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Abstract. The threats to wildlife in Sundarban, the largest mangrove forest in the world are poaching, recur-

rent coastal flooding, cyclone and toxicity. Optimal control theory is applied to investigate optimal strategies for

controlling these threats in the system where anti-poaching patrols are used for poaching, strong Bomas are con-

structed to stopping retaliatory killing, green fence is built for controlling coastal flood and cyclone and re-rout

is applied for toxicity control. The combination of the three controls is used to control its possible impact on the

threats that the predator and the prey facing in Sundarbans. The system is also examined so that the best result is

achieved. In this study, we have also analyzed the optimal control theory where the existing condition is discussed.

However, different control strategies are considered and the achieved results are discussed together with the effect

of variation of prey refuge.
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1. INTRODUCTION

The Sundarban is the single largest mangrove forest in the world comprising a total area of

9827 sq. kms. lying in both Bangladesh and India. This reserve includes the Royal Bengal

Tigers, swamp deer, snake, different type of alligator, monkeys, large number of birds fishing

cats, water buffaloes etc. It is the only marshy mangrove land for included tigers in the world

heritage sites. This area shows high biodiversity with unique flora and fauna. Some of the

biological species have been driven to extinction tigers and many others are at the verge of

extinction due to several external forces such as over exploitation predation, environmental pol-

lution and mismanagement of habitat. These problems affecting wild animals and their habitats

should be evaluated to ensure sustainable conservation of wildlife population.

Environmental pollution, poaching, catastrophes as mismanagement of the habitat may cause

reduction of species population and lead to extinction due to perturbation of the system. Haz-

ards such as coastal flooding and cyclone also cause the decline of species in an ecosystem.

A number of species have become extinct during the last 100 years from the Sundarbans. It

provides In-situ conservation of biodiversity of natural and semi-natural ecosystems and land-

scapes and contributes to sustainable economic development of the human population living

within and around the biosphere reserve.

Bolger et al [19] mentioned poaching of wildlife as a main threat for the ecosystem. Poaching

has become a threat to many migratory population, particularly as human populations around

protected areas increases. It has been reported that the local consumption of bush meat from the

Sundarbans and surrounding areas is responsible for the death of wild beasts per year and any

further increase in the amount of poaching could lead to decline in the wild populations in the

Sundarbans ecosystem. The predators (tiger) and the preys (deer) carry a dynamic relationship

among themselves. For its universal existence and importance, this relationship is one of the

dominant themes in theoretical ecology. In the context of Sundarbans, this relationship exists

between tiger and deer. Mathematical modeling is considered a very useful tool to understand

and analyze the dynamic behavior of predator-prey systems. Predator functional response on

prey population is the major element in predator-prey interaction. It describes the number of

prey consumed per predator per unit time for given quantities of prey and predator. The most
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important and useful functional responses are Holling type I functional response, Holling type

II functional response and Ratio dependent functional response. The two species population

models with such functional responses are widely researched in ecological environment. We

consider two different populations species: x1 as the prey population (deer) and x2 as the preda-

tor (tiger) population. We also assume that both population species are threatened by poaching

coastal flood and disease which are considered to affect their survival. Here we assume that

the prey population are to grow logistically to the carrying capacity. We also assume that there

is a refuge habitat where prey population are protected from predation and non-refuge habitat

in which prey population are exposed to predation. Thus, for the ratio dependent functional

response we make the following assumptions:

dx1

dt
= r1x1(1−

x1

k
)− µ(1−m)x1x2

x2 +a(1−m)x1
− p1x1−q1x1− τ1x1,(1a)

dx2

dt
=−r2x2 +

eµ(1−m)x1x2

x2 +a(1−m)x1
− p2x2−q2x2− τ2x2

2,(1b)

x1(0)≥ 0, x2(0)≥ 0

where r1 be the prey intrinsic growth rate, r2 be the death rate of predator absence of prey,

k be the carrying capacity of prey species, µ be the predation rate, e be the conversion factor

(0< e< 1), m be the prey refuge parameter, that it protects mx1 of the prey and leaves (1−m)x1

of the prey available to the predator (0 ≤ m < 1), p1 and p2 be the poaching rates for prey

and predator populations respectively, tau1 and tau2 be the rate of toxicity for both species

respectively, q1 and q2 be the death rates due to coastal flood and other natural calamities for

both species respectively.

