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1. Introduction

Epidemiology is the study of the spread of diseases in human populations and the factors that are responsible

for or contribute to their occurrence. Consequently, it has been investigated by several researchers through study

of the dynamical behavior of infectious diseases by mathematical models (see, e.g., [1, 2, 3, 4, 5, 6]). Particularly,

the SIS (susceptible-infected-susceptible) epidemic model is often used to model the dynamics of diseases such as

bacterial diseases and some sexually transmitted diseases where individuals start to be susceptible, at some stage

catch the disease, and after a short infectious period become susceptible again [7].

In recent years, many mathematical models have been formulated to describe the impact of environmental

fluctuation on the dynamics of infectious disease, see, e.g., [8, 9, 10, 11, 12, 13]. Gray et al. [14] constructed

a stochastic SIS epidemic model with constant population size where the authors not only established threshold

value conditions, i.e., the disease dies out or persists but also they showed the existence of a stationary distribution.

Zhao and Jiang studied the threshold of a stochastic SIS epidemic model with vaccination in [15]. Teng and Wang

[16] discussed a stochastic SIS epidemic model with nonlinear incidence rate. Miao et al. [17] were interested in

a stochastic SIS epidemic model with a saturated incidence rate and double epidemic hypothesis. They presented

a threshold value on the extinction and persistence for the model.

Vertical transmission of diseases is the transmission of an infection from parent to child during the perinatal

period like Rubella, Varicella, Measles, AIDS (HIV infection), Zika fever (see, e.g., [18]). Many authors presented

the mathematical analysis of vertically transmitted diseases models, see, e.g., [19, 20, 21]. Most recently, Zhang et

al. [22] proposed the following stochastic SIS model with vertical transmission and random perturbations

(1)

 dS(t) = (Λ+bS−βSI−dS−BS+ γI +bqI)dt +σ1SdB1(t),

dI(t) = (bpI +βSI−dI−aI−BI− γI)dt +σ2IdB2(t),

where S(t) is the number of susceptible individuals, I(t) is the number of infected individuals, Λ is the recruitment

rate of susceptibles corresponding to immigration, β is the contact transmission coefficient, B is output rate of

susceptibles and infected population corresponding to emigration, a is the disease related death rate, γ is the

recovery rate, b and d are the birth rate and natural death rate, respectively. p is the vertical transmission coefficient,

with 0 < p < 1 and q = 1− p. It is assumed that d +B− b > 0 [22]. Bi(t) (i = 1,2) are independent standard

Brownian motions, and σi > 0 (i = 1,2) represents the intensities of Bi(t), respectively. According to the theory

in [22], the basic reproduction number of model (1) is RS
0 = βΛ�

[
(d +B−b)(d +B−bp+a+ γ +σ2

2�2)
]
.

Moreover, if RS
0 < 1, then the disease will die out, while if RS

0 > 1, then the disease will prevail. Also the authors

in [22] found that random perturbations can suppress the outbreaks of the disease.

System (1) is a stochastic model driven by white noise only (its solution is continuous). However, the population

system may suffer sudden environmental perturbations such as earthquakes, hurricanes, floods, toxic pollutants,

etc. These disturbances can not be described by the continuous stochastic model. Thus it is important to model
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these phenomena by jump processes. Initially, Bao et al. in [23] studied Lotka-Volterra population dynamics

with jumps, and they gave some results which revealed that jump processes can influence the properties of the

population systems. From then on, many results on epidemic models with jumps have been reported (see, e.g.,

[24, 25, 26, 27, 28]).

Our aim in this present work is to extend the model presented in [22] to a model with Lévy noise perturbation

and specific functional response. In this way, model (1) will be changed into following form

(2)



dS(t) = (Λ+bS− f (S, I)I−dS−BS+ γI +bqI)dt +σ1SdB1(t)

+
∫
Y q1(u)S(t−)Ñ(dt,du),

dI(t) = (bpI + f (S, I)I−dI−aI−BI− γI)dt +σ2IdB2(t)

+
∫
Y q2(u)I(t−)Ñ(dt,du),

where S(t−) is the left limit of S(t), I(t−) is the left limits of I(t), Ñ(dt,du) = N(dt,du) - µ(du)dt, N is a Poisson

counting measure on [0,+∞)×Y , µ is the characteristic measure of N on a measurable subset Y of (0,+∞) with

µ (Y ) < ∞, qi(u) is the jump diffusion coefficient, i = 1,2. The incidence rate of the disease is modeled by the

following specific functional response

f (S, I) =
βS

1+α1S+α2I +α3SI
,

where α1,α2,α3 are saturation factors measuring the psychological or inhibitory effect. This specific functional

response was introduced by Hattaf et al. [29].

