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Abstract. In this paper, we investigate the effect of the emergence of TB drug-resistant within a human popula-

tion. We first propose a drug resistance in a tuberculosis transmission model with two strains of Mycobacterium

tuberculosis: those that are sensitive to anti-tuberculosis drugs and those that are resistant. After, we present the

theoretical results of the model. More precisely, we compute the disease-free equilibrium and derive the basic

reproduction number R0 that determines the outcome of the disease. We show that there exists a threshold pa-

rameter ξ such that the disease-free equilibrium is globally asymptotically stable in a feasible region whenever

R0 ≤ ξ < 1, while when ξ < R0 < 1, the model exhibits the phenomenon of backward bifurcation and if R0 > 1,

the disease-free equilibrium is unstable and there exists an unique endemic equilibrium which is stable. Conditions

for the coexistence of sensitive and resistant strains are derived. We also show that the model undergoes the Hopf-

bifurcation with respect to the transmission rates. A dynamically consistent non standard finite difference scheme

is developed to illustrate and validate theoretical result. The motivation comes to the fact the classical Runge-Kutta

scheme cannot preserve the positivity of solutions of the model.
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1. INTRODUCTION

Tuberculosis (TB) remains a major health problem, especially in Africa and especially in

the sub-Saharan countries. The World Health Organization (WHO) estimates that in 2015, 10.4

million people have contracted the disease and 1.8 million have died (including 0.4 million with

HIV). More than 95% of TB deaths occur in low and middle income countries [1].

Tuberculosis is an infectious and contagious disease caused by the infection with Mycobac-

terium tuberculosis. TB is transmitted from person to person by air. When a person with

pulmonary tuberculosis coughs, sneezes or spits, they throw tubercle bacilli into the air. One

need to inhale only a few to get infected. According to the report of WHO [1], approximately

one-third of the world’s population has latent tuberculosis, i.e. they have been infected with the

tubercle bacillus but are not (yet) sick and can not transmit the disease [1,2]. Throughout their

lives, individuals infected with tubercle bacilli have 10% chance of developing the disease. On

the other hand, the risk is much higher for those who have a deficient immune system, such

as people living with HIV, reary alcohol drinking, malnourished or with diabetes. TB is the

leading cause of death among HIV-positive people: by 2015, 35% of HIV-positive deaths were

due to TB. When active tuberculosis occurs, symptoms (cough, fever, night sweats or weight

loss) may remain mild for many months, which can lead to delay in referral and transmission of

the bacillus to others. A subject with active TB can infect 10 to 15 other people a year during

his close contacts. In the absence of treatment, an average of 45% of HIV-negative tuberculosis

patients will die, as will virtually all those who are also HIV-positive. The WHO estimates that

by 2020, one billion people will contract TB and 35 million will die [6,7]. Africa is also at the

receiving end of TB. At least 1.5 million TB cases are diagnosed every year on this continent.

TB greatly contributes in numerous deaths of people leaving with HIV/AIDS in Africa. Indi-

viduals infected with HIV are particularly susceptible to acquiring TB infection, TB increases

an individual’s rate of progression from asymptomatic HIV to AIDS, and shortens survival time

[6-8].
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Tuberculosis is a disease that can be cured. For drug-susceptible active tuberculosis, a stan-

dard 6-month treatment with 4 anti-tuberculosis medicines is administered through the provi-

sion of information, surveillance and patient support provided by a trained health worker or vol-

unteer. Drug resistant tuberculosis (MDR-TB) is a form of the disease caused by a bacillus that

is not responsive to isoniazid and rifampicin, the two most effective first-line anti-tuberculosis

drugs. MDR-TB can be treated and cured with second-line drugs. Without this support, ad-

herence may be difficult and the disease can spread [9]. Drug resistance can either be acquired

during treatment or transmitted from individuals infected with drug-resistant strains. An in-

dividual develops acquired drug resistant TB (ADR-TB) due to treatment failure. Spread of

TB via individuals infected with drug resistant TB causes the newly-infected individuals to de-

velop transmitted drug resistant TB. Acquired drug resistance always initiates an epidemic of

drug-resistant TB, but if the drug-resistant pathogen is transmissible, the risk of primary drug

resistance increases over time. However, these therapeutic options are more limited and require

long-term (up to two years) treatment of both expensive and toxic drugs. In some cases, severe

resistance may develop; we are talking about highly drug-resistant tuberculosis, which is an

even more serious form of MDR-TB due to bacilli that do not respond to the most effective

second-line drugs, often leaving patients without any other therapeutic option. By 2015, WHO

estimates that approximately 480,000 people have developed MDR-TB worldwide [9-11].

The dynamics of tuberculosis is complex due to the multiple interactions between the human

host and Mycobacterium tuberculosis, the increasing HIV epidemic in the early 1990s leading

to HIV/TB co-infection, the emergence of drug resistant TB, immigration to the US from devel-

oping countries, increased mass transportation, malnutrition, heavy alcohol drinking, smoking,

co infection with diabetes mellitus but also indoor air pollution from solid fuels. A deep under-

standing of the disease dynamics would have a significant impact on the effective prevention

and control strategies [12,13]. Mathematical modeling and numerical simulations have the po-

tential, and offer a promising way, to achieve this. Many efforts have been and are still being

devoted to the modeling of this disease. As in the study of many other infectious diseases,

modeling efforts on TB have mainly focused on mean-field compartmental models, either de-

terministic or stochastic, and agent-based models [14-34]. Recent global reports of multidrug
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resistant and extensively drug-resistant tuberculosis have renewed concerns that antibiotic re-

sistance may undermine progress in tuberculosis control [35-47]. Including MDR tuberculosis

in mathematical models is relatively new and there are very few models with this aspect. How-

ever none of the works mentioned above has considered the global stability of the disease-free

equilibrium, and the Hopf bifurcation analysis.

Motivated by the above discussion, this paper investigates the impact of drug resistance as

a competition between multiples types of strains of Mycobacterium tuberculosis: those that

are sensitive to anti-tuberculosis drugs and those that are resistant. We first present a deter-

ministic model for the dynamical transmission of TB that captures the essential biological and

epidemiological features of the disease such as exogenous reinfections and drug resistance.

Drug resistant is modelled by the competition between two types of strains: sensitive and resis-

tant to drugs. We present the mathematical analysis of the model. More precisely, we compute

the disease-free equilibrium and derive the basic reproduction number R0 that determines the

outcome of the disease. We show that there exists a threshold parameter ξ such that when

0 < R0 < ξ < 1, the disease-free equilibrium is globally asymptotically stable, while when

ξ <R0 < 1, the model exhibits the phenomenon of backward bifurcation. Sufficient conditions

for the existence and local stability of the interior and boundaries equilibria are also presented.

We also describe how coexistence of boundaries equilibria is shaped by the outcome of the

drug resistance. Two coexistence thresholds have been calculated: the first separates the region

where resistant strain only persists from the region of coexistence and the second marks the shift

from the region of coexistence to persistence of resistant strain alone. Theoretical results are

illustrated using numerical simulations based on a dynamically consistent non standard finite

difference scheme. We also show that the model undergoes the Hopf-bifurcation with respect

to TB transmission rates. The existence of Hopf-bifurcation has been counterchecked by the

software Matcont (MATLAB package for numerical bifurcation analysis).

The paper is organized as follows. A TB model with two-strains is formulated in Section 2.

In Section 3, we present the quantitative and qualitative analysis of the model. In section 4, we

propose a numerical scheme based on a dynamically consistent non standard finite difference

scheme to verify the effectiveness and the efficiency of theoretical results.
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2. MODEL CONSTRUCTION

In this section, we process with the construction of a mathematical model for the drug re-

sistance of TB. The resistant cases may emerge when individuals are infected with a resistant

strain (primary resistance) or as a result of treatment failure (acquired resistance). We specify

drug-resistant and drug-sensitive strains by adding subscripts r and s to model variables and

parameters. We consider two strains of TB: the regular TB (sensitive TB or strain 1) and the

resistant TB (strain 2). We consider a finite population of N people divided in five classes: S

who have not Infected, Es regular TB who have infected but not infectious, Er resistant TB who

have infected but not infectious, Is regular TB with active disease and Ir resistant TB with active

TB. The subscripts s and r stand for sensitive strain and resistant strains, respectively. Thus, the

total population at time t is

(1) N(t) = S(t)+Es(t)+ Is(t)+Er(t)+ Ir(t).

We assume that infected individuals in the active stage of TB can transmit only same strain

of the disease and that at certain rate latent individuals with regular strain develop resistant

strain because of incomplete treatment. Furthermore, we assume that the treatment rate of

resistant infectious with TB is small than the treatment rate for regular infectious with TB. We

also assume that a fraction of infectious individuals with active sensitive TB progress into the

infectious class of resistant strain due to treatment failure. This corresponds to cases of acquired

resistance.

The flowchart of the model is depicted in Fig.1.

Susceptible individuals acquire TB infection following effective contact with TB infected

individuals in the infectious stage with strain sensitive (i.e. those in Is class) or with TB infected

individuals in the infectious stage with strain resistant, (i.e. those in Ir class) with the forces of

infection λs and λr defined, respectively by

(2) λs = βs
Is

N
and λr = βr

Ir

N
,

where βs and βr are the average proportions of susceptible infected by one infectious individual

of the strain sensitive and resistant per contact per unit of time respectively.
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FIGURE 1. Structure of the model.

The transfer diagram in Fig.1 can be represented by the following system of differential

equations:

(3)



Ṡ = Λ− (λs +λr +µ)S,

Ės = λs(1− ps)S+ γsIs− (1− rs)(σsλs +σrλr)Es−A1Es,

Ėr = λr(1− pr)S+ γrIr− (1− rr)σrλrEr +(1− rs)φsEs +ηsIs−A3Er,

İs = λs psS+(1− rs)ksEs +(1− rs)σsλsEs−A2Is,

İr = λr prS+(1− rr)(kr +σrλr)Er +(1− rs)(ϕs +σrλr)Es +δsIs−A4Ir,

where

A1 = (1− rs)(ks +φs +ϕs)+µ, A2 = γs +δs +ηs +µ +ds,

A3 = kr(1− rr)+µ and A4 = γr +µ +dr.

