(ti,x j) G i
j = ϕG(ti,x j),

for all i = 0,1, . . . ,s and j =−L/2,2, . . . ,L/2−1.

For i = s+1,s+2, . . . ,T −1, when we move from level i to level i+1 we extend the defini-

tions of the cubic Hermite spline ϕ j(t) to the point

(ti +∆t,(Hn)
i
j, ti +∆t,(H f )

i
j, ti +∆t,(Hm)

i
j, ti +∆t,(HG)

i
j).
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Then the history terms (Hn)
i
j,(H f )

i
j,(HM)i

j,(HG)
i
j can be approximated by the functions

(ϕn) j(ti− τ),(ϕm) j(ti− τ),(ϕm) j(ti− τ),(ϕG) j(ti− τ) for i≥ s. This implies that,

(Hn)
i
j ≈ (ϕn) j(ti− τ), (H f )

i
j ≈ (ϕ f ) j(ti− τ), (Hm)

i
j ≈ (ϕm) j(ti− τ),

(HG)
i
j ≈ (ϕG) j(ti− τ),(40)

and equation (39) becomes

AnN
i+1

j =−χn(D−x ni
j)

(D−x E i
j )√√√√1+

(
D−x E i

j
λE

)2
−χnN i

j
D+

x (D
−
x E i

j )1+

(
D−x E i

j
λE

)2
3/2

+a11
(E 4)i

j

k4
E+(E 4)i

j
N i

j (1−N i
j /κ)+

N i
j

∆t ,

A f F
i+1
j =−a21(ϕG)(ti− τ)(ϕ f )(ti− τ)+a22(ϕ f )(ti− τ)+

F i
j

ψ f
,

AmM i+1
j =−χm(D−x M i

j)
(D−x G i

j)√√√√1+

(
D−x G i

j
λG

)2
−χmM i

j
D+

x (D
−
x G i

j)1+

(
D−x G i

j
λG

)2
3/2

+a21(ϕG)(ti− τ)(ϕ f )(ti− τ)+a31M
i
j +

M i
j

∆t ,

AEE i+1
j = a41(ϕ f )(ti− τ)+Ba41(ϕm)(ti− τ)−a43E

i
j +

E i
j

ψE
,

AGG i+1
j = a51(ϕn)(ti− τ)−a52G

i
j +

G i
j

ψG
,



(41)

where

ϕn(ti− τ) = [(Hn)
i
1,(Hn)

i
2 . . . ,(Hn)

i
L
2−1]

′, ϕ f (ti− τ) = [(H f )
i
−L
2
,(H f )

i
−L
2 +1 . . . ,(H f )

i
x0−1]

′,

ϕm(ti− τ) = [(Hm)
i
−L
2
,(Hm)

i
−L
2 +1 . . . ,(Hm)

i
x0−1]

′, ϕE(ti− τ) = [E i
−L
2
,E i
−L
2 +1 . . . ,E

i
L
2−1]

′,

ϕG(ti− τ) = [(HG)
i
−L
2
,(HG)

i
−L
2 +1 . . . ,(HG)

i
L
2−1]

′.
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Our FOFDM is then consists of equations (36)-(41). Rewriting the FOFDM as a system of

equations we have

AnN = Fn,

A f F = Ff ,

AmM = Fm,

AEE = FE ,

AGG = FG,



(42)

where

Fn =−χn(D−x ni
j)

(D−x E i
j )√√√√1+

(
D−x E i

j
λE

)2
−χnN i

j
D+

x (D
−
x E i

j )1+

(
D−x E i

j
λE

)2
3/2

+a11
(E 4)i

j

k4
E+(E 4)i

j
N i

j (1−N i
j /κ)+

N i
j

∆t ,

Ff =−a21(ϕG)(ti− τ)(ϕ f )(ti− τ)+a22(ϕ f )(ti− τ)+
F i

j
ψ f

,

Fm =−χm(D−x M i
j)