Let D1 = p1 +q1 and D2 = p2 +q2 then the model system (1a)-(1b) becomes,

f1(x1,x2) =
dx1

dt
= r1x1(1−

x1

k
)− µ(1−m)x1x2

x2 +a(1−m)x1
−D1x1− τ1x1,(2a)

f2(x1,x2) =
dx2

dt
=−r2x2 +

eµ(1−m)x1x2

x2 +a(1−m)x1
−D2x2− τ2x2

2,(2b)

x1(0)≥ 0, x2(0)≥ 0.
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2. PRELIMINARIES

2.1. Boundedness.

Theorem 2.1. All the solutions (x1(t),x2(t)) of the system (2a)-(2b) in R2
+ are bounded.

Proof. To prove the theorem, we define a function z(t) = x1(t)+ 1
e x2(t).

Therefore, time derivative yields

dz
dt

=
dx1

dt
+

1
e

dx2

dt

= r1x1(1−
x1

k
)−D1x1− τ1x1−

1
e
[(r2 +D2)x2 + τ2x2

2]

= (r1−D1− τ1)x1−
r1

k
x2

1− τ1x2
1−

1
e
[(r2 +D2x2)+ τ2x2

2]

dz
dt

= x1[(r1−D1− τ1)−
r1

k
x1]−

1
e

x2[(r2 +D2)+ τ2x2].(3)

Now dz
dt +ηz = x1[(r1−D1− τ1 +η)− r1

k x1]+
1
e x2[(η− r2−D2)+ τ2x2]

≤ k
4r1

(r1−D1− τ1 +η)2 + 1
4eτ2

(η− r2−D2)
2 [using completing square technique]

implies dz
dt +ηz < M where M = k

4r1
(r1−D1)+η)2 + 1

4eτ2
(η− r2−D2)

2.

Solving the resulting differential inequality with integrating factor, I = eηt we get z(t) < M
η
+

ce−ηt . At t = 0,z(x1(0),x2(0)) = z and then from (3) we obtain, z(x(0),y(0)) = M
η
+ c which

implies that z(t)≤ M
η
+ z(x(0),x2(0))− M

η
)e−ηt

= M
η
(1− e−ηt + z(x1(0),x2(0)))e−ηt .

So, 0≤ z(x1(0),x2(0))≤ M
η
(1− e−ηt)+ z(x1(0),x2(0))e−ηt .

At t→ ∞, then 0≤ z(x1(t),x2(t))≤ M
η
.

Thus z is bounded and from positive of x1 and x2 where 0≤ x1≤M,0≤ x2≤M for all t > 0. �

2.2. Dissipativeness.

Theorem 2.2.1. If w≥ a
e (r2 +D2) then the system (2a)-(2b) is dissipative.

Proof. By usual straight forward arguments, we can show that the solution of the system (2a)-

(2b) always exists and keeps on positive, Since all the interacting species and parameters asso-

ciated with model system (2a)-(2b) are positive and m ∈ [0,1) now, from the first equation of
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the model system (2a)-(2b) we have, dx1
dt < r1x1(1− x1

k ) consequently,

we observe that x1(t)≤ x1(0)
x1(0)+(1−x1(0))e−t .

Thus, any any solution of the model system (2a)-(2b) must satisfy

(4) lim
t→∞

supx1(t)< 1.

Again from the second equation of the model system (2a)-(2b), we examine that,

dx2

dt
=

eµ(1−m)x1x2

x2 +a(1−m)x1
− (r2 +D2 + τ2x2)

=
eµ

a x2
x2

a(1−m) +1
− (r2 +D2 + τ2x2)

≤ eµ

a
x2− (r2 +D2 + τ2x2).

∴
dx2

dt
≤ (

eµ

a
− r2−D2− τ2x2).(5)

Therefore we have

(6) lim
t→∞

supx2(t)≤ x̄2,

where x̄2 denotes a unique solution of x2(t) which is positive if µ > a
e (r2 +D2). �

2.3. Permanence.

Theorem 2.3.1. If µ ≥ a
e (r2 +D2) then the system (2a)-(2b) is permanent.