The recruitment is Λ, ps and pr are the proportions of newly infected individuals who are

assumed to undergo fast progression directly to infectious classes Is and Ir respectively; while
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the remainder are latently infected and enter the exposed classes Es and Er respectively; rs and

rr, are respectively, the per-capita chemoprophylaxis treatment rates of TB latently individuals

in the Es, Er classes, ks(1− rs) and kr(1− rr), are respectively the rates at which TB infected

individuals with strains 1 and 2 leave the latent classes Er and Es, to the infectious classes Is and

Ir; the per-capita natural death rate is denotes by µ; dr and ds stand for the per-capita disease

induced death rates with strains 1 and 2; γs and γr are respectively the per-capita treatment rates

for TB infectious with strains 1 and 2, φs(1− rs)Es the proportions of those TB treated infected

individuals with strain 1 who did not complete their chemoprophylaxis treatment and develop

resistant TB; ηsIs and δsIs are the proportions of those TB treated infected individuals with

strain 1 who did not complete their treatment and develop resistant TB; σs and σr are, factors

reducing the risk of infection as a result of acquiring TB immunity for individuals in the Es, Er

classes respectively.

Table 1 summarizes the model variables and their units.

Table 1: Variables and parameters with units of model system (3)

Symbol Description Units

S(t) Susceptible individuals individual

Es(t) TB-latently infected individuals with sensitive strain individual

Is(t) TB-infectious with sensitive strain individual

Er(t) TB-latently infected individuals with resistant strain individual

Ir(t) TB-infectious with resistant strain individual

3. QUANTITATIVE AND QUALITATIVE ANALYSIS

In this section, we present the theoretical analysis of system (3).

3.1. Basic properties.

Herein, we study the basic properties of solutions of system (3), which are essential in the

proof of stability results. We have the following result.

Theorem 1. System (3) is a dynamical system on the biologically feasible compact domain:

(4) Ω =
{
(S,Es,Er, Is, Ir) ∈ R5

+, N# ≤ N(t)≤ S0

}
,
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where

S0 =
Λ

µ
and N# =

Λ

µ +ds +dr
.

Proof: The proof is provided in two steps.

Step 1: We show that the solution S(t), Es(t), Er(t), Is(t) and Ir(t) of system (3) correspond-

ing to initial conditions such that S(0), Es(0), Er(0), Is(0) and Ir(0) are non negative. Assume

that t̄ = sup{t > 0 : S > 0, Es > 0, Er ≥ 0, Is ≥ 0, Ir ≥ 0} ∈ [0, t]. Thus, t̄ > 0 and it follows

from the first equation of system (3), that

dS
dt

= Λ− (µ +λ (t))S,

where λ (t) = λs(t)+λr(t). The above equation can be rewritten as

d
dt

[
S(t)exp

{
µt +

∫ t

0
λ (s)ds

}]
≥ Λexp

{
µt +

∫ t

0
λ (s)ds

}
.

Hence,

S(t̄)exp
{

µ t̄ +
∫ t̄

0
λ (s)ds

}
−S(0)≥

∫ t̄

0
Λexp

{
µu+

∫ u

0
λ (w)dw

}
du,

so that

S(t̄) ≥ S(0)exp
{
−
(

µ t̄ +
∫ t̄

0 λ (s)ds
)}

+ exp
{
−
(

µ t̄ +
∫ t̄

0 λ (s)ds
)}
×
∫ t̄

0 Λexp{µu+
∫ u

0 λ (w)dw}du > 0.

Similarly, it can be shown that Es(t)> 0, Er(t)> 0, Is(t)> 0 and Ir(t)> 0 for all t > 0.

Step 2: We prove that the total population at time t, N(t) satisfies the boundedness property

N# ≤ N(t)≤ S0 whenever N# ≤ N(t0)≤ S0.

Adding all the equations in the differential system (3) gives

(5) Ṅ(t) = Λ−µN(t)−dsIs(t)−drIr(t).

From Eq.(5), one has that

(6) Λ− (µ +ds +dr)N(t) ≤ Ṅ(t) ≤ Λ−µN(t).

Applying the Gronwall inequality to Eq.(6) gives

Λ

µ +ds +dr

(
1− e−(µ+ds+dr)t

)
+S(0)e−(µ+ds+dr)t ≤ N(t) ≤ S(0)e−µt +

Λ

µ
(1− e−µt),
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which implies that N# ≤ N(t)≤ S0.

Combining Step 1 and Step 2, Theorem 1 follows from the classical theory of dynamical

systems. This concludes the proof.

2

3.2. The disease-free equilibrium (DFE) and its stability.

The global behaviour of system (3) crucially depends on the basic reproduction number R0,

i.e. an average number of secondary cases produced by a single infective individual which is

introduced into an entirely susceptible population.

The DFE of system (3) is

(7) Q0 = (S0,0,0,0,0) ,

where S0 = Λ/µ . The basic reproduction number R0 is computed using the next generation

operator method developed in van den Driessche and Watmough [48,49] which is the dominant

eigenvalue of the next generation matrix. Using the method of van den Driessche and Watmough

[49], the basic reproduction number R0 (see Appendix A for the calculation of R0) of system

(3) is

(8) R0 = max{R0s,R0r},

where

(9) R0s =
βs[psµ + ps(1− rs)(φs +ϕs)+ ks(1− rs)]

A1A2− γsks(1− rs)
and R0r =

βr[pµ + kr(1− rr)]

A3A4− γrkr(1− rr)
,

with

A1A2− γsks(1− rs) = ks(1− rs)(δs +ηs +µ +ds)+((1− rs)(φs +ϕs)+µ)A2 and

A3A4− γrkr(1− rr) = kr(1− rr)(µ +dr)+µ(γr +µ +dr).

The threshold parameters R0s and R0r can be interpreted as the average number of secondary

infectious cases that an infectious individual (with a sensitive or a resistant strain, respectively)

would generate in an otherwise uninfected population.

The relevance of the basic reproduction number is due to the following result established in

[49].
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Lemma 1. The DFE Q0 of system (3) is locally asymptotically stable (LAS) if R0 < 1, and

unstable if R0 > 1.

The biological implication of Lemma 1 is that, a sufficiently small flow of infected individuals

will not generate an outbreak of the disease unless R0 > 1. For a better control of the disease,

the global asymptotic stability (GAS) of the DFE is needed. To do so, we use the result of

Kamgang and Sallet [50] for the global stability of the disease-free equilibrium for a class of

epidemiological models.

Following Kamgang and Sallet [50], system (3) can be rewritten in the following form:

(10)

 ẋ1 = A1(x)(x1− x0
1)+A12(x)x2,

ẋ2 = A2(x)x2,

where x1 = S represents the uninfected class (susceptible class) and x2 = (Es, Is,Er, Ir)
T repre-

sent the infected classes (TB-latently infected individuals with sensitive strain, TB-infectious

with sensitive strain, TB-latently infected individuals with resistant strain, and TB-infectious

with resistant strain), x = (x1,x2)
T denotes the all states of system (3), x0

1 = Λ/µ the non-zero

component of the disease-free equilibrium,

A1(x) =−µ, A12(x) =
(

0,−βs
S
N
,0,−βr

S
N

)

and A2(x) =



−P1−A1 γs +βs(1− ps)
S
N

0 0

(1− rs)(ks +σsλs) βs ps
S
N
−A2 0 0

(1− rs)φs 0 P2 P3

(1− rs)(ϕs +σrλr) δs P4 P5


,

with

P1 = (1− rs)(σsλs +σrλr), P2 =−(1− rr)σrλr−A3, P3 = γr +βr(1− pr)
S
N
,

P4 = (1− rr)(kr +σrλr) and P5 = βr pr
S
N
−A4.

The following conditions H1-H5 below must be met to guarantee the global asymptotic sta-

bility of Q0.

H1 : System (10) is defined on a positively invariant set D of Ω and it is dissipative on D .
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H2 : The sub-system ẋ1 = A1(x1,0)(x1− x0
1) is globally asymptotically stable at the equi-

librium x1
0 on the canonical projection of D on Ω.

H3 : The matrix A2(x) is Metzler (A Metzler matrix is a matrix with off-diagonal entries

nonnegative [51,52]) and irreducible for any given x ∈D .

H4 : There exists an upper-bound matrix A2 for M = {A2(x), x∈D}with the property that

either A2 ∈M (i.e. A2 =max
D

M ), then for any x∈D such that A2 =A2(x), x∈D×{0}

(i.e. the points where the maximum is realized are contained in the disease-free sub-

manifold).

H5 : α(A2)≤ 0 where α(A2) denotes the largest real part of the eigenvalues of A2.

If the conditions H1−H5 are satisfied, then the DFE Q0 is globally asymptotically stable in D .

The result of the Kamgang-Sallet approach [50] uses the algebraic structure of system (10),

namely the fact that A1(x) and A2(x) are Metzler matrices. Since in the said approach, the

matrix A2(x) is required to be irreducible, we further restrict the domain of system to

(11) D = {(x1,x2) ∈Ω, x1 6= 0}.

The set D is positively invariant because only the initial point of any trajectory can have x1 = 0

(see Theorem 1). Indeed, from the first and second equations of system (10), one has S′ > 0

whenever S = 0. Thus,

(12) A2(x) is Metzler and irreducible for all x ∈D .

The sub-system:

ẋ1 = A1(x1,0)(x1− x0
1),

can be expressed as

(13) Ṡ =−µ

(
S− Λ

µ

)
.

Thus, x0
1 = S0 is a GAS equilibrium of the reduced system (13) on the sub-domain {x∈D , x2 =

0}. Then, the hypothesis H2 is satisfied. The result of Kamgang and Sallet (see [50], Theorem

4.3) gives the GAS of the DFE of a dissipative system of the form (10) which satisfies (12) and
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hypothesis H2 provided there exists a matrix A2(x) with the following additional properties:

(14)


A2(x)≤ Ā2, x ∈D ,

if A2(x̄) = Ā2 for some x̄ = (x̄1, x̄2)
T ∈D then x̄2 = 0,

α(Ā2)≤ 0.

Note that since −(1− rs)(σsλs +σrλr)< 0, −(1− rr)σrλr < 0 and
S
N
≤ S0

N#
, the upper bound

A2(x) of A2(x) is

Ā2 =

 A 0

C D

 ,

where

A =

 −A1 γs +βs(1− ps)
S0

N#

(1− rs)(ks +βsσs) βs ps
S0

N#
−A2

 , C =

 (1− rs)φs 0

(1− rs)(ϕs +βrσr)
S0

N#
δs



and D =

 −A3 γr +βr(1− pr)

(1− rr)(kr +βrσr) βr pr
S0

N#
−A4

 .