Our study in this paper is as follows. In the next section, we prove the existence of a unique global positive

solution with any positive initial value. In Section 3, we present the basic reproduction number Rjump, and we

show that when Rjump < 1 the disease will die out. In Section 4, we will prove that when Rjump > 1, the disease is

persistent in mean.

Throughout this paper, for the sake of convenience, let (Ω,F ,{F}t≥0 ,P) be a complete probability space with

a filtration {F}t≥0 satisfying the usual conditions (i.e., it is increasing and right continuous while F0 contains all

P-null sets). Set R2
+ =

{
(x,y) ∈ R2 : x > 0, y > 0

}
. Denote by E(X) the mathematical expectation of a random

variable X .

We consider the following stochastic differential equation with Lévy jumps dx(t) = F(x(t), t)dt +G(x(t), t)dW (t)+
∫
Y H(x(t), t,u)Ñ(dt,du), t ≥ 0,

x(0) = x0 ∈ Rn,

where x(t)∈Rn, x0 represents the initial value and W (t) is an m-dimensional standard Brownian motion defined on

(Ω,F ,{Ft}t≥0,P) independent of the Poisson counting measure. The functional F(x, t) and H(x, t,u) are defined

respectively on Rn× [0,+∞) and Rn× [0,+∞)×Y . G(x, t) is an n×m matrix. Denote by C 2,1(Rn× [0,+∞);R+)

the family of all nonnegative functions U(x, t) defined on Rn × [0,+∞) such that they are continuously twice
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differentiable in x and once in t. If L acts on a function U ∈ C 2,1(Rn× [0,+∞);R+), then

LU(x, t) = Ut(x, t)+Ux(x, t)F(x, t)+
1
2

trace[GT (x, t)Uxx(x, t)G(x, t)]

+
∫

Y
[U(x+H(x, t,u))−U(x, t)−Ux(x, t)H(x, t,u)]µ(du),

where Ut =
∂U
∂ t , Ux = ( ∂U

∂x1
, ....., ∂U

∂xn
), Uxx = ( ∂ 2U

∂xi∂x j
)n×n. Then the generalized Itô formula with jumps is given

(refer to [30, 31, 32] for more details) by

dU(x, t) = LU(x, t)dt +Ux(x, t)G(x, t)dW (t)+
∫

Y
[U(x+H(x, t,u))−U(x, t)] Ñ(dt,du).

In all the sequel, we assume that the following assumptions hold.

(H1) :
∫
Y q2

i (u)µ(du)< ∞, i = 1,2.

(H2) : 1+qi(u)> 0, u ∈ Y , i = 1,2.

(H3) : |ln(1+qi(u))| ≤Mi, where Mi is a positive constant, i = 1,2. This assumption means that the intensities

of Lévy noises are not infinite.

2. Existence and uniqueness of a positive solution

In this section we will establish the existence of a unique global positive solution for our stochastic epidemic

model (2).

Theorem 2.1. For any given initial value (S(0), I(0))∈R2
+, there is a unique positive solution (S(t), I(t)) of model

(2) on t ≥ 0, and the solution will remain in R2
+ with probability one, that is to say, (S(t), I(t)) ∈ R2

+ for all t ≥ 0

almost surely (briefly a.s).

Proof. Under assumption (H1) and since the coefficients of model (2) are locally Lipschitz continuous, for any

given initial value (S(0), I(0))∈R2
+, there is a unique local solution (S(t), I(t)) on [0,τe), where τe is the explosion

time [32, 33]. To prove that this solution is global, we show that τe = ∞ a.s. For this we consider the following

stopping time

τ
+ = inf{t ∈ [0,τe) : S(t)≤ 0 or I(t)≤ 0} ,

where throughout this paper we set inf /0 = ∞ (as usual /0 denotes the empty set). Clearly, τ+ ≤ τe, so if we can

show that τ+ = ∞ a.s, then τe = ∞ and (S(t), I(t)) ∈R2
+ for all t ≥ 0 a.s. Assume P(τ+ < T )> 0 for some T > 0.