Proof. From the first equation of the model system (2a)-(2), we get,

dx1

dt
= r1x1(1−

x1

k
)− µ(1−m)x1x2

x2 +a(1−m)x1
−D1x1− τ1x1

= r1x1(1−
x1

k
)− µ(1−m)x1

1+a(1−m) x1
x2

−D1x1− τ1x1

≥ r1x1(1−
x1

k
)−µ(1−m)x1−D1x1− τ1x1

≥ r1

k
x1[

k
r1
(r1−D1− τ1−µ(1−m)− (r1 + kτ1)

k
x1]

∴
dx1

dt
≥ k

4r1
[r1−D1− τ1−µ(1−m)]2.(7)
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Hence, for large t we choose, x1(t) =
x1
3 .

∴ dx2
dt = eµ(1−m)x1x2

x2+a(1−m)x1
− (r2 +D2 + τ2x2)x2.

If x2 is the root of the equation x2[
eµ(1−mx)

a(3x2+(1−m)x − (r2 +D2 + τ2x2)] = 0

∴ x2 =
eµ−a(r2+D2)(1−m)x1

r2+D2

Therefore, we obtain

(8) lim
t→∞

in f x2(t)≥ x2

if µ ≥ a
e (r2 +D2) �

2.4. Equilibrium Analysis. In this section we establish the conditions for the existence of the

four equilibrium points of the model system namely E0(x10,x20),E1(x11,x21),E2(x12,x22) and

E3(x13,x23).

(a) Predator- prey extinction equilibrium point: When the predator and prey do not exists i.e.,

x1 = x2 = 0 thus the equilibrium point is obtained E0(x10,x20) = E0(0,0).

(b) Predator extinction equilibrium point: When there are no predator i.e., x1 6= 0 and x2 = 0

then from the system (2a)-(2b) we get,

dx1

dt
= 0

⇒ r1x1(1−
x1

k
)−D1x1− τ1x1 = 0

⇒ r1x1

k
= r1−D1− τ1

⇒ x1 =
k
r1
(r1−D1− τ1).(9)

Thus the equilibrium point is obtained E1(x11,x21) = E1
( k

r1
(r1−D1− τ1),0

)
.

Therefore, from the fact x1 > 0 the equilibrium E1 exists if r1 > D1 i.e., r1 > p1 +q1 +d1.

Thus in the absence of predator species x2, the total prey death rate due to threats must be less

than its intrinsic growth rate for the point E1(x1,0) to exists.

(c) Prey extinction equilibrium point: Where there are no prey i.e., x1 = 0 and x2 6= 0 then from

the system (2a)-(2b) we get,
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dx2

dt
= 0

⇒ x2(r2 +D2 + τ2x2) = 0

⇒ x2 =−
r2 +D2

τ2
(10)

Thus the equilibrium point is obtained E2(x12,x22) = E2(0,− r2+D2
τ2

)

This result shows that the model assumption that the predator’s only the source of prey, then the

predator goes to extinction.

(d) Co-existence equilibrium point: When Predator and prey i.e., both species co-exists i.e.,

x1 6= 0,x2 6= 0 then from the system (2a)-(2b) we have, dx1
dt = 0 and dx2

dt = 0.

3. DYNAMIC BEHAVIOR OF THE SYSTEM

3.1. Local Stability Analysis. In this section we analysis the stability properties of the equi-

librium points E0,E1,E2 and E3. The local stability is established through Jacobian matrix of

the system and finding the eigenvalues to evaluate at each equilibrium point. For linearized

system the Jacobian matrix is given by,

∣∣∣∣∣∣
∂ f1
∂x1

∂ f1
∂x2

∂ f2
∂x1

∂ f2
∂x2

∣∣∣∣∣∣ .
For the model system (2a)-(2b) its corresponding Jacobian matrix is J(Ei) =

∣∣∣∣∣∣ J11 J12

J21 J22

∣∣∣∣∣∣ ,
where J11 =−D1− r1x1

k + r1(1− x1
k )+

a(1−m)2µx1x2
(a(1−m)x1+x2)2 −

(1−m)µx2
a(1−m)x1+x2

,

J12 =
(1−m)µx1x2

(a(1−m)x1+x2)2 −
(1−m)µx1

a(1−m)x1+x2
,

J21 =
(1−m)2µx1x2

(a(1−m)x1+x2)2 +
e(1−m)µx2

a(1−m)x1+x2
,

J22 =−D2− r2−2τ2x2− e(1−m)µx1x2
(a(1−m)x1+x2)2 +

e(1−m)µx1
a(1−m)x1+x2

.