The equality A2(x) = A2 holds only when S = N which implies that x2 = 0. Therefore, the first

and second conditions in (14) hold. Note that Ā2 is a Metzler matrix which satisfies the stability

condition of Kamgang and Sallet [50].

Since Ā2 is a triangular matrix, its stability is associated with the stability of the matrices A

and D.

Using Kamgang and Sallet’s result [50], the sub-matrice A and D are stable Metzler matrice

if

(15) R0 = max{R0s,R0r}< ξ ,

where

(16) ξ = min{ξs,ξr},
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with

(17)

ξs =
N#

S0

(
1− βsσs(1− rs)(γsN# +βsS0(1− ps))

N#(A1A2− γsks(1− rs))

)
< 1,

ξr =
N#

S0

(
1− βrσr(1− rr) [γrN# +βr(1− pr)S0]

N#(A3A4− γrkr(1− rr))

)
< 1.

We can now apply Theorem 4.3 in Kamgang and Sallet [50] and conclude that under the con-

dition (15), the disease-free equilibrium (x0
1,0) of system (3) is GAS in D . From Eq. (11), for

the points of D where x1 = 0, and from Eq. (15) the disease-free equilibrium is GAS on Ω.

We have established the following result for the global stability of the DFE Q0.

Theorem 2. The disease free equilibrium point Q0 of system (3) is GAS if R0 ≤ ξ < 1 and

unstable if R0 > 1 in Ω. However, when ξ ≤R0 < 1, the backward bifurcation phenomenon

occurs, i.e. the DFE may coexists with two endemic equilibria, one asymptotically stable and

one unstable.

3.3. Endemic equilibria and their stabilities.

3.3.1. Steady states.

System (3) has one disease-free equilibrium, Q0 = (S0,0,0,0,0,0,0) and endemic equilibria

of the form Q∗s = (S∗s ,E
∗
s , I
∗
s ,0,0), Q∗r = (S∗r ,0,0,E

∗
r , I
∗
r ) and Q∗ = (S∗,E∗s , I

∗
s ,E

∗
r , I
∗
r ), corre-

sponding, respectively, to states with only sensitive TB strain, only resistant TB strain and with

both two TB strains (sensitive and resistant strains) are present. We point out that the sensitive

TB strain ( free-TB resistant strain) equilibrium point Q∗s exists if and only if R0s > 1, while the

existence of the resistant TB strain (free-TB sensitive strain) equilibrium point Q∗r will depends

of the threshold parameter R0r .

3.3.2. Stability of boundary equilibria and coexistence.

Herein, we study the existence and stability of boundary equilibria of system (3). We first

study the existence and stability of the boundary endemic equilibrium point when only resistant

TB strain persists in the host population.
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Let Q∗r =(S∗r ,0,0,E
∗
r , I
∗
r ) be the endemic equilibrium without TB sensitive strain with S∗r , E∗r , I∗r >

0. In this case, βs = 0 (so that λs = 0) and S∗r , E∗r and I∗r satisfies the following system of equa-

tions:

(18)


Λ−λ ∗r S∗r −µS∗r = 0,

(1− pr)λ
∗
r S∗r −σr(1− rr)λ

∗
r E∗r + γrI∗r −A3E∗r = 0,

prλ
∗
r S∗r +σr(1− rr)λ

∗
r E∗r + kr(1− rr)E∗r −A4I∗r = 0,

where N∗r = S∗r +E∗r + I∗r and

(19) λ
∗
r = βr

I∗r
N∗r

,

is the force of infection at the steady state Q∗r . From Eq. (18), one has

(20)

S∗r =
Λ

µ +λ ∗r
, E∗r =

λ ∗r S∗r [(1− pr)A4 + γr pr]

A3A4− γrkr(1− rr)+σr(1− rr)(A4− γr)λ ∗r
and

I∗r =
λ ∗r S∗r [kr(1− rr)+µ pr +σr(1− rr)λ

∗
r ]

A3A4− γrkr(1− rr)+σr(1− rr)(A4− γr)λ ∗r
.

Substituting Eq. (20) into Eq. (19), it can be shown that the non-zero boundary endemic

equilibrium with only resistant TB strain of system (3) satisfies the following equation in term

of λ ∗r :

(21) a2(λ
∗
r )

2 +a1(λ
∗
r )+a0 = 0,

where

a2 = σr(1− rr),

a1 = σr(1− rr)(µ +dr−βr)+(1− pr)(µ +dr)+ γr + prµ + kr(1− rr),

a0 = R∗r (1−R0r) and R∗r = µ(µ +dr + γr)+ kr(1− rr)(µ +dr).

Thus, the positive endemic equilibrium point Q∗r is obtained by solving for λ ∗r from the quadratic

equation (21) and substituting the result (positive values of λ ∗r ) into the expressions in Eq. (19).

Clearly, the coefficients a2 of Eq. (21) is always positive, and a0 is positive or negative if R0r

is less than or greater than unity, respectively. Thus, the number of possible real roots of the

polynomial (21) can have depends on the signs of a2, a1 and a0. We have the following result.

Lemma 2. System (3) with only resistant TB strain has
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(i): a unique endemic equilibrium when a0 < 0, i.e., R0r > 1,

(ii): a unique endemic equilibrium when a1 < 0, and a0 = 0 or a2
1−4a2a0 = 0,

(iii): two endemic equilibria when a0 > 0, a1 < 0 and a2
1−4a2a0 > 0,

(iv): no endemic equilibria in the other cases.

Now, we derive a threshold condition for the coexistence which is equivalent to a threshold

condition for the sensitive TB endemicity in a population where resistant strains are at the

equilibrium. To do so, we compute the region of stability of the boundary equilibrium point Q∗r

when R0r > 1 (so that system (3) has only one sensitive TB-free equilibrium). We measure the

capacity of the sensitive TB strain to invade a population where resistant TB strain is already

endemic (cases (i), (ii) and (iii) of Lemma 2). Then, Q∗r = (S∗r ,E
∗
r , I
∗
r ,0,0) corresponds to the

equilibrium free of sensitive TB strain. Applying the method of van den Driessche in [49] once

again, the basic reproduction ratio of the sensitive TB in a population where resistant TB strain

is fixed (see Appendix B for details) is

(22) R0s(Q
∗
r ) =

βsS∗r [ks(1− rs)+ ps(µ +(1− rs)(φs +ϕs)+σrλ
∗
r )]

N∗r [A1A2− γsks(1− rs)+A2σrλ ∗r (1− rs)]
,

where N∗r = S∗r +E∗r + I∗r and λ ∗r = βr
I∗r
N∗r

. The corresponding result for the stability of boundary

equilibrium point Q∗r is expressed by Lemma 3, stated below.

Lemma 3. If R0r > 1, the boundary endemic equilibrium Q∗r of system (3) is stable if R0s(Q
∗
r )<

1 and unstable if R0s(Q
∗
r )> 1.

Lemma 3 gives a condition for the coexistence, now equivalent to a threshold condition for

the sensitive TB endemicity in a population where the resistant strains is at the equilibrium,

R0s(Q
∗
r ) = 1: only resistant TB strains persist for R0s(Q

∗
r )< 1, while for R0s(Q

∗
r )> 1 sensitive

strains can invade a population where resistant strains are fixed, that is, to say coexistence is

possible.

Now, we study the existence and stability of endemic equilibria when only sensitive TB

strains persists in the host population.

Let Q∗s = (S∗s ,E
∗
s , I
∗
s ,0,0) be the endemic equilibrium without resistant TB strain with

S∗s , E∗s , I∗s > 0. In this case, βr = 0 (so that λr = 0) and S∗s , E∗s and I∗s > 0 satisfies the following
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system of equations:

(23)


Λ−λ ∗s S∗s −µS∗s = 0,

(1− ps)λ
∗
s S∗s − (1− rs)σsλ

∗
s E∗s + γsI∗s −A1E∗s = 0,

psλ
∗
s S∗s +(1− rs)σsλ

∗
s E∗s +(1− rr)ksE∗s −A2I∗s = 0,

where N∗s = S∗s +E∗s + I∗s and

(24) λ
∗
s = βs

I∗s
N∗s

,

is the force of infection at the steady state Q∗s . From Eq. (23), one has that

(25)

S∗s =
Λ

µ +λ ∗s
, E∗s =

λ ∗s S∗s [(1− ps)A2 + γs ps]

A1A2− γsks(1− rs)+(1− rs)(A4− γs)σsλ ∗s
and

I∗s =
λ ∗s S∗s [ks(1− rs)+µ ps +(1− rs)σsλ

∗
s ]

A1A2− γsks(1− rs)+(1− rs)(A4− γs)σsλ ∗s
.

Substituting the expressions of S∗s , E∗s and I∗s given in Eq. (25) in Eq. (24), it can be shown that

the non-zero boundary equilibria without resistant TB strain of system (3) satisfies the following

second order polynomial in term of λ ∗s :

(26) b2(λ
∗
s )

2 +b1(λ
∗
s )+b0 = 0,

where

b2 = σs(1− rs),

b1 = σs(1− rs)(µ +ds−βs)+(1− ps)(µ +ds)+ γs + psµ + ks(1− rs),

b0 = R∗s (1−R0s) and R∗s = µ(µ +ds + γs)+ ks(1− rs)(µ +ds).

Thus, positive endemic equilibria Q∗s can be obtained by solving for λ ∗s from the quadratic

equation (26) and replacing positive values of λ ∗s into the force of infection at defined as in Eq.

(24). Note that the coefficients b2 in Eq. (26) is always positive, while b0 is positive or negative

if R0s is less than or greater than unity, respectively. Thus, the number of possible real roots

of the polynomial (26) can have depends on the signs of b2, b1 and b0. We have the following

result.

Lemma 4. System (3) with only sensitive TB strain has

(i): a unique endemic equilibrium when b0 < 0, i.e., R0s > 1,
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(ii): a unique endemic equilibrium when b1 < 0, and b0 = 0 or b2
1−4b2b0 = 0,

(iii): two endemic equilibria when b0 > 0, b1 < 0 and b2
1−4b2b0 > 0,

(iv): no endemic equilibria in the other cases.

Remark 1. The cases (iii) of Lemma 2 and 4 indicate the possibility of backward bifurcation

(where a locally asymptotically stable DFE co-exists with a locally asymptotically stable en-

demic equilibrium when R0 < 1 [53-56]), in system (3) with sensitive TB strain alone when

R0s < 1 and with resistant TB strain alone when R0r < 1.