Then we consider the function U(S(t), I(t)) defined for (S(t), I(t)) ∈ R2
+ by

U(S(t), I(t)) = lnS(t)+ ln I(t).



EXTINCTION AND PERSISTENCE OF A STOCHASTIC SIS EPIDEMIC MODEL ... 5

Calculating the differential of U along the solution trajectories of system (2), using Itô’s formula with jumps,

we get, for η ∈ {τ+ < T}, and for all t ∈ [0,τ+),

(3) dU = LUdt +σ1dB1(t)+σ2dB2(t)+
∫

Y
[ln(1+q1(u))+ ln(1+q2(u))] Ñ(dt,du),

where

LU =
Λ

S
− (d +B−b)− f (S, I)I

S
+

(γ +bq)I
S

+ f (S, I)− (d +B−bp+a+ γ)

−σ2
1

2
− σ2

2
2
−
∫

Y
[q1(u)− ln(1+q1(u))]µ(du)−

∫
Y
[q2(u)− ln(1+q2(u))]µ(du).

Integrating both side of (3) we obtain

U(S(t), I(t))−U(S(0), I(0)) =
∫ t

0

[
Λ

S
− (d +B−b)− f (S, I)I

S
+

(γ +bq)I
S

− σ2
1

2

]
ds

+
∫ t

0

[
f (S, I)− (d +B−bp+a+ γ)− σ2

2
2

]
ds

−
∫ t

0

{∫
Y
[q1(u)− ln(1+q1(u))]µ(du)

}
ds

−
∫ t

0

{∫
Y
[q2(u)− ln(1+q2(u))]µ(du)

}
ds

+σ1B1(t)+σ2B2(t)+
∫ t

0

∫
Y
[ln(1+q1(u))+ ln(1+q2(u))] Ñ(ds,du).

Hence

U(S(t), I(t)) ≥ U(S(0), I(0))+
∫ t

0

[
−2(d +B−b)− (a+ γ +bq)−β I− σ2

1
2
− σ2

2
2

]
ds

−
∫ t

0

{∫
Y
[q1(u)− ln(1+q1(u))]µ(du)

}
ds(4)

−
∫ t

0

{∫
Y
[q2(u)− ln(1+q2(u))]µ(du)

}
ds

+σ1B1(t)+σ2B2(t)+
∫ t

0

∫
Y
[ln(1+q1(u))+ ln(1+q2(u))] Ñ(ds,du).

Note that S(τ+) = 0 or I(τ+) = 0. Thereby,

lim
t→τ+

U(S(τ+), I(τ+)) =−∞.
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Letting t −→ τ+ in (4), we get the contradiction

−∞ ≥ U(S(0), I(0))+
[
−2(d +B−b)− (a+ γ +bq)− σ2

1
2
− σ2

2
2

]
τ
+−β

∫
τ+

0
I(s)ds

−
∫

τ+

0

{∫
Y
[q1(u)− ln(1+q1(u))]µ(du)

}
ds

−
∫

τ+

0

{∫
Y
[q2(u)− ln(1+q2(u))]µ(du)

}
ds

+σ1B1(τ
+)+σ2B2(τ

+)+
∫

τ+

0

∫
Y
[ln(1+q1(u))+ ln(1+q2(u))] Ñ(ds,du)

> −∞.

Thus, τ+ = τe = ∞ a.s. Which completes the proof of the theorem.

Denote

∆ =

{
(S, I) ∈ R2

+ : S+ I ≤ Λ

d +B−b

}
.

The following theorem shows that the set ∆ is positive invariant set of the stochastic SIS model with jumps (2),

i.e., if (S(0), I(0)) ∈ ∆, then (S(t), I(t)) ∈ ∆ for all t ≥ 0 a.s.

Theorem 2.2. The set ∆ is almost surely positively invariant of stochastic model (2).

Proof. Let (S(0), I(0)) ∈ ∆ and k0 ≥ 0 be sufficiently large such that (S(0), I(0)) ∈
(

1
k0
, Λ

d+B−b

]2
. For any integer

k ≥ k0 we define the following stopping times

τk = inf

{
t > 0 : (S(t), I(t)) ∈ ∆ and (S(t), I(t)) /∈

(
1
k
,

Λ

d +B−b

]2
}
,

τ = inf{t > 0 : (S(t), I(t)) /∈ ∆} .

We need to prove that P(τ < t) = 0 for any t > 0. (τ < t)⊂ (τk < t), hence P(τ < t)≤ P(τk < t). So, it suffices

to show that limsup
k→∞

P(τk < t) = 0.