3.2. Behavior of the system around the origin E0(0,0). The Jacobian matrix J0 at E0(0,0)

is

J(E0) =

∣∣∣∣∣∣ r1−D1 0

0 −(r2 +D2)

∣∣∣∣∣∣ .
The eigenvalue of the Jacobian matrix at E0(0,0) are r1−D1 and −(r2 +D2). Hence the equi-

librium point E0(0,0) unstable saddle point.
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3.3. Behavior of the system around the origin E1(x,0). The Jacobian matrix J1 at E0(x1,0)

is

J(E1) =

∣∣∣∣∣∣ −D1− r1x1
k + r1(1− x1

k ) − µ

a

0 −(r2 +D2− eµ

a )

∣∣∣∣∣∣ .
The eigenvalue of the Jacobian matrix at E1(x1,0) are−D1− r1x1

k + r1(1− x1
k ) and−(r2+D2−

eµ

a ). Hence the equilibrium point E1(x10,0) unstable saddle point.

3.4. Behavior of the system around the origin E2(0,x22). The Jacobian matrix J2 at E0(0,x22)

is

J(E2) =

∣∣∣∣∣∣ −D1− r1− τ1− (1−m) 0

eµ(1−m) −(r2 +D2 +2τ2x22)

∣∣∣∣∣∣ .
Eigenvalues corresponding to the point E3(x13,x23) are the roots of the equation

λ 2−λ (J11 + J22)+ J11J22 = 0

where, J11 =−D1− r1x13
k + r1(1− x13

k )+ a(1−m)2µx13x23
(a(1−m)x13+x23)2 −

(1−m)µx23
a(1−m)x13+x23

,

and J22 =−D2− r2−2τ2x23− e(1−m)µx13x23
(a(1−m)x13+x23)2 +

e(1−m)µx23
a(1−m)x13+x23

.

3.5. Global Stability. To show the global stability of the system (2.2) we construct a Lyanpnov

function as follows,

L(x1,x2) = L1(x1− x23− x13loge
x1
x13

)+L2(x2− x23− x23loge
x2
x23

)

where L1 and L2 be positive constants to be determined. We can easily verify that the function

L(x1,x2) = 0 at E3(x13,x23) and is positive for all other values of x1 and x2. Then the time

derivative of L(x1,x2) along the solution of the system is,

dL
dt

= L1
(x1− x13

x1

)dx1

dt
+L2

(x2− x23

x2

)dx2

dt

= L1
[x1− x13

x1

)
x1
[
r1(1−

x1

k
)− µ(1−m)x2

x2 +a(1−m)x1
−D1

]
+L2

(x2− x23

x2

)
x2
[
r2 +

eµ(1−m)x2

y+a(1−m)x2
−D2− τ2x2

]
= L1(x1− x13)

[
r1(1−

x1

k
)− µ(1−m)x2

x2 +a(1−m)x1
−D1− tau1

]
+L2(x2− x23)

[
− r2 +

eµ(1−m)x2

x2 +a(1−m)x1
−D2− τ2x2

]
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We have also the set of equilibrium equation corresponding the steady state point E3(x13,x23).