(D−x G i
j)√√√√1+

(
D−x G i

j
λG

)2
−χmM i

j
D+

x (D
−
x G i

j)1+

(
D−x G i

j
λG

)2
3/2

+a21(ϕG)(ti− τ)(ϕ f )(ti− τ)+a31M
i
j +

M i
j

∆t ,

FE = a41(ϕ f )(ti− τ)+Ba41(ϕm)(ti− τ)−a43E
i
j +

E i
j

ψE
,

FG = a51(ϕn)(ti− τ)−a52G
i
j +

G i
j

ψG
.


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We see that the local truncation errors (ςn)
i
j,(ς f )

i
j,(ςm)

i
j,(ςE)

i
j,(ςG)

i
j are given by

(ςn)
i
j = (Ann)i

j− (Fn)
i
j = (An(n−N ))i

j,

(ς f )
i
j = (A f f )i

j− (Ff )
i
j = A f ( f −F )i

j,

(ςm)
i
j = (Amm)i

j− (Fm)
i
j = (Am(m−M ))i

j,

(ςE)
i
j = (AEE)i

j− (FE)
i
j = (AE(E−E ))i

j,

(ςG)
i
j = (AGG)i

j− (FG)
i
j = (AG(G−G ))i

j,



(43)

Therefore,

maxi, j |ni
j−N i

j | ≤ ||A−1
n ||maxi, j |(ςn)

i
j|,

maxi, j | f i
j−F i

j| ≤ ||A
−1
f ||maxi, j |(ς f )

i
j|,

maxi, j |mi
j−M i

j | ≤ ||A−1
m ||maxi, j |(ςm)

i
j|,

maxi, j |E i
j−E i

j | ≤ ||A
−1
E ||maxi, j |(ςE)

i
j|,

maxi, j |Gi
j−G i

j | ≤ ||A
−1
G ||maxi, j |(ςG)

i
j|,



(44)
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where

maxi, j |(ςn)
i
j| ≤

(∆t)
2 |nt(ξ )|−Dn

(∆x)2

12 |nxxxx(ζ )|, x ∈ [xs,L/2],

maxi, j |(ς f )
i
j| ≤

(∆t)
2 | ft(ξ )|−D f

(∆x)2

12 | fxxxx(ζ )|, x ∈ [−L
2 ,xs],

maxi, j |(ςm)
i
j| ≤

(∆t)
2 |mt(ξ )|−Dm

(∆x)2

12 |nxxxx(ζ )|, x ∈ [−L
2 ,xs],

maxi, j |(ςE)
i
j| ≤

(∆t)
2 |Et(ξ )|−DE

(∆x)2

12 |Exxxx(ζ )|, x ∈ [−L
2 ,

L
2 ],

maxi, j |(ςG)
i
j| ≤

(∆t)
2 |Gt(ξ )|−DG

(∆x)2

12 |nxxxx(ζ )|,x ∈ [−L
2 ,

L
2 ],



(45)

for ti−1 ≤ ξ ≤ ti+1 and x j−1 ≤ ζ ≤ x j+1. Moreover by [41] we have

||A−1
n || ≤ Ξn, ||A−1

f || ≤ Ξ f , ||A−1
m || ≤ Ξm, ||A−1

E || ≤ ΞE , ||A−1
G || ≤ ΞG.(46)

Using (45) and (46) in (44), we obtain the following results.

Theorem 3.1. Let

Fn(x, t),Ff (x, t),Fm(x, t),FE(x, t),FG(x, t),

be sufficiently smooth functions so that n(x, t), f (x, t),m(x, t),E(x, t),G(x, t)∈C1,2([1,L]×[1,T ]).