We consider the function V : R2
+→ R+ by

V (S, I) =
1
S
+

1
I
.

For all T ≥ 0 and 0≤ s≤ T ∧ τk, using Itô’s formula, we have

dV (S(s), I(s)) = LV ds− σ1

S(s)
dB1(s)−

σ2

I(s)
dB2(s)−

∫
Y

[
q1(u)

S(1+q1(u))
+

q2(u)
I(1+q1(u))

]
Ñ(ds,du),

where

LV = − Λ

S2 +
d +B−b

S
+

f (S, I)I
S2 +

σ2
1

S
+
∫

Y

q2
1(u)

S(1+q1(u))
µ(du)

+
d +B−bp+a+ γ

I
− f (S, I)

I
+

σ2
2
I

+
∫

Y

q2
2(u)

I(1+q2(u))
µ(du).
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Then

dV (S(s), I(s)) ≤
[

d +B−b+
f (S, I)I

S
+σ

2
1 +

∫
Y

q2
1(u)

(1+q1(u))
µ(du)

]
ds
S

+

[
d +B−bp+a+ γ +σ

2
2 +

∫
Y

q2
2(u)

(1+q2(u))
µ(du)

]
ds
I

− σ1

S(s)
dB1(s)−

σ2

I(s)
dB2(s)−

∫
Y

[
q1(u)

S(1+q1(u))
+

q2(u)
I(1+q1(u))

]
Ñ(ds,du).

Hence

(5) dV ≤ θV − σ1

S
dB1(s)−

σ2

I
dB2(s)−

∫
Y

[
q1(u)

S(1+q1(u))
+

q2(u)
I(1+q1(u))

]
Ñ(ds,du),

where

θ = max
{

d +B−b+
βΛ

d +B−b
+σ

2
1 +

∫
Y

q2
1(u)

(1+q1(u))
µ(du) ,

d +B−bp+a+ γ +σ
2
2 +

∫
Y

q2
2(u)

(1+q2(u))
µ(du)

}
.

By integrating, taking the expectation on both sides of (5) and applying Fubini’s theorem, we get

E [V (S(s), I(s))]≤V (S(0), I(0))+θ

∫ s

0
E [V (S(v), I(v))]dv.

From Gronwall Lemma we have for all 0≤ s≤ T ∧ τk,

E [V (S(s), I(s))]≤V (S(0), I(0))eθs.

Then

(6) E [V (S(T ∧ τk), I(T ∧ τk))]≤V (S(0), I(0))eθ(T∧τk) ≤V (S(0), I(0))eθT for any T ≥ 0.

Since V (S(T ∧τk), I(T ∧τk))> 0 and some component of (S(τk), I(τk)) is less than or equal to 1
k , then V (S(τk), I(τk))≥

k, which implies that

(7) E [V (S(T ∧ τk), I(T ∧ τk))]≥ E
[
V (S(τk), I(τk))χ{τk<T}

]
≥ kP(τk < T ),

where χ{τk<T} is the indicator function of {τk < T} .

By (6) and (7), we get that for all T ≥ 0

P(τk < T )≤ V (S(0), I(0))eθT

k
,

then limsup
k→+∞

P(τk < T ) = 0. This completes the proof.
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3. Extinction of the disease

In this section, we are concerned with the conditions of disappearance of the disease in the system (2). The

basic reproduction number of stochastic SIS epidemic model (2) without jumps, that is, qi = 0 (i = 1,2), is as

follows

Rnoise =
βΛ

(d +B−b+α1Λ)(d +B−bp+a+ γ +
σ2

2
2 )

.

Now, we define the threshold of our stochastic SIS epidemic model (2) as follows

Rjump =
βΛ

(d +B−b+α1Λ)(d +B−bp+a+ γ +
σ2

2
2 +ϖ)

,

with

ϖ =
∫

Y
[q2(u)− ln(1+q2(u))]µ(du).

Remark 3.1. We have

βS
1+α1S+α2I +α3SI

=
βΛ

d +B−b+α1Λ

− β (d +B−b)
(1+α1S+α2I +α3SI)(d +B−b+α1Λ)

(
Λ

d +B−b
−S)

− βα2Λ

(1+α1S+α2I +α3SI)(d +B−b+α1Λ)
I

− βα3Λ

(1+α1S+α2I +α3SI)(d +B−b+α1Λ)
SI.