Now, let us compute the region of stability of the boundary equilibrium Q∗s when R0s > 1 (so

that system (3) has only one sensitive TB strain free equilibrium). We use the same reasoning

as before. Suppose that the resistant TB strain can invade a population where the sensitive TB

strain is already endemic (cases (i), (ii) and (iii) of Lemma 4). Then, the boundary endemic equi-

librium point Q∗s = (S∗s ,E
∗
s , I
∗
s ,0,0) corresponds to the equilibrium free of resistant TB strain.

Applying the method of van den Driessche [49] once again, the basic reproduction ratio of the

sensitive TB strain in a population where the sensitive TB strain is fixed (see Appendix C for

details) is

(27) R0r(Q
∗
s ) =

βrS∗s [kr(1− rr)+µ pr]

N∗s [A3A4− γrkr(1− rr)+A3(1− rs)βrσrE∗s ]
,

where λ ∗s and N∗s = S∗s +E∗s + I∗s are defined in Eqs. (25) and (24)-(26), respectively.

The corresponding result for the stability of the boundary equilibrium Q∗s is expressed by

Lemma 5, stated below.

Lemma 5. If R0s > 1, the boundary endemic equilibrium Q∗s of system (3) is stable whenever

R0r(Q
∗
s )< 1 and unstable whenever R0r(Q

∗
s )> 1.

The local stability of the endemic equilibrium of system (3) is given in Theorem 3 and proved

in Appendix D.

Theorem 3. The endemic equilibria Q∗s and Q∗r of system (3) are locally asymptotically stable

when R0s > 1 and R0r > 1 but with R0 near 1 if condition (50) given in Appendix D is satisfied.
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3.4. Hopf bifurcation.

Herein, we study the Hopf bifurcation of system (3) around the endemic equilibria Q∗s =

(S∗s ,E
∗
s , I
∗
s ,0,0) and Q∗r = (S∗r ,0,0,E

∗
r , I
∗
r ).

The variational matrix at Q∗s is

J(Q∗s ) =


−m1 0 −m2

m3 −m4 m5−m6

m7 m8 m6 +m9

 ,

where

m1 = λs +µ, m2 =
βsS∗s
Ns

, m3 = (1− ps)λ
∗
s , m4 = (1− rs)σsλ

∗
s +A1, m5 = (1− ps)βs

S∗s
Ns

+ γs;

m6 = (1− rs)σsβs
E∗s
Ns

, m7 = λ
∗
s ps, m8 = (1− rs)(ks +σsλ

∗
s ) and m9 = βs ps

S∗s
Ns
−A2.

The characteristic equation of the variational matrix J(Q∗s ) is

x3 +B1x2 +B2x+B3 = 0,(28)

where

B1 = m1 +m4−m6−m9, B2 = m1(m4−b)+m2m7− c, B3 =−m1c+d;

a = m5−m6, b = m6 +m9, c = am8 +bm4 and d = m2(m3m8 +m4m7).

The Routh-Hurtwitz criteria gives a set of necessary and sufficient conditions for the roots of

Eq. (28) to have negative real part, that is

B1 > 0, B3 > 0, and B1B2−B3 > 0.

Considering βs as the bifurcating parameter, we shall derive the transversality conditions for

Hopf bifurcation around the endemic equilibrium point Q∗s . We have the following result:

Theorem 4. The endemic equilibrium point Q∗s = (S∗s ,E
∗
s , I
∗
s ,0,0) undergoes the Hopf bifurca-

tion as βs varies over R.

Let h : ]0,+∞[→ R be a continuously differentiable function of βs defined

(29) h(βs) = B1(βs)B2(βs)−B3(βs).
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Let β0 be a positive root of h(βs) = 0. Then, the subsystem of system (3) enters into the Hopf

bifurcation around Q∗s at βs = β0 ∈ ]0,+∞[ if and only if

(1) Bi(βs)> 0 i = 1,2,3;

(2) h(βs)= 0 which gives two purely imaginary eigenvalues of the variational matrix J(Q∗s );

(3) B′1B2 +B1B′2−B′3 6= 0, and all other eigenvalues haspurely negative real parts.

Proof: Using the condition h(βs) = 0 the characteristic equation (28) takes the following form:

(x+B1)
(
x2 +B2

)
= 0.

The roots of the above equation are, xi for i = 1,2,3. Let the pair of purely imaginary roots at

βs = β0 are x1 and x2, that is, x1 = x̄2, then one has

(30) x1,2 =±
√

B2 =±ω0 and x3 =−B1 =−ω < 0.

Now, we need to verify the transversality condition, to complete the discussion.

Since h(βs) is continuously differentiable function of all its roots, then there exists an open

interval βs ∈ ]β0− ε,β0 + ε[, where x1 and x2 are complex conjugate for βs. Suppose their

general forms in this neighbourhood are

x1(βs) = α1(βs)+ iα2(βs) and x2(βs) = α1(βs)− iα2(βs).

The transversality condition is given by
[

dxi

dβs
(βs)

]
βs=β0

6= 0 f or i = 1, 2. Substituting

xi(βs) = α1(βs)±α2(βs) into the characteristic equation (28) and after differentiation, separat-

ing the real and imaginary parts, one has

M1 (βs)α
′
1(βs)−M2 (βs)α

′
2(βs)+M3(βs) = 0,(31)

M2 (βs)α
′
1(βs)+M1 (βs)α

′
2(βs)+M4(βs) = 0,(32)

where

M1(βs) = 3
(
α

2
1 −α

2
2
)
+2B1α1 +B2, M2(βs) = 2α2(3α1 +A1);

M3(βs) = B′1(α
2
1 −α

2
2 )+B′2α1, and M4(βs) = 2B′1α1α2 +B′2α2.
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At βs = β0, one has

M1(β0) =−2B2, M2(β0) = 2B1
√

B2, M3(β0) =−B′1B2, and M4(β0) = B′2
√

B2.

Solving the system (31)-(32) for α ′1(βs) at βs = β0, one has

(33)

[
dxi

dβs
(βs)

]
βs=β0

= α ′1(β0) =−
M1(β0)M3(β0)+M2(β0)M4(β0))

M1(β0)2 +M2(β0)2 i = 1, 2;

= −
B′1B2 +B1B′2−B′3

2B2 +2B2
1

6= 0;

⇒ M = B′1B2 +B1B2−B′3 6= 0.

Thus, the transversality condition holds and the system (3) undergoes Hopf bifurcation at

βs = β0. Hence, the contact rate βs crosses its critical/threshold value, βs = β0, then all the

individuals start oscillating around the endemic equilibrium point Q∗s . This completes the proof.

2

Remark 2. We have identical result at the endemic equilibrium point Q∗r = (S∗r ,0,0,E
∗
r , I
∗
r ).

Now, we shall derive the direction of the Hopf bifurcation, stability and period of bifurcating

periodic solutions for system (3). We used the Poincar method to write system (3) into the

normal form following the procedure outlined by Hassard [57]. Now, we compute the index

number I from the Hopf bifurcation theorem [58], employing the central manifold theory [53].

For the sake of simplicity, we replace the current variables to the new variables (n1,n2,n3) by

considering the following transformations

n1 = S−S∗, n2 = Es−E∗s and n3 = Is− I∗s .

Then, system (3) can be written in the following matrix form:

(34) Ẋ = AX +B,

where A represents the linear part and B stands for the non-linear part of system (3), one has

X =


n1

n2

n3

 , B =


−βs

Ns
n1n3

(1− ps)
βs

Ns
n1n3− (1− rs)σs

βs

Ns
n2n3

ps
βs

Ns
n1n3− (1− rs)σs

βs

Ns
n2n3

 and
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A =


−λ ∗s −µ 0 −βs

S∗

Ns

(1− ps)λ
∗
s −(1− rs)σsλ

∗
s −A1 (1− ps)βs

S∗

Ns
− (1− rs)σsβs

E∗s
Ns

+ γs

psλ
∗
s (1− rs)(ks +σsλ

∗
s ) psβs

S∗

Ns
+(1− rs)σsβs

E∗s
Ns
−A2

 .

With this in mind, there exists a transformation matrix P that reduces the matrix A in the form:

P−1AP =


0 −ω0 0

ω0 0 0

0 0 −ω

 ,

where the nonsingular matrix P is given by

P =


1 0 1

p21 p22 p23

p31 p32 p33

 ,

with

p21 = a23a11 +ω
2
0 −β

2
s ps

S∗I∗s
N2

s
, p22 = a11−a33,

p23 = (a11−ω)(a33 +ω)−β
2
s ps

S∗I∗s
N2

s
, p31 =−a11, p32 = ω0 and p33 = ω−a11.

In order, to obtain the normal form for Eq. (34), we use the transformation X = PY . In this

case, one has that

Ẏ = TY +R,

where

T = P−1AP, R = P−1 f =


R1(y1,y2,y3)

R2(y1,y2,y3)

R3(y1,y2,y3)

 and f =


f1(y1,y2,y3)

f2(y1,y2,y3)

f3(y1,y2,y3)

 ,
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with

f1(y1,y2,y3) = −βs

Ns
(y1 + y3)(p31y1 + p32y2 + p33y3),

f2(y1,y2,y3) = (1− ps)
βs

Ns
(y1 + y3)(p31y1 + p32y2 + p33y3)

− (1− rs)
βsσs

Ns
(p21y1 + p22y2 + p23y3)(p31y1 + p32y2 + p33y3),

f3(y1,y2,y3) =
βs ps

Ns
(y1 + y3)(p31y1 + p32y2 + p33y3)

+ (1− rs)
βsσs

Ns
(p21y1 + p22y2 + p23y3)(p31y1 + p32y2 + p33y3).

Consider the 2-dimensional central manifold at the origin given by

(35) y3 = f (y1,y2) = ay2
1 +by1y2 + cy2

2 + . . .

Hence, the system Ẏ = TY +R restricted to the central manifold is ẏ1

ẏ2

=

 0 −ω0

ω0 0

 y1

y2

+

 g1(y1,y2)

g2(y1,y2)

 ,

where

g1(y1,y2) = R1 (y1,y2, f (y1,y2)) and g2(y1,y2) = R2 (y1,y2, f (y1,y2)) .