Let (N i
j ,F

i
j,M

i
j ,E

i
j ,G

i
j), j = 1,2, . . .L, i = 1,2, . . .T be the approximate solutions to (3), ob-

tained using the FOFDM with N 0
j = n0

j ,F
0
j = f 0

j ,M
0
j = m0

j ,E
0
j = E0

j ,G
0
j = G0

j . Then there

exists Ξn,Ξ f ,Ξm,ΞE ,ΞG independent of the step sizes ∆t and ∆x such that
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maxi, j |ni
j−N i

j | ≤ Ξn[
(∆t)

2 |nt(ξ )|−Dn
(∆x)2

12 |nxxxx(ζ )|],

maxi, j | f i
j−F i

j| ≤ Ξ f [
(∆t)

2 | ft(ξ )|−D f
(∆x)2

12 | fxxxx(ζ )|],

maxi, j |mi
j−M i

j | ≤ Ξm[
(∆t)

2 |mt(ξ )|−Dm
(∆x)2

12 |nxxxx(ζ )|],

maxi, j |E i
j−E i

j | ≤ ΞE [
(∆t)

2 |Et(ξ )|−DE
(∆x)2

12 |Exxxx(ζ )|],

maxi, j |Gi
j−G i

j | ≤ ΞG[
(∆t)

2 |Gt(ξ )|−DG
(∆x)2

12 |nxxxx(ζ )|],



(47)

and this conclude the analysis of our FOFDM.

4. Numerical results and discussions

We set xSx = tSt = 80 and time t = 25 or t = 30. Then using the parameter values in Table 1

([21]) we first take L = 5 < T = 20 and we present our numerical results of the model without

delay (1) in Figure 1 and Figure 2, respectively.

For L = T = 5 and time t = 25,30, we present our numerical results in Figure 3 (τ ≡ 0),

Figure 4 and for L = 20 > T = 5, our numerical results are presented in Figure 5 (τ ≡ 0) at time

t = 25.

Similarly, for L = 5 < T = 20, time t = 25 and τ = 5, we present our numerical results in

Figure 6 and for τ = 20 we present our results in Figure 7.

For L = 5 = T , time t = 25 and τ = 5, we present our numerical results in Figure 8, for

L = 20 = T we present our results in Figure 9, for t = 25 and τ = 15 and L = 20 = T we present

our results in Figure 10.

Finally, we present our numerical results for L = 20 > T = 5 at time t = 25 for τ = 5,25 in

Figure 11 and Figure 12.

In the figures for the original model in equation (1), that is Figure 1 to Figure 5 we see that

the behaviour for the fibroblasts and myfibroblasts are zero almost for entire portion of their

compartment, but eventually rise sharply near the end of the compartment in which they are
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embedded. One notable fact is the fibroblast grows to a very high hieght than the myfibroblasts.

However, for the Transformed epithelial cells we see the oscilations type of behaviour near

the preamable membrane when the compartment is lesser than or equal to the time taken for

the experiment. However, the oscillation decreases to one sharp peak when the length of the

compartment is greater than the the time to be taken for this experiment. For the excreted

molecules, we also see a bigger peaks as compare to the restricted cells for the case when the

length of the compartment is lesser, equal to the time required by this experiment. However,

when we increase the length of the compartment to be bigger than the the time required then

we see the excreted molecules grow sharply with slight decrease and increase till their turning

point toward the end of the compartment.

For the modified model in equation (2), that is from Figure 6 to Figure 12 we see the following

notable feautures. That is the osculations behaviour of the Transformed Epithelial cells are

prominent for the case of the compartment being lesser than the time required by this experiment

as compare to the behaviour of the vice versa of the length of the compartment to time required

by this experiment. However, for the fibroblasts and myfibroblast cells their behaviours remains

similar to that of the original model in equation (1). For the excreted molecules we see that

their concentration are inverted in Figure 6, as compare to their corresponding behaviours in

Figure 1. However, when we increase the delay, we see that the concentration of the Epidermal

growth factor smoothes out better than its behaviour when there is no delay. Similarly for the

concentration of the Transformed growth factor. These behaviours becomes more prominent as

we increases the delay around the specified length of the compartment and time.