= L1(x1− x13)
[
r1−D1− τ1−

r1x1

k
− µ(1−m)x2

x2 +a(1−m)x1

]
+L2(x2− x23)

[ eµ(1−m)x2

x2 +a(1−m)x1
− r2−D2− τ2x2

]
= L1(x1− x13)

[
r1−D1− τ1−

r1x1

k
− µ(1−m)x2

x2 +a(1−m)x1
− r1 +−D1 + τ1−

r1x13

k
+

µ(1−m)x13

x13 +a(1−m)x13

]
+L2(x2− x23)

[ eµ(1−m)x2

x2 +a(1−m)x1
− r2−D2− τ2x2−

eµ(1−m)x23

x2 +a(1−m)x13
+ r2 +D2 + τ2x23

]
= L1(x1− x13)

[
µ(1−m)x23

x23 +a(1−m)x13
− µ(1−m)x2

x2 +a(1−m)x1
+

r1

k
(x13− x)

]
+L2(x2− x23)

[ eµ(1−m)x2

x2 +a(1−m)x1
− eµ(1−m)x23

x23 +a(1−m)x13
+ τ2(x2− x23)

]
= L1(x1− x13)

[
µ(1−m)

( x23

x23 +a(1−m)x13
− x2

x2 +a(1−m)x1

)
+

r1

k
(x13− x1)

]
+L2(x2− x23)

[
eµ(1−m)

( x2

x2 +a(1−m)x1
− x23

x23 +a(1−m)x13

)
+ τ2(x2− x23)

]
= L1(x1− x13)

[
µ(1−m)

(x23x2 +a(1−m)x1x23− x23x2−a(1−m)x13x2(
x23 +a(1−m)x13

)(
x2 +a(1−m)x1

) )
+

r1

k
(x13− x1)

]
+L2(x2− x23)

[
eµ(1−m)

(x23x2 +a(1−m)x13x2− x23x2−a(1−m)x1x23(
x23 +a(1−m)x13

)(
x2 +a(1−m)x1

) )
+ τ2(x2− x23)

]
= L1(x1− x13)

[
µa(1−m)2(x1x23− x13x2)(

x23 +a(1−m)x13
(
x2 +a(1−m)x2

) + r1

k
(x13− x)

]
+L2(x2− x23)

[ eµ(1−m)2(x13x2− x1x23)(
x23 +a(1−m)x13

)(
x2 +a(1−m)x1

) + τ2(x2− x23)
]

=
µa(1−m)2(x1x23− x13x2)(

x23 +a(1−m)x13
)(

x2 +a(1−m)x1
)[L1(x1− x13)−L2(x2− x23)

]
−r1

k
L1(x1− x13)

2 +L2τ2(x2− x23)
2

∴
dL
dt
≤ µa(1−m)2(x1x23− x13x2)

[
L1(x1− x13)−L2(x2− x23)

]
−r1

k
L1(x1− x13)

2 +L2τ2(x2− x23)
2

Let L1 = 1 and L2 =
x1−x13
x2−x23

then we get,
dL
dt ≤ µa(1−m)2(x1x23−x13x2)

[
(x1−x13)−(x1−x13)

]
− r1

k (x1−x13)
2+τ2(x2−x23)

2.
(x1−x13

x2−x23

)
≤ τ2(x2− x23)(x1− x13)− r1

k (x1− x13)
2

≤ (x1− x13)
[
h(x2− x23)− r1

k

]
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∴ dL
dt < 0 if τ2(x2− x23)− r1

k > 0.

Implies, r1 < τ1k(x2− x23)

and dL
dt = 0 iff (x1,x2)≡ (x13,x23).

(a)
0 10 20 30 40 50 60 70 80 90 100

Time (day)

1.2

1.4

1.6

1.8

2
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2.6
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P
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S
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Predator

(b)

FIGURE 1. Stability behaviour of the system (2a)-(2b) around the equilibrium position

E3 with the initial conditions x10 = 2.50, x20 = 1.20, (a) Time series, (b) Phase portrait.

3.6. Hopf-bifurcation Analysis. At the equilibrium point E3(x13,x23), the characteristic equa-

tion is given by,

λ
2− (J11 + J22)+(J11J22− J12J21) = 0

⇒ λ
2− (trJE3)+(detJE3) = 0(11)

where, x1− x13 ≈ ex1t ,x2− x23 ≈ ex2t .

If tr(JE3) = J11 + J22 = 0 at e = e[HB], then both the positive eigenvalues are purely imaginary

if det(JE3) = (J11J22− J12J21) is positive.

Let the root of the corresponding characteristic equations are given by λ = w1(e)+ iw2(e) and

λ2 = w1(e)− iw2(e).