The index number I can be computed as follows [58]:

I(y1,y2) =
1

16

[
∂ 3g1

∂y3
1
+

∂ 3g1

∂y1∂y2
2
+

∂ 3g2

∂y2
1∂y2

+
∂ 3g2

∂y3
2

]
− 1

16ω0

[
∂ 2g1

∂y2
1

∂ 2g2

∂y2
1
− ∂ 2g1

∂y2
2

∂ 2g2

∂y2
2

]
+

1
16ω0

[
∂ 2g1

∂y1∂y2

(
∂ 2g1

∂y2
1
+

∂ 2g1

∂y2
2

)
− ∂ 2g2

∂y1∂y2

(
∂ 2g2

∂y2
1
+

∂ 2g2

∂y2
2

)]
.

Now, using [58], we have the following result.

Theorem 5. The direction of bifurcation are above (bellow) as if MI < 0 (MI > 0).

4. NUMERICAL STUDIES

Herein, we perform numerical simulation of system (3). To do so, the parameter values used

for numerical simulation are given in Table 2.
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Table 2 Numerical values of the parameters of system (3)

Parameter Description Values/Units Reference

Λ Recruitment rate of susceptible individuals 397800 year−1 Assumed

βs Transmission rate of sensitive TB variable Assumed

βr Transmission rate of resistant TB variable Assumed

ps Proportion of individuals that develop sensitive active TB 0.7 year−1 Assumed

pr Proportion of individuals that develop resistant active TB 0.55 year−1 Assumed

ks Endogenous reactivation rate of sensitive latent TB 0.0013 year−1 [10]

kr Endogenous reactivation of rate resistant latent TB 0.0014 year−1 [10]

rs Effective chemoprophylaxis rate of sensitive latent TB 0 year−1 [10]

rr Effective chemoprophylaxis rate of resistant latent TB 0 year−1 [10]

σs Reinfection parameters of sensitive latent TB 0.7 year−1 Assumed

σr Reinfection parameters of resistant latent TB 0.8 year−1 Assumed

φs Progression rate from sensitive latent TB to resistant latent TB 0 Assumed

δs Progression rate from sensitive active TB to resistant active TB 0.0015 year−1 Assumed

ϕs Progression rate from sensitive latent TB to resistant active TB 0 year−1 Assumed

ηs Progression rate from sensitive active TB to resistant latent TB 0.0035 year−1 Assumed

µ Natural death rate 0.01986 year−1 [48]

ds Death rate induced by sensitive active TB 0.05575 year−1 [10]

dr Death rate induced by resistant active TB 0.06 year−1 [10]

γs Recovery rate of sensitive active TB cases 0.7311 year−1 [10]

γr Recovery rate of resistant active TB cases 0.7 year−1 [10]

4.1. Sensitivity analysis.

Herein, we perform the sensitivity analysis in order to determine the most sensitive parame-

ters, that is the parameters that most influence the output variable of the model. This can help

us to predict the effect of each parameter on the model results and classify them according to

their degree of sensitivity. To do so, we use the eFast sensitivity method. This method high-

lights the effects of the first order called main effects and the total effects that combine the main

effects and all the interaction effects of the parameters on the outputs of the model. It is a global



24 Y. MALONG, A. TEMGOUA, S. BOWONG

sensitivity technique based on the decomposition or partitioning of the variance. The variance

of the model output is decomposed into components resulting from the individual effects of

parameters as well as their interactions [59,60].

Figure 2 gives the different correlations of the variables of system (3) according to the dif-

ferent parameters of system (3). According to the sensitivity analysis method the parameters µ

have a strongest impact on all variable. the parameter dr have the important impact on resistant

strain variables (Er and Ir). the parameter pe have a strongest impact on the variable Is. Finally

all the variables have the same impact on the variable Es.

FIGURE 2. eFAST Sensibility analysis of system (3).
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4.2. Non-standard finite difference scheme.

For numerical simulation, we use the non standard finite difference (NSFD) for the numerical

approximation of system (3). The motivation comes the fact classical Runge-Kutta scheme

cannot preserve the positivity of solution of system (3).

Figure 3 presents the numerical results obtained with the standard Runge-Kutta scheme of

four order. From this figure, one can observe the presence of negative solution which are not

in adequacy with the positivity of solution of system (3). So, in the following we present a

numerical scheme that preserves the properties of system (3) such as the positivity, the bound-

edness property of solutions and replicate the global asymptotic stability of the disease-free

equilibrium.
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FIGURE 3. Simulation of system (3) using Runge Kutta scheme of four order

when βs = 1.8, βr = 1.4 (so that R0s = 1.1616 > 1, R0r = 1.1059 > 1 and

R0 => 1). (A) Susceptible individuals S; (B) latently infected individuals with

sensitive strain Es; (C) latently infected individuals with resistant strain Er; (D)

infectious with sensitive strain Is, and (E) infectious with resistant strain Ir. All

other parameter values are as in Table 2.
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We replace the continuous time variable t ∈ [0, ∞[ by discrete nodes tn = n∆t,n ∈ N where

∆t is the step size. We wish to find approximate solutions Sn, En
s , En

r , In
s , In

r of S,Es, Er, Is, Ir at

time t = tn.

We propose the following NSFD scheme:

(36)



Sn+1−Sn

φ(∆t)
= Λ− (λ n

s +λ n
r +µ)Sn+1,

En+1
s −En

s
φ(∆t)

= λ n
s (1− ps)Sn+1− (1− rs)(σsλ

n
s +σrλ

n
r )E

n+1
s

+ γsIn+1
s −A1En+1

s ,

En+1
r −En

r
φ(∆t)

= λ n
r (1− pr)Sn+1− (1− rr)σrλ

n
r En+1

r +(1− rs)φsEn+1
s

+ γrIn+1
r +ηsIn+1

s −A3En+1
r ,

In+1
s − In

s
φ(∆t)

= λ n
s psSn+1 +(1− rs)ksEn+1

s +(1− rs)σsλ
n
s En+1

s −A2In+1
s ,

In+1
r − In

r
φ(∆t)

= λ n
r prSn+1 +(1− rr)σrλ

n
r En+1

r +(1− rs)(ϕs +σrλ
n
r )En+1

s

+ (1− rr)krEn+1
r +δsIn+1

s −A4In+1
r ,

where

λ
n
s = βs

In
s

Nn , λ
n
r = βr

In
r

Nn , Nn = Sn +En
s +En

r + In
s + In

r ,

A1, A2, A3 and A4 are defined in Eq.(3) The numerical scheme (36) is called a non-standard

finite difference method [61], because the non-linear terms are approximated in a non local

way by using more than one mesh point: λS and λE are approximated by λ nSn+1 and λ nEn+1

(where λ denotes λs or λr while E denotes Es or Er ) and the standard denominator ∆t of the

discrete derivatives is replaced by a more complex positive function φ(∆t) defined as follow

(37) φ = φ(∆t) = ∆t +O((∆t)2).
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The denominator function should reflect the essential qualitative features of the original contin-

uous model. The numerical scheme (36) is an implicit non-standard finite difference method.

we have the following result.

Proposition 1. The numerical scheme (36) is consistent for the system (3).

Proof: The consistency error is

ξ n = R(xn)− R̃(xn) = O(φ(∆t)),

where R(xn) denotes the approximation of x at the point tn and R̃(xn) the approximation given

by the numerical scheme at the point tn. with this in mind, one has

ξ
n = O(φ(∆t)),

= O(∆t +O((∆t)2),

= O(∆t)→ 0 when ∆t→ 0.

Thus, the numerical schema (36) is consistent for the system (3). This completes the proof. 2

Proposition 2. The numerical scheme (36) is implicit therefore unconditionally stable.

Proof: The numerical scheme (36) can be rewritten as

(38) AXn+1 = BXn +C,

where

A =

 A11 A12

A21 A22

 ,

with

A11 =


1+φ (λ n

s +λ n
r +µ) 0 0

−φ(1− ps)λ
n
s 1+φ ((1− rs)(σsλ

n
s +σrλ

n
r )+A1) 0

−φ(1− pr)λ
n
r −φ(1− rs)φs 1+φ ((1− rr)σrλ

n
r +A3)

 ,
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A12 =


0 0

−φγs 0

−φηs −φγr

 , A21 =

 −φ psλ
n
s −φ(1− rs)(ks +σsλ

n
s ) 0

−φ prλ
n
r −φ(1− rs)(ϕs +σrλ

n
r ) −φ(1− rr)(kr +σrλ

n
r )

 ,

A22 =

 1+φA2 0

−φδs 1+φA4

.

 ,

B =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


, C =



φΛ

0

0

0

0


and Xn =



Sn

En
s

En
r

In
s

In
r


.

From Eq. (38), we has Xn+1 = A−1Xn +A−1C. The matrix A is a column strictly diagonally

dominated, thus one has deduce that A is M−matrix for xn ∈Ω; so all its eigenvalues are within

the unit circle ρ(A−1)< 1. This concludes the proof.

2

We have the following result.

Proposition 3. The discrete system (36) preserves the positivity of the solutions of the continu-

ous model (3).

Proof: Equation (38) can be written in the following form :

AXn+1 = F,

where A is defined as in Eq. (38) and

F =



Sn +φΛ

En
s

En
r

In
s

In
r


.



30 Y. MALONG, A. TEMGOUA, S. BOWONG

Note that A is M−matrice which implies that A−1 ≥ 0. Therefore, the numerical scheme of

(36) preserves the non negativity of the solutions of the continuous system (3). This concludes

the proof 2

Proposition 4. The disease-free equilibrium of system (3) is preserved and the solutions of

system (3) are bounded.

Proof: Adding all equations of discrete system (36), one has

(39)
Nn+1−Nn

φ(∆t)
= Λ+µNn+1−dsIn+1

s −drIn+1
r .

This is equivalent to

(40) (1+φ(∆t))Nn+1 +φ(∆t)dsIn+1
s +φ(∆t)drIn+1

r = (1+φ(∆t)µ)Nn +φ(∆t)Λ.

On the other hand, one has

0 < In+1
s < Nn+1 ⇒ 0 < φ(∆t)dsIn+1

s < φ(∆t)dsNn+1,

0 < In+1
r < Nn+1 ⇒ 0 < φ(∆t)drIn+1

r < φ(∆t)drNn+1.

Adding member to member, one obtains

0 < φ(∆t)
(
dsIn+1

s +drIn+1
r
)
< φ(∆t)(ds +dr)Nn+1.