In these experiments we see that the interaction of the two concentrations enhances the growth

of the Epidermal growth factor molecules. However, such an essential growth is more explicit

when a delay term is inclusive in the modeling of these nature.

5. Conclusion

In this paper, we consider a less complicated model simulated in [12] with the aim of shedding

more light into the interaction between transformed epithelial cells, fibroblasts and myfibrob-

lasts cells at an early stage of cancer disease. We deemed it essential to incorporate some of
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the crucial transformations ought to take take place during the experiment carried out in [23].

Such incorporation of some crucial transformations, led the original model to be transformed

to a system of non-linear delay parabolic partial differential equations. We analysed the re-

sulting system of non-linear delay parabolic partial differential equations and determined the

global stability conditions for our resulting system. Consequently, we were able to derive the a

fitted operator finite difference method (FOFDM) for solving the modified system in equation

(2). Our main findings are more vivid, eventhough they are indeed in agreement with the pre-

sented experimental results found in [12] as well as in [7, 22]. More essentially, the indirect role

played by the incorporation of a delay term (τ) in the extended model in equation (2) through

the behaviours of the molecules are more informative than what is presented in [12]. Thus, in

our views, this work should be seen as the first attempt to shed more light into the behavior

of the micro-environment of tumor cells, which in turn contributes toward understanding this

complicated infection.
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FIGURE 1. Numerical solution of the system in (2) without delay at time (t) =

25 for L < T .



34 K.M. OWOLABI, K.C. PATIDAR, A. SHIKONGO

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

0

500

1000

1500

2000

2500

n

(a) Behaviour of Transformed Epithelial

cells (TECs)

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

0

5

10

15

20

25

30

35

40

f

(b) Behaviour of Fibroblasts cells

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

0

5

10

15

20

25

30

m

(c) Behaviour of Myfibroblasts cells

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

0

1

2

3

4

5

6

7

E

(d) Behaviour of the concentration of

Epidermal Growth Factor molecules

(EGF)

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

0

5

10

15

20

25

30

35

40

45

50

G

(e) Behaviour of the concentration of

Transformed Growth Factor molecules

(TGF-β )

FIGURE 2. Numerical solution of the system in (2) without delay at time (t) =

30 for L < T .
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25 for L = T .



36 K.M. OWOLABI, K.C. PATIDAR, A. SHIKONGO

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

0

10

20

30

40

50

60

n

(a) Behaviour of Transformed Epithelial

cells (TECs)

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

0

10

20

30

40

50

60

70

f

(b) Behaviour of Fibroblasts cells

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

0

0.5

1

1.5

2

2.5

3

m

(c) Behaviour of Myfibroblasts cells

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

0

0.5

1

1.5

2

2.5

3

3.5

4

E

(d) Behaviour of the concentration of

Epidermal Growth Factor molecules

(EGF)

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

0

0.2

0.4

0.6

0.8

1

1.2

1.4

G

(e) Behaviour of the concentration of

Transformed Growth Factor molecules

(TGF-β )

FIGURE 4. Numerical solution of the system in (2) without delay at time (t) =
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FIGURE 6. Numerical solution of the system in (2) with delay=5 for L < T .
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FIGURE 7. Numerical solution of the system in (2) with delay=20 for L < T at

time = 25.
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FIGURE 8. Numerical solution of the system in (2) with delay=5 for L = T at t = 25.
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FIGURE 9. Numerical solution of the system in (2) with delay=5 for L = T at t = 25.
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FIGURE 10. Numerical solution of the system in (2) with delay=15 for L = T

at t = 25.
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FIGURE 11. Numerical solution of the system in (2) with delay=5 for L > T at t = 25.
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FIGURE 12. Numerical solution of the system in (2) with delay=20 for L > T

at t = 25.