For simplicity we denote 〈 f (t)〉= 1
t
∫ t

0 f (s)ds if f is an integrable function on [0,+∞).

Definition 3.1. System (2) is said to be extinct if lim
t→∞
〈I (t)〉= 0 a.s.

On the extinction of the disease in stochastic system (2) we have the following result.

Theorem 3.1. Let (S(t), I(t)) be any solution of system (2) with initial value (S(0), I(0)) ∈ ∆. Then

limsup
t→∞

ln I(t)
t
≤ (d +B−bp+a+ γ +

σ2
2

2
+ϖ)(Rjump−1).

Moreover, if Rjump < 1, then lim
t→∞
〈I (t)〉 = 0 a.s, and lim

t→∞
〈S (t)〉 = Λ

d+B−b a.s. That is to say, the disease dies

out with probability one.

Proof. Let (S(0), I(0)) ∈ ∆. Applying Itô’s formula to the second equation of system (2) leads to

d ln I =

[
f (S, I)− (d +B−bp+a+ γ)− σ2

2
2
−
∫

Y
[q2(u)− ln(1+q2(u))]µ(du)

]
dt

+σ2dB2(t)+
∫

Y
ln(1+q2(u))Ñ(dt,du).

Since (S(t), I(t)) ∈ ∆, then by Remark 3.1, we have

f (S, I)≤ βΛ

d +B−b+α1Λ
.
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Hence

d ln I ≤
[

βΛ

d +B−b+α1Λ
− (d +B−bp+a+ γ +

σ2
2

2
+ϖ)

]
dt +σ2dB2(t)(8)

+
∫

Y
ln(1+q2(u))Ñ(dt,du),

Then, by integrating inequality (8) we obtain

(9) ln I(t)≤ (d +B−bp+a+ γ +
σ2

2
2

+ϖ)(Rjump−1)t +G(t)+H(t)+ ln I(0),

where G(t) and H(t) are defined by

G(t) =
∫ t

0
σ2dB2(s), H(t) =

∫ t

0

∫
Y

ln(1+q2(u))Ñ(ds,du).

Thus

〈G,G〉t =
∫ t

0
σ

2
2 ds = tσ2

2 , 〈H,H〉t = t
∫

Y
[ln(1+q2(u))]

2
µ(du)< tC.

By the strong law of large numbers for martingales (see, e.g., [34]), we have

(10) lim
t→∞

G(t)
t

= lim
t→∞

H(t)
t

= 0 a.s.

Dividing by t on the both sides of (9) and letting t→ ∞, we get

limsup
t→∞

ln I(t)
t
≤ (d +B−bp+a+ γ +

σ2
2

2
+ϖ)(Rjump−1),

which ensures that if, Rjump < 1 holds, then

(11) lim
t→∞
〈I (t)〉= 0 a.s.

On the other hand, we have

d(S+ I) = [Λ− (d +B−b)S− (d +B−b+a)I]dt +σ1SdB1(t)+σ2IdB2(t)

+
∫

Y
(q1(u)S+q2(u)I)Ñ(ds,du)

=

[
(d +B−b)(

Λ

d +B−b
−S)− (d +B−b+a)I

]
dt

+σ1SdB1(t)+σ2IdB2(t)

+
∫

Y
(q1(u)S+q2(u)I)Ñ(ds,du).

Then

S(t)−S (0)
t

+
I(t)− I (0)

t
= (d +B−b)

〈
Λ

d +B−b
−S(t)

〉
− (d +B−b+a)〈I (t)〉

+
σ1

t

∫ t

0
S(s)dB1(s)+

σ2

t

∫ t

0
I(s)dB2(s)

+
1
t

∫ t

0

∫
Y
(q1(u)S+q2(u)I)Ñ(ds,du).
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This yields

(12)
〈

Λ

d +B−b
−S(t)

〉
=

d +B−b+a
d +B−b

〈I (t)〉+Φ(t),

where

Φ(t) =
1

d +B−b

{
S(t)−S (0)

t
+

I(t)− I (0)
t

− σ1

t

∫ t

0
S(s)dB1(s)

−σ2

t

∫ t

0
I(s)dB2(s)−

1
t

∫ t

0

∫
Y
(q1(u)S+q2(u)I)Ñ(ds,du)

}
.

By the fact that (S(t), I(t)) ∈ ∆ and the large number theorem for martingales, we have

(13) lim
t→∞

Φ(t) = 0 a.s.