Therefore, the sequence Nn+1 satisfies the inequalities:

(41) F(Nn)≤ Nn+1 ≤ F̄(Nn),

where

F(Nn) =
(1+φ(∆t)µ)Nn +φ(∆t)Λ

1+φ(∆t)(ds +dr +µ)
and F̄(Nn) =

(1+φ(∆t)µ)Nn +φ(∆t)Λ
1+φ(∆t)µ

.

The fixed points of F(x) and F̄ are respectively N# and S0. Thus, the disease free equilibrium is

retained. The boundary of system comes from the fact that N# and S0 are respectively the fixed

points of F(x) and F̄(x). This concludes the proof. 2
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Proposition 5. The domain Ω defined in Eq.(4) is positively invariant for the discrete dynamic

system (36).

Proof: Since the solutions are positive and bounded, any trajectory that begins in the domain Ω

can not leave the domain Ω. This concludes the proof. 2

We have the following result about the stability of the DFE of system (36).

Theorem 6. If the values of the parameters of system (3) are such that when R0 < ξ < 1,

then the disease-free equilibrium point (DFE) of the discrete dynamic system (36) is globally

asymptotically stable in the domain Ω.

Proof: The proof of this theorem is essentially based on Theorem 3 of [61].

The discrete dynamic system (36) can be written in the following form:

(42)

 xn+1
1 = g(xn

1,x
n
2),

P(xn)xn+1
2 = Q(xn+1

1 )xn
2,

where x = (x1, x2), xn+1
1 = Sn+1, xn+1

2 =
(
En+1

s ,En+1
r , In+1

s , In+1
r
)
,

P(xn) =


(1+φZ1) −φγs 0 0

−φ(1− rs)(ks +σsλ
n
s ) 1+φA2 0 0

−φ(1− rs)φs −φηs 1+φZ2 −φγr

−φ(1− rs)(ϕs +σrλ
n
r ) −φδs −φ(1− rr)(kr +σrλ

n
r ) 1+φA4

 ,

Q(xn+1
1 ) =



1 φβs(1− ps)
Sn+1

Nn+1 0 0

0 1+φβs ps
Sn+1

Nn+1 0 0

0 0 1 φβr(1− pr)
Sn+1

Nn+1

0 0 0 1+φβr pr
Sn+1

Nn+1


,

with

Z1 = (1− rs)(σsλ
n
s +σrλ

n
r )+A1 and Z2 = (1− rr)σrλ

n
r +A3.

Since the matrix P(xn) is an M-matrix, it comes that (P(xn))−1 ≥ 0 and consequently one has

xn+1
2 = (P(xn))−1Q(xn+1

1 )xn
2.
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Let’s start with M(xn) = (P(xn))−1Q(xn+1
2 ), using Theorem 3 in [61], M(xn) is a irreducible

matrix and admits M = (P(Q0))
−1Q(xn+1

2 ) as a majorant.

On the other hand, the matrix Ā2 verifies the following relation:

Q(Q0)−P(Q0) = φ Ā2.

With this in mind, one has that

M = I +φP(Q0)
−1Ā2.

Since the matrix Ā2 is irreducible, then the matrix M is also irreducible. Using the positivity

properties of matrices [51,52] and the relation α(Ā2) < 0, one can deduce that α(M) < 0.

It follows that the disease free equilibrium is globally asymptotically stable for the discrete

dynamic system (36). This completes the proof. 2

Now, we present numerical results of the general dynamics of system (3). More precisely,

we illustrate the theoretical results reported in Theorem 2, Lemma 3 and 4 using the numerical

scheme of discrete dynamic system (36). The parameter values used for numerical simulations

are given in Table 4. These values were chosen arbitrarily to satisfy the stability conditions of

the disease-free equilibrium point of system (3).

Figure 4 shows the convergence to the disease-free equilibrium Q0 of system (3) when βs =

0.3 and βr = 0.45 (so that R0s = 0.1936 < ξs = 0.8281 < 1 and R0r = 0.3555 < ξr = 0.8847

and R0 ≤ ξ ). It illustrates that the disease disappears when R0 ≤ ξ < 1 and TB is controllable

within the host population.

The backward bifurcation phenomenon is illustrated by simulating system (3) with the pa-

rameter values of Table 2. The associated backward bifurcation diagram is depicted in Fig. 5.
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FIGURE 4. Simulation of system (3) when βs = 0.3 and βr = 0.45 (so that R0s =

0.1936 < ξs = 0.8281 < 1 and R0r = 0.3555 < ξr = 0.8847 and R0 ≤ ξ ). (A)

Susceptible individuals S; (B) latently infected individuals with sensitive strain

Es; (C) latently infected individuals with resistant strain Er; (D) infectious with

sensitive strain Is and (E) infectious with resistant strain Ir. All other parameter

values are as in Table 2.
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FIGURE 5. Bifurcation diagram of system (3).

The trajectories of system (3) when βs = 1.5 and βr = 1.2 (so that ξs = 0.8281 ≤ R0s =

0.9680 < 1, ξr = 0.8847≤R0r = 0.9479 and ξ ≤R0 < 1) is depicted in Figure 6. This clearly

shows that when ξ ≤R0 < 1, the profiles can converge to either the disease-free equilibrium or

an endemic equilibrium point, depending on the initial sizes of the population (owing to the phe-

nomenon of backward bifurcation). It is worth stating that, for the set of parameter values used,

the simulations have to be run for a long-time period (in hundred of years). The epidemiolog-

ical significance of the phenomenon of backward bifurcation is that the classical requirement

of ξ ≤ R0 < 1 is, although necessary, no longer sufficient for disease eradication. In such a

scenario, the disease elimination would depend on the initial sizes of the population (state vari-

ables) of the model. That is, the presence of backward bifurcation in the TB transmission model

(3) suggests that the feasibility of controlling TB when ξ ≤R0 < 1 could depend on the initial

sizes of the population. The backward bifurcation phenomenon is usually due to the exogenous

reinfections rates of σs and σr. So, it is important to perform Monte-Carlos simulation on the

exogenous reinfection rates of σs and σr to see how it affects the disease free equilibrium when

ξ ≤R0 < 1 for a fixed population size. Using parameter values as in Fig 6, Figure 6 present

the Monte Carlos simulation of system (3), from this figure it clearly appears that for random

generation of σs and σr the trajectories of system (3) converge to the DFE.
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FIGURE 6. Simulation of model system (3) when βs = 1.5 and βr = 1.2 ((so

that ξs = 0.8281 ≤ R0s = 0.9680 < 1, ξr = 0.8847 ≤ R0r = 0.9479 and ξ ≤

R0 < 1). (A) Susceptible individuals S; (B) latently infected individuals with

sensitive strain Es; (C) latently infected individuals with resistant strain Er; (D)

infectious with sensitive strain Is and (E) infectious with resistant strain Ir. All

other parameter values are as in Table 2.
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FIGURE 7. Monte-Carlos simulation of system (3) when βs = 1.5 and βr =

1.2 (so that R0s = 0.9680, R0r = 0.9479, ξs = 0.8281 and ξr = 0.8847). (A)

Susceptible individuals S; (B) latently infected individuals with sensitive strain

Es; (C) latently infected individuals with resistant strain Er; (D) infectious with

sensitive strain Is and (E) infectious with resistant strain Ir. All other parameter

values are as in Table 2.
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Figure 8 shows the convergence to the endemic equilibrium Q∗ of the trajectories of system

(3), when βs = 1.8 and βr = 1.4 (so that R0s = 1.1616, and R0r = 1.1059 and R0 > 1). It

illustrates that TB persists within the host population when R0 > 1 and the disease becomes

endemic and uncontrollable.

The local stability of the boundary endemic equilibrium Q∗r when βs = 0.8 and βr = 1.4 (so

that R0s = 0.5163< 1, R0r = 1.1059> 1, and R0s(Q
∗
r )= 0.0607< 1 ) is show in Fig 9. Numer-

ical results when βs = 4.2, βr = 1.8 and dr = 0.3 (so that R0s = 3.9351 > 1, R0r = 1.0715 > 1,

and R0s(Q
∗
r ) = 1.0452 > 1) are depicted in Figure 10. Further, these figures illustrate that when

R0s < 1, R0r > 1, and R0s(Q
∗
r )< 1, only the resistant strain persists within the host population,

while when R0s > 1, R0r > 1, and R0s(Q
∗
r )> 1, the sensitive strain invades the host population.

Figures 11 and 12 depict the time evolution of system (3) using various initial conditions

when βs = 1.8 and βr = 0.8 (so that R0s = 1.6975 > 1, R0r = 0.632 < 1, and R0r(Q
∗
s ) =

0.0885 < 1), and βs = 2, βr = 4.2 and ds = 0.35 (so that R0s = 1.3491 > 1, R0r = 4.6545 > 1,

and R0r(Q
∗
s ) = 1.0315 > 1), respectively. As predicted by Lemma 5 when R0s > 1, R0r =

0.632 < 1, and R0r(Q
∗
s ) < 1 only sensitive strain persists in the host population, while when

R0s > 1, R0r > 1, and R0r(Q
∗
s ) = 1.0315 > 1, the resistant strain invades the host population

where the sensitive strain is at the equilibrium.

We now numerically investigate that system (3) undergoes the Hopf bifurcation around the

endemic equilibrium point Q∗s = (S∗s ,E
∗
s , I
∗
s ,0,0) with respect to the transmission rate βs. Using

the software MATCONT, we found that system (3) undergoes the Hopf bifurcation for the

threshold value βs = 2.289638 ≈ 2.29 of the transmission rate. In this case, Hopf bifurcation

occurs at H = (73.637118,39.419053,18.197512,0,0). The associated bifurcation diagram is

shown in Fig 13. To add more evidence on the occurrence of the Hopf bifurcation.