Now substituting λ = w1(e)+ iw2(e) in the characteristic equation we get,

w2
1−w2

2 +2iw1w2− tr(JE3)(w1 + iw2)+det(JE3) = 0.(12)

Equating the real and imaginary part, we get,

w2
1−w2

2− tr(JE3)w1 +det(JE3) = 0

2w1w2− tr(JE3w2) = 0.(13)
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Differentiating (15) with respect to e we get,

2
(dw1

de
w2 +

dw2

de
w1
)
−
(dw2

de
tr(JE3)+w2

d
de

tr(JE3)
)
= 0.(14)

If tr(JE3) = 0 and if we consider w1 = 0 we get,

⇒ 2dw1
de w2−w2

d
detr(JE3) = 0

⇒ dw1
de = 1

2
d
detr(JE3)

= 1
2

[
(1−m)µx13

a(1−m)x13+x23
− (1−m)µx13x23(

a(1−m)x13+x23

)2

]
= 1

2

(
a(1−m)2µx2

13(
a(1−m)x1+x2

)2

)
6= 0.

Hence, the system attains a Hopf bifurcation around the point E3(x13,x23) at e = e[HB],

where e[HB] =

(
a(1−m)x1+x2

)(
(D1+D2)−(r1−r2)+2τ2x2+2x1(

r1
k )
)

aµ(1−m)2x2
1

4. ECOLOGICAL MODEL WITH CONTROL

In order to show the controlling effect of threatened to the system, we consider anti-poaching

patrol u1, construction of strong green fence and Bomas u2 and vaccination u3 then reformulate

the system (2a)-(2b) is,

ẋ1 = r1x1(1−
x1

k
)− w(1−m)x1x2

x2 +a(1−m)x1
− (1−u1(t))p1x1− (1−u2(t))q1x1

−(1−u3(t))τ1x1(15)

ẋ2 =−r2x2 +
ew(1−m)x1x2

x2 +a(1−m)x1
− (1−u1(t))p2x2− (1−u2(t))q2x2− (1−u3)τ2x2

2(16)

where 0≤ u1 ≤ 1,0≤ u2 ≤ 1,0≤ u3 ≤ 1.

FIGURE 2. Hopf-bifurcation around the positive interior equilibrium point E3.
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4.1. Behavior of the control system. According to Pontryagin’s maximum principle convert

the system into a maximizing pointwise Hamiltonian H with respect to u1,u2,u3 ∈U we get,

H(t,x,u,λ ) =
(
γ1

u2
1

2 + γ2
u2

2
2 + γ3

u2
3

2

)
+ λ1{r1x1(1− x1

k )−
w(1−m)x1x2
x2+(1−m)x1

−
(
1− u1(t)

)
p1x1−

(
1−

u2(t)
)
q1x−

(
1− u3(t)

)
d1x1}+λ2{−r2x2 +

ew(1−m)x1x2
x1+(1−m)x1

−
(
1− u1(t)

)
p2x2−

(
1− u2(t)

)
q2x2−(

1−u3(t)
)
d2x2−hx2

2}, where λ1 and λ2 be the adjoint variables.

Now applying Pontryagin’s maximum principle [15] and the existence results for the optimal

control [10] we obtained the following proposition,

Proposition: Maximizes J(u1,u2,u3) over U for the optimal control triple u∗1,u
∗
2 and u∗3 then

there exists adjoint variables λ1 and λ2 satisfying
dλ1
dt =− ∂H

∂x1
=−

[
λ1

{
r1(1− 2x1

k )− µx2
2(1−m)(

x2+a(1−m)x1

)2

}
−
{
(1−u1)p1+(1−u2)q1+(1−u3)d1

}
+

λ2

{
eµx2

2(1−m)2(
x2+(1−m)x1

)2

}]
dλ2
dt =− ∂H

∂x2
=−

[
λ1

{
r1(

µx2
1(1−m)2−1(

x2+a(1−m)x1

)2

}
+λ2

{
−r2

eµx2
1(1−m)2(

x2+(1−m)x1

)2

}
−
{
(1−u1)p1+(1−u2)q1+

(1−u3)d1 +2hx2

}]
and with transversality condition as λ1(T ) = δ1 and λ2(T ) = δ2 Using optimality condition, we

have, ∂H
∂u = 0 at u∗.

i.e, ∂H
∂u1

= 0 at u∗1, ∂H
∂u2

= 0 at u∗2, and ∂H
∂u3

= 0 at u∗3.