Hence from (11), (12) and (13) we get that

lim
t→∞

〈
Λ

d +B−b
−S(t)

〉
= 0 a.s,

i.e., lim
t→∞
〈S(t)〉= Λ

d+B−b a.s. The theorem is proved.

Remark 3.2. By the basic inequality x−1− lnx≥ 0 for any x > 0, we have

ϖ =
∫

Y
[q2(u)− ln(1+q2(u))]µ(du)

=
∫

Y
[(1+q2(u))−1− ln(1+q2(u))]µ(du)≥ 0.

Then Rjump ≤ Rnoise, thus it is possible that Rjump < 1 < Rnoise. Which means that the disease in stochastic model

(2) with jumps will go extinct with probability one but the disease in model (2) without jumps is persistent in the

mean (see Example 5.1).

4. Persistence in mean of the disease
In this section, we will focus on the conditions which guarantee the persistence in mean of the disease.

Definition 4.1. System (2) is said to be persistent in mean if liminf
t→∞

〈I (t)〉> 0 a.s.

Next, we give a lemma which will be used to prove persistence in mean of the disease (see Lemma 17 in [35]).

Lemma 4.1. Let f ∈ C ([0,+∞)×Ω,(0,+∞)) and F ∈ C ([0,+∞)×Ω,R) such that lim
t→∞

F(t)
t = 0 a.s. If for all

t ≥ 0,

(i) ln f (t)≥ δ0t−δ 〈 f (t)〉 t +F(t) a.s, then liminf
t→∞

〈 f (t)〉 ≥ δ0
δ

a.s.

(ii) ln f (t)≤ δ0t−δ 〈 f (t)〉 t +F(t) a.s, then limsup
t→∞

〈 f (t)〉 ≤ δ0
δ

a.s,

where δ0 ≥ 0 and δ > 0 are two real numbers.

Theorem 4.1. If Rjump > 1, then the solution (S(t), I(t)) of system (2) with initial value (S(0), I(0))∈∆ is persistent

in the mean. In addition, we have

(i) 0 < I∗ ≤ liminf
t→∞

〈I (t)〉 ≤ limsup
t→∞

〈I (t)〉 ≤ J∗,
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(ii) 0 < d+B−b+a
d+B−b I∗ ≤ liminf

t→∞

〈
Λ

d+B−b −S (t)
〉
≤ limsup

t→∞

〈
Λ

d+B−b −S (t)
〉
≤ d+B−b+a

d+B−b J∗,

where

I∗ =
Λ(1− 1

Rjump
)

d +B−b+a+Λ(α2 +α3
Λ

d+B−b )
,

J∗ =
(d +B−b+α1Λ+α2Λ)(1− 1

Rjump
)

α2(d +B−b)
.

Proof. (i). According to Remark 3.1, we have

f (S, I) ≥ βΛ

d +B−b+α1Λ
− β (d +B−b)

d +B−b+α1Λ
(

Λ

d +B−b
−S)

− βΛ

d +B−b+α1Λ
(α2 +α3

Λ

d +B−b
)I.

Then

d ln I ≥
[

βΛ

d +B−b+α1Λ
− (d +B−bp+a+ γ +

σ2
2

2
+ϖ)

]
dt

− β (d +B−b)
d +B−b+α1Λ

(
Λ

d +B−b
−S)dt

− βΛ

d +B−b+α1Λ
(α2 +α3

Λ

d +B−b
)Idt +σ2dB2(t)

+
∫

Y
ln(1+q2(u))Ñ(dt,du).

From (12), and integrating the last inequality we have

ln I(t) ≥ βΛ

d +B−b+α1Λ
(1− 1

Rjump
)t

− β

d +B−b+α1Λ

[
d +B−b+a+Λ(α2 +α3

Λ

d +B−b
)

]
〈I (t)〉 t +Ψ(t),

where

Ψ(t) =− β (d +B−b)
d +B−b+α1Λ

Φ(t)t +G(t)+H(t)+ ln I(0).

Then from (10) and (13) we have

lim
t→∞

Ψ(t)
t

= 0 a.s.