Figure 14 shows the existence of an asymptotically stable periodic solution when βs crosses

the threshold value βs = 2.29, σs = 9.7 and γs = 6.7311. It is evident that the occurrence of

periodic oscillating solutions is relevant in tuberculosis models, as it indicates that the disease

levels may oscillate around the endemic equilibrium point Q∗s even in absence of any treatment.
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FIGURE 8. Simulation of system (3) using various initial conditions when βs =

1.8 and βr = 1.4 (so that R0s = 1.1616, and R0r = 1.1059 and R0 > 1). (A)

Susceptible individuals S; (B) latently infected individuals with sensitive strain

Es; (C) latently infected individuals with resistant strain Er; (D) infectious with

sensitive strain Is and (E) infectious with resistant strain Ir. All other parameter

values are as in Table 2.
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FIGURE 9. Simulation of system (3) where resistant TB is already endemic us-

ing various initial conditions when βs = 0.8 and βr = 1.4 (so that R0s = 0.5163<

1, R0r = 1.1059 > 1, and R0s(Q
∗
r ) = 0.0607 < 1 ). (A) Susceptible individuals

S; (B) latently infected individuals with sensitive strain Es; (C) latently infected

individuals with resistant strain Er; (D) infectious with sensitive strain Is and (E)

infectious with resistant strain Ir. All other parameter values are as in Table 2.
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FIGURE 10. Simulation of system (3) where resistant TB is already endemic using

various initial conditions when βs = 4.2, βr = 1.8 and dr = 0.3 (so that R0s = 3.9351> 1,

R0r = 1.0715 > 1, and R0s(Q
∗
r ) = 1.0452 > 1 ). (A) Susceptible individuals S; (B)

latently infected individuals with sensitive strain Es; (C) latently infected individuals

with resistant strain Er, (D) infectious with sensitive strain Is and (E) infectious with

resistant strain Ir. All other parameter values are as in Table 2.
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FIGURE 11. Simulation of system (3) where resistant TB is already endemic us-

ing various initial conditions when βs = 1.8 and βr = 0.8 (so that R0s = 1.6975>

1, R0r = 0.6320 < 1, and R0r(Q
∗
s ) = 0.0885 < 1 ). (A) Susceptible individuals

S; (B) latently infected individuals with sensitive strain Es; (C) latently infected

individuals with resistant strain Er; (D) infectious with sensitive strain Is and (E)

infectious with resistant strain Ir. All other parameter values are as in Table 2.
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FIGURE 12. Simulation of system (3) where resistant TB is already endemic using

various initial conditions when βs = 2, βr = 4.2 and ds = 0.35 (so that R0s = 1.3491> 1,

R0r = 4.6545 > 1, and R0r(Q
∗
s ) = 1.0315 > 1). (A) Susceptible individuals S; (B)

latently infected individuals with sensitive strain Es; (C) latently infected individuals

with resistant strain Er; (D) infectious with sensitive strain Is and (E) infectious with

resistant strain Ir. All other parameter values are as in Table 2.
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FIGURE 13. Bifurcation diagram of system (3) when βs = 1.12, σs = 9.7 and

γs = 6.7311. The Hopf bifurcation occurs for βs = 2.29, which has been labeled

by ”H”. All other parameter values are as in Table 2.

5. CONCLUSION

In this paper, we addressed the problem of drug resistance as a competition between two

types of Mycobacterium tuberculosis strains. We first formulated a TB model with two strains:

: those that are sensitive to anti-tuberculosis drugs and those that are resistant. We presented

the theoretical analysis of the model. More precisely, we computed the disease-free equilibrium

and derived the basic reproduction number R0. By using a result of Kamgang and Sallet [50],

we shown that there exists a threshold parameter ξ such that if R0 < ξ , the disease-free equi-

librium is globally asymptotically stable, while if ξ < R0 < 1, the phenomenon of backwards

bifurcation occurs. We also shown that if R0 > 1, the disease-free equilibrium is unstable and
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FIGURE 14. Existence of an asymptotically stable periodic solution when βs

crosses the threshold value βs = 2.29, σs = 9.7 and γs = 6.7311. All other pa-

rameters are as in Table 2

there exists a unique endemic equilibrium which is stable with R0 close to 1. The coexistence

and stability of the associated equilibria are discussed. We also showed that the TB transmission

model undergoes the Hopf-bifurcation with respect to the transmission rates βs and βr. We also

presented a dynamically consistent non-standard finite difference scheme to numerically study

the model. The non-standard finite difference scheme has the advantage that it preserves some

properties of the model that is not the case for the classical Runge-Kutta scheme. Numerical

results have been presented to illustrate and validate theoretical results.
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APPENDIX A: CALCULATION OF THE BASIC REPRODUCTION RATIO FOR SYSTEM (3)

Herein, we compute the basic reproduction ratio (8) of system (3). To do so, it is important to

distinguish new infections from all other class transitions in the population when to compute

the basic reproduction ratio. The infected classes are Es, Er, Is, and Ir. Using the method of Van

den Driessche and Watmough [49], system (3) can written in the following form:

(43) ẋ = f (x) = F (x)−V (x) = F (x)− (V −(x)−V +(x)),

where x = (Es,Er, Is, Ir,S), F is the rate of appearance of new infections in each class, V + is
the rate of transfer into each class by all other means and V − is the rate of transfer out of each
class. Hence,

F (x) = (λs(1− ps)S, λr(1− pr)S, λr prS, λr prS,0)T

and

V (x) =



−γsIs +(1− rs)(σsλs +σrλr)Es +A1Es

−γrIr +(1− rr)σrλrEr− (1− rs)φsEs−ηsIs +A3Er

−(1− rs)ksEs− (1− rs)σsλsEs +A2Is

−(1− rr)(kr +σrλr)Er +(1− rs)(ϕs +σrλr)Es−δsIs +A4Ir

0


.

The jacobian matrices of F and V at the disease-free equilibrium Q0 = (0,0,0,0,Λ/µ) are

DF (Q0) =

[
F 0

0 0

]
and DV (Q0) =

[
V 0

J3 J4

]
,

where

F =


0 0 βs(1− ps) 0

0 0 0 βr(1− pr)

0 0 βs ps 0

0 0 0 βr pr

 and V =


A1 0 −γs 0

−(1− rs)φs A3 −ηs −γr

−ks(1− rs) 0 A2 0

−ϕs(1− rs) −kr(1− rr) −δs A4

 ,

with A1, A2, A3 and A4 defined as in Eq. (3).

Following van den Driessche and Watmough [49], the basic reproduction ratio is defined as

the dominant eigenvalue of the next generation matrix, FV−1:

R0 = max{R0s,R0r},(44)

where

R0s =
βs[psµ + ps(1− rs)(φs +ϕs)+ ks(1− rs)]

A1A2− γsks(1− rs)
and R0r =

βr[pµ + kr(1− rr)]

A3A4− γrkr(1− rr)
.
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APPENDIX B: CALCULATION OF THE COEXISTENCE THRESHOLD FOR THE RESISTANT

ENDEMIC EQUILIBRIUM Q∗r

Herein, we calculate the coexistence threshold for the resistant endemicity Q∗r . To do so, we

consider the case only when the sensitive TB is transmissible, in a population where resistant

TB is at equilibrium. The infected compartments are Es and Is. Following Van den Driessche

and Watmough [49], we can write system (3) as in Eq. (43) where x = (Es, Is,S,Er, Ir)
T with

Fs =



(1− ps)λsS

psλsS

0

0

0


and Vs =



−γsIs +(1− rs)(σsλs +σrλr)Es +A1Es

−(1− rs)ksEs− (1− rs)σsλsEs +A2Is

0

0

0


.

The Jacobian matrice of Fs and Vs at the disease-free equilibrium Q∗r = (0,0,S∗r ,E
∗
r , I
∗
r )

T are

Fs =

 0 βs(1− ps)
S∗r
N∗r

0 βs ps
S∗r
N∗r

 and Vs =

 A1 +(1− rs)σrλ
∗
r −γs

−ks(1− rs) A2

 .
The basic reproduction ratio of the sensitive strains in a population where resistant strains are

fixed is then the spectral radius of the next generation matrix, FsV−1
s :

(45) R0s(Xr) =
βsS∗r [ks(1− rs)+ ps(µ +(1− rs)(φs +ϕs)+σrλ

∗
r )]

N∗r [A1A2− γsks(1− rs)+A2σrλ ∗r (1− rs)]
,

where

λ
∗
r = βr

I∗r
N∗r

, and N∗r = S∗r +E∗r + I∗r .
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APPENDIX C: CALCULATION OF THE COEXISTENCE THRESHOLD FOR THE SENSITIVE

ENDEMIC EQUILIBRIUM Q∗s

Here, we show how to calculate the coexistence threshold for the sensitive endemicity Q∗s .

To do so, consider the case only when the sensitive TB is transmissible, in a population where

resistant TB is at equilibrium. The infected compartments are Er and Ir. Following Van den

Driessche and Watmough [49], system (3) can be written as in (43) with x = (Er, Ir,S,Es, Is)
T ,

one has

Fr =



(1− pr)λrS

prλrS

0

0

0


and Vr =



−γrIr +(1− rr)σrλrEr +A3Er

−(1− rr)krEr− (1− rr)σrλrEr +A4Ir +(1− rs)σrλrEs

0

0

0


.

The Jacobian matrice of Fr and Vr at the disease (sensitive-TB)-free equilibrium is Q∗s =

(0,0,S∗s ,E
∗
s , I
∗
s )

T . are

Fr =

 0 βr(1− pr)
S∗s

Ns∗
0 βr pr

S∗s
N∗s

 and Vr =

 A3 −γr

−kr(1− rr) A4 +(1− rs)βrσr
E∗s
N∗s

 ,
The basic reproduction ratio of the sensitive strains in a population where resistant strains are

fixed is then the spectral radius of the next generation matrix, FrV−1
r :

(46) R0r(Xs) =
βrS∗s [kr(1− rr)+µ pr]

N∗s [A3A4− γrkr(1− rr)+A3(1− rs)βrσrE∗s ]
,

where

λ
∗
s = βs

I∗s
N∗s

, and N∗s = S∗s +E∗s + I∗s .
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APPENDIX D: PROOF OF THEOREM 3

In. this Appendix, we gives the proof of Theorem 3. In order to analyze the stability of

the endemic equilibrium point, we make use of the Centre Manifold theory as described by

Theorem 4.1 of Castillo-Chavez and Song [34], to establish the local asymptotic stability of the

TB endemic equilibrium. In particular, Theorem 3.5 reproduced below for convenience, will be

used to show that when R0 > 1, there exists a unique endemic equilibrium of system (3) which

is locally asymptotically stable for R0 near 1 under some conditions.

Theorem 7. [34] Consider the following general system of ordinary differential equations with

a parameter φ :

(47)
dz
dt

= f (z,φ), f : Rn×R→ R and f ∈ C 2 (Rn,R) ,

where 0 is an equilibrium point of system (that is, f (0,φ)≡ 0 for all φ ) and assume

(1) A = Dz f (0,0) =
∂ fi

∂ z j
(0,0) is the linearization matrix of system (47) around the equilib-

rium 0 with evaluated at 0. Zero is a simple eigenvalue of A and other eigenvalues of A

have negative real parts,

(2) Matrix A has a right eigenvector u and a left eigenvector v (each corresponding to the

zero eigenvalue).