But ∂H
∂u1

=−γ1u1 +λ1x1 p1 +λ2 p2x2 = 0 at u∗1.

Hence u∗1 =
L1 p1x1+λ2P2y

γ1

∂H
∂u2

=−γ2u2 +λ1q1x1 +λ2q2x2 = 0 at u∗2.

Hence u∗2 =
λ1q1x+λ2q2y

γ2
,

and ∂H
∂u3

=−γ3u3 +λ1d1x1 +λ2d2x2 = 0 at u∗3.

Hence u∗3 =
λ1d1x+λ2d2y

γ3
.

On the interior of the control set U the following characterization holds,

Note that the initial time condition and final time condition have in the state system (A) and

co-state system (B) respectively.
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5. NUMERICAL SIMULATION

Analytical studies could never be completed without numerical verification of the derived re-

sults. In this section, we have presented computer simulations of some solutions to the system

(2a)-(2b). Along with the verification of our analytical findings, these numerical simulations

are very important from practical point of view. We have used various forms of optimal strate-

gies that can be applied to control the threatened predator-prey system. State system, co-state

system and optimal characterization in the model system (2a)-(2b), (17) and (18) respectively

are solved numerically in the following ways:

(a) Firstly divide the total time interval into n equal subintervals and set the state at different

times as x̄ = (x−1,x2, .....,xn+1) and the co-state variables as L̄ = (L1,L2, .....,Ln+1).

(b) For starting iteration we assume control takes zero over the time interval i.e., ū= (0,0, ...,0).

(c) Solve the state according to the ODE with the values of ū forwardly by using the initial con-

dition x(0) = x0.

(d) Solve L̄ in time from co-state differential equation in backward process by using the transver-

sality condition Łn+1 = L(T ), and the values of ū is previously evaluated.

(e) Entering the new values of x̄ and L̄ and update the control through the rule

u∗ = min
(
umax,max(usig,umin)

)
where

u∗ =


umin if ∂H

∂u < 0,

usig if ∂H
∂u = 0,

umax if ∂H
∂u > 0.

(f) If the solution of the variables are convergent i.e., the values of the variables of the last iter-

ation are negligibly close, then the solution is complete, otherwise return to step (c).

From different combinations of the controls, numerically we obtained seven strategies with

m = 0.021,m ∈ [0,1).

5.1. Optimal control strategies. Strategy (a) Application of anti-poaching patrols for con-

trolling poaching. In this strategy, we use only anti-poaching patrols u1 6= 0 to optimize the

objective function J, while construction of green fence and Bomas u2 = 0 and use of vaccine

u3 = 0. In the FIGURE 3 we investigate the results that show significant difference between
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the predator-prey populations with the application of optimal control strategy and without the

application. This shows that the predator-prey population size increases directly if poaching in

the system is eliminated. Here we see that the optimal control anti-poaching patrol control u1

increases gradually till time t = 10 years.

Strategy (b) Construction of strong Bomas and green fence. In this strategy we use only the
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FIGURE 3. Simulations of a threatened predetor-prey model showing the effect

of optimal application of anti-poaching patrols.

control of construction of strong Bomas and green fence u2 6= 0 to optimize the objective func-

tion J, while anti-poaching patrol u1 = 0 and use of vaccines u3 = 0. In the FIGURE 4 we

investigate the results that show significant difference between the predator-prey populations

with the application of optimal control strategy and without the application. This shows that

the predator-prey population size increases directly if construction of strong bomas and green

fence in the system.

Strategy (c) The use of vaccines for control of diseases. In this strategy we use only the control
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FIGURE 4. Simulations of a threatened predetor-prey model showing the effect

of optimal application of strong Bomas and green fence.

of construction of strong Bomas and green fence u3 6= 0 to optimize the objective function J,



AN ECOLOGICAL MODEL FOR SUSTAINABLE WILDLIFE MANAGEMENT 15

while anti-poaching patrol u1 = 0 and use of vaccines u2 = 0. In the FIGURE 5 we investigate

the results that show significant difference between the predator-prey populations with the ap-

plication of optimal control strategy and without the application. This shows the predator- prey

population size increases directly if use of vaccines in the system.