So, applying Lemma 4.1 we obtain

liminf
t→∞

〈I (t)〉 ≥
Λ(1− 1

Rjump
)

d +B−b+a+Λ(α2 +α3
Λ

d+B−b )
= I∗.
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On the other hand, we have

d ln I =

[
f (S, I)− (d +B−bp+a+ γ +

σ2
2

2
+ϖ)

]
dt +σ2dB2(t)

+
∫

Y
ln(1+q2(u))Ñ(dt,du)

≤
[

βΛ

d +B−b+α1Λ
− (d +B−bp+a+ γ +

σ2
2

2
+ϖ)(14)

− βΛ

d +B−b+α1Λ
+

βS
1+α1S+α2I

]
dt +σ2dB2(t)

+
∫

Y
ln(1+q2(u))Ñ(dt,du).

Note that

− βΛ

d +B−b+α1Λ
+

βS
1+α1S+α2I

=
β [(d +B−b)S−Λ]−βΛα2I

(d +B−b+α1Λ)(1+α1S+α2I)

≤ − βΛα2

(d +B−b+α1Λ)(1+α1S+α2I)
I

≤ − βΛα2(d +B−b)
(d +B−b+α1Λ)(d +B−b+α1Λ+α2Λ)

I.

Then, by integrating (14), we obtain

ln I(t) ≤ βΛ

d +B−b+α1Λ
(1− 1

Rjump
)t− βΛα2(d +B−b)

(d +B−b+α1Λ)(d +B−b+α1Λ+α2Λ)
〈I (t)〉 t

+G(t)+H(t)+ ln I(0).

By (10) and Lemma 4.1, we get

limsup
t→∞

〈I (t)〉 ≤
(d +B−b+α1Λ+α2Λ)(1− 1

Rjump
)

α2(d +B−b)
= J∗.

(ii). From (12) and (13) we have

liminf
t→∞

〈
Λ

d +B−b
−S(t)

〉
=

d +B−b+a
d +B−b

liminf
t→∞

〈I (t)〉 ,

and

limsup
t→∞

〈
Λ

d +B−b
−S(t)

〉
=

d +B−b+a
d +B−b

limsup
t→∞

〈I (t)〉 .

Hence (ii) holds, which finishes the proof.

Remark 4.1. If Rjump = 1, then I∗ = J∗ = 0, and consequently

lim
t→∞
〈I (t)〉= lim

t→∞

〈
Λ

d +B−b
−S (t)

〉
= 0 a.s.

Then the stochastic model system (2) is nonpersistent in the mean.
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5. Numerical examples

Example 5.1. We consider the following parameters Λ = 10, β = 0.01, b = 0.1, B = 0.05, d = 0.1, α1 = 0.02,

α2 = 0.03, α3 = 0.05, p = 0.7, a = 0.01, γ = 0.2, σ1 = 0.01, σ2 = 0.2, q1(u) = 0.03, q2(u) = 0.7, Y = (0,+∞),

µ(Y ) = 1. By calculation, we obtain Rjump = 0.83 < 1, then, by Theorem 3.1, we deduce that the disease dies out,

and the solution (S(t), I(t)) of model (2) obeys

lim
t→∞
〈S (t)〉= 200 a.s,

limsup
t→∞

ln I(t)
t
≤−0.08 < 0 a.s.

On the other hand, we have Rnoise = 1.25 > 1, which means that the disease will prevail. This implies that Lévy

jumps suppress the disease outbreak.

Example 5.2. We keep all the system (2) parameters the same as in Example 5.1 except that β is increased to 0.03

from 0.01. Then Rjump = 2.5 > 1, and we can conclude, by Theorem 4.1, that the disease persists in the population.

6. Conclusion

In this paper, we consider the dynamical behavior of a stochastic SIS epidemic model with vertical transmis-

sion and specific functional response which is perturbed by both Gaussian white noise and Lévy jump noise. The

functional response used in this work covers the most functional responses used by several authors such as the satu-

rated incidence rate, the Beddington-DeAngelis functional response, and the Crowley-Martin functional response.

First of all, we established the existence and uniqueness of a global positive solution to the stochastic model with

jumps. Then we obtain sufficient conditions for extinction of the disease. Also we establish sufficient conditions

for persistence in the mean of the disease. We have shown that when Rjump is less than one the disease will go to

extinction (Theorem 3.1). In the case where it is greater than one, the disease will be persistent in mean (Theorem

4.1). Moreover, we find that Rnoise is less than Rjump. This implies that Lévy jumps can further suppress the disease

outbreak (Remark 3.2). In addition, when Rjump is equal one the system (2) is nonpersistent in the mean (Remark

4.1). Numerical examples were given to illustrate the results.
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