Let fk be the kth component of f and

a =
n

∑
k,i, j

vkuiu j
∂ 2 fk

∂ zi∂ z j
(0,0) and b =

n

∑
k,i

vkui
∂ 2 fk

∂ zi∂φ
(0,0),

then, the local dynamics of system around the equilibrium point 0 is totally determined by the

signs of a and b.

(1) a > 0, b > 0. When φ < 0 with |φ | � 1, 0 is locally asymptotically stable and there

exists a positive unstable equilibrium; when 0 < φ � 0, 0 is unstable and there exists a

negative, locally asymptotically stable equilibrium;

(2) a < 0, b < 0. When φ < 0 with |φ | � 1, 0 is unstable; when 0 < φ � 1, 0 is locally

asymptotically stable equilibrium, and there exists a positive unstable equilibrium;
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(3) a> 0, b< 0. When φ < 0 with |φ |� 1, 0 is unstable, and there exists a locally asymptot-

ically stable negative equilibrium; when 0 < φ � 1, 0 is stable, and a positive unstable

equilibrium appears;

(4) a < 0, b > 0. When φ changes from negative to positive, 0 changes its stability from

stable to unstable. Correspondingly a negative unstable equilibrium becomes positive

and locally asymptotically stable.

Particularly, if a > 0 and b > 0, then a backward bifurcation occurs at φ = 0.

Let us first make the following simplification and change of variables. Let x1 = S, x2 = Es,

x3 = Is, x4 = Er and x5 = Ir so that N = x1 + x2 + x3 + x4 + x5. Further, by using vector

notation x = (x1,x2,x3,x4,x5)
t , system (3) can be written in the form x′ = f (x), with f =

( f1, f2, f3, f4, f5)
t , as follows:

(48)



ẋ1 = f1 = Λ− (λs +λr +µ)x1,

ẋ2 = f2 = λs(1− ps)x1 + γsx3− (1− rs)(σsλs +σrλr)x2−A1x2,

ẋ3 = f3 = λs psx1 +(1− rs)ksx2 +(1− rs)σsλsx2−A2x3,

ẋ4 = f4 = λr(1− pr)x1 + γrx5− (1− rr)σrλrx4 +(1− rs)φsx2 +ηsx3−A3x4,

ẋ5 = f5 = λr prx1 +(1− rr)(kr +σrλr)x4 +(1− rs)(ϕs +σrλr)x2 +δsx3−A4x5,

where

λs =
βsx3

x1 + x2 + x3 + x4 + x5
and λr =

βrx5

x1 + x2 + x3 + x4 + x5
,

with A1, A2, A3 and A4 defined as in system (3).

The Jacobian of system (3), at the DFE Q0 = (S0,0,0,0,0), is given by

J (Q0) =



−µ 0 −βs 0 −βr

0 −A1 βs(1− ps)+ γs 0 0

0 (1− rs)ks βs ps−A2 0 0

0 (1− rs)φs ηs −A3 βr(1− pr)+ γr

0 (1− rs)ϕs δs kr(1− rr) βr pr−A4


,

The reproduction number of the transformed (linearized) system (48) is the same than of the

original system given as in Eq. (8). Therefore, choosing βs and βr as a bifurcation parameter
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and solving equation R0 = 1 (i.e R0s = 1 and R0r = 1), one has

βs = β
∗
s =

A1A2− γsks(1− rs)

psµ + ps(1− rs)(φs +ϕs)+ ks(1− rs)
and βr = β

∗
r =

A3A4− γrkr(1− rr)

pµ + kr(1− rr)
.

It follows that the Jacobian J(Q0) of system (48) at the DFE Q0, with βs = β ∗s and βr = β ∗r ,

has a simple zero eigenvalue (with all other eigenvalues having negative real parts). Hence,

the Centre Manifold theory [53] can be used to analyse the dynamics of system (48). Now,

Theorem 3.3.2 of [34], can be used to show that the unique endemic equilibrium of system (48)

is locally asymptotically stable for R0 near 1.

For the case R0 = 1 (R0s = 1 and R0r = 1), it can be shown that the right eigenvector

(corresponding to the zero eigenvalue) of Jacobian of system (48) at βs = β ∗s and βr = β ∗r , is

given by U = (u1,u2,u3,u4,u5)
T , where,

(49) u1 =−
1
µ
(βsu3 +βru5)< 0, u2 = Bsu3 > 0, u4 = Bu3 +Bru5 > 0, u3, u5 > 0,

with

Bs =
βs(1− ps)+ γs

A1
, Br =

βr(1− pr)+ γr

A3
and B = Bs

φs(1− rs)

A3
+

ηs

A3
.

Similarly, the components of the left eigenvectors of Jacobian of system (48) (corresponding to

the zero eigenvalue), denoted by V = (v1,v2,v3,v4,v5)
T , are given by,

v1 = 0, v2 =Csv3 +Cv5 > 0, v4 =Crv5 > 0, v3, v5 > 0,

where

Cs =
ks(1− rs)

A1
, Cr =

kr(1− rr)

A3
and C =Cr

φs(1− rs)

A1
+

ϕs(1− rs)

A1
.

Computation of b: For the sign of b, it can be shown that the associated non-vanishing

partial derivatives of f are

∂ 2 f1

∂x3∂βs
(Q0,β

∗
s ) = −1,

∂ 2 f1

∂x5∂βr
(Q0,β

∗
r ) =−1,

∂ 2 f2

∂x3∂βs
(Q0,β

∗
s ) = 1− ps,

∂ 2 f3

∂x3∂βs
(Q0,β

∗
s ) = ps,

∂ 2 f4

∂x5∂βr
(Q0,β

∗
r ) = 1− pr and

∂ 2 f5

∂x5∂βr
(Q0,β

∗
r ) = pr
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Substituting the respective partial derivatives into the expression of b, one has

b = v2

5

∑
i=1

ui
∂ 2 f2

∂xi∂βs
+ v3

5

∑
i=1

ui
∂ 2 f3

∂xi∂βs
+ v4

5

∑
i=1

ui
∂ 2 f4

∂xi∂βr
+ v5

5

∑
i=1

ui
∂ 2 f5

∂xi∂βr
,

= v2u3(1− ps)+ v3u3 ps + v4u5(1− pr)+ v5u5 pr

= ((1− ps)Cs + ps)u3v3 +(1− ps)Cu3v5 +((1− pr)Cr + pr)u5v5 > 0.

Computation of a: For system (48), the associated non-zero partial derivatives of f (at the

DFE Q0) are given by

∂ 2 f1

∂x3∂x2
=

∂ 2 f1

∂x3∂x4
=

βs

S0
,

∂ 2 f1

∂x5∂x2
=

∂ 2 f1

∂x5∂x4
=

βr

S0
,

∂ 2 f1

∂x2
3
= 2

βs

S0
,

∂ 2 f1

∂x2
5
= 2

βr

S0
,

∂ 2 f1

∂x3∂x5
=

βr

S0
+

βs

S0
,

∂ 2 f2

∂x3∂x2
=−βs(1− ps)

S0
− βsσs(1− rs)

S0
,

∂ 2 f2

∂x5∂x2
=−βrσr(1− rr)

S0
,

∂ 2 f2

∂x2
3

= −2
βs(1− ps)

S0
,

∂ 2 f2

∂x4∂x3
=

∂ 2 f2

∂x5∂x3
=−βs(1− ps)

S0
,

∂ 2 f3

∂x3∂x2
=−βs ps

S0
+

βsσs(1− rs)

S0
,

∂ 2 f3

∂x2
3

= −2
βs ps

S0
,

∂ 2 f3

∂x4∂x3
=

∂ 2 f3

∂x5∂x3
=−βs ps

S0
,

∂ 2 f4

∂x5∂x4
=−βr(1− pr)

S0
− βrσr(1− rr)

S0
,

∂ 2 f4

∂x2
5

= −2
βr(1− pr)

S0
,

∂ 2 f4

∂x2∂x5
=

∂ 2 f4

∂x3∂x5
=−βr(1− pr)

S0
,

∂ 2 f5

∂x5∂x4
=−βr pr

S0
+

βrσr(1− rr)

S0
,

∂ 2 f5

∂x2
5

= −2
βr pr

S0
,

∂ 2 f5

∂x2∂x5
=−βr pr

S0
+

βrσr(1− rs)

S0
and

∂ 2 f5

∂x3∂x5
=−βr pr

S0
.

Substituting the respective partial derivatives into the expression of a, one has

a = v2

5

∑
i, j=1

uiu j
∂ 2 f2

∂xi∂x j
+ v3

5

∑
i, j=1

uiu j
∂ 2 f3

∂xi∂x j
+ v4

5

∑
i, j=1

uiu j
∂ 2 f4

∂xi∂x j
+ v5

5

∑
i, j=1

uiu j
∂ 2 f5

∂xi∂x j
,

= −(H1−βsσs(1− rs)Bs)u3
3v3−H2u2

3v5−H3u3v3u5− (H4−βrσr(1− rr)B)u2
5v5

− (H5−βrσr((1− rs)Bs +(1− rr)B))u3u5v5,



52 Y. MALONG, A. TEMGOUA, S. BOWONG

where

H1 = βsBsCs((1− ps)+σs(1− rs))+βs(1− ps)Cs(2+B)+βs ps(2+B+Bs),

H2 = βsBsC((1− ps)+σs(1− rs))+βs(1− ps)C(2+B),

H3 = βs(1− ps)(1+CsBr)+βrσr(1− rr)BsCs +βs ps(1+Br),

H4 = βrBrCr((1− pr)+σr(1− rr))+βr(1− pr)Cr(2+Bs)+βr pr(2+B),

H5 = βr(1− pr)(B+1)+βr pr(B+Bs +1)+βrσr(1− rr)(B+CBs +1)+βs(1− ps)C.

The bifurcation coefficient a < 0 if

(50) σs <
H1

βs(1− rs)Bs
and σr < min

{
H4

βr(1− rr)B
,

H5

βr((1− rs)Bs +(1− rr)B)

}
.

In this case, we have a < 0 and b > 0. All conditions of Theorem 47 are satisfied and it should

be noted that we use βs and βr as the bifurcation parameter, in place of φ in Theorem 7. Thus, it

follows that the endemic equilibrium is locally asymptotically stable. This concludes the proof.
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