Strategy (d) Apply the combination of anti-poaching patrols and construction of Bomas and
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FIGURE 5. Simulations of a threatened predetor-prey model showing the effect

of optimal application of vaccines.

green fence. In this strategy we use the control of construction of strong Bomas and green fence

u2 6= 0 anti-poaching patrol u1 6= 0 to optimize the objective function J, while use of vaccines

u3 = 0. In the FIGURE 6 we investigate the results that show significant difference between

the predator-prey populations with the application of optimal control strategy and without the

application. This shows the predator-prey population size increases directly if construction of

strong bomas and green fence and poaching in the system is eliminated.

Strategy (e) Apply the combination of anti-poaching patrols and construction of Bomas and
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FIGURE 6. Simulations of a threatened predetor-prey model showing the effect

of optimal application of anti-poaching patrols and construction of Bomas and

green fence.
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green fence. In this strategy we use the control of vaccines u3 6= 0 anti-poaching patrol u1 6= 0

to optimize the objective function J, while anti-poaching patrol u1 = 0 and use of vaccines

u3 = 0. In the FIGURE 7 we investigate the results that show significant difference between

the predator-prey populations with the application of optimal control strategy and without the

application. This shows the predator-prey population size increases directly if use of vaccines

and poaching in the system is eliminated.

Strategy (f) Apply the combination of anti-poaching patrols and use of vaccines. In this strat-
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FIGURE 7. Simulations of a threatened predetor-prey model showing the effect

of optimal application of anti-poaching patrols and construction of Bomas and

green fence.

egy we use the control of construction of strong bomas and green fence u2 6= 0 and the use

of vaccines u3 6= 0 to optimize the objective function J, while anti-poaching patrol u1 = 0 and

use of vaccines u3 = 0. In the FIGURE 8 we investigate the results that show significant dif-

ference between the predator-prey populations with the application of optimal control strategy

and without the application. This shows the predator-prey population size increases directly if

construction of strong bomas and green fence and the use of vaccines.

Strategy (g) Apply the combination of anti-poaching patrols, construction of strong Bomas

and green fence and use of vaccines. In this strategy we use the control of anti-poaching patrols

u1 6= 0 construction of strong Bomas and green fence u2 6= 0 and use of vaccines u3 6= 0 to

optimize the objective function J. In the FIGURE 9 we investigate the results that show signif-

icant difference between the predator-prey populations with the application of optimal control

strategy without the application. This shows that the predator- prey population size increases

directly if combination of anti-poaching patrols, construction of strong Bomas and green fence
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FIGURE 8. Simulations of a threatened predetor-prey model showing the effect

of optimal application of anti-poaching patrols and use of vaccines.

and use of vaccines.
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FIGURE 9. Simulations of a threatened predetor-prey model showing the effect

of optimal application of anti-poaching patrols, contruction of strong Bomas and

green fence and use of vaccines.

5.2. Effect of variation of refuge m. In this section, we investigate the effect of variation of

refuge m to optimal control strategies numerically.
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FIGURE 10. Effect of prey refuge m.
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6. CONCLUSION

In this paper, we have presented a threatened fishery model using a deterministic system of

differential equations. The threats are poaching and external toxicity. Ratio dependent response

is used for the problems discussed in this study. The local and global stability conditions are

obtained. Controls are introduced to the system which are anti-poaching patrols for controlling

poaching, filtration and re-route of toxic fumes in the water vehicles and industries for control-

ling toxicity. In investigating the effect of optimal control, we have used one control at a time,

the combination of two controls is used at a time while setting other(s) to zero to compare the

effects of the control strategies on the eradication of threats to the system. Additionally, the

case of all controls has also been taken into consideration. Our numerical results suggest that

the use of two controls has highest impact on the control of the system threats. We have also

shown through graphs that the prey population and predator population have decreased when

the toxicity has increased. In FIGURE (3-9) we have observed that if controls are applied then

the prey population and predator population significantly increases and in fig 10 we see that

the effect of prey refuse is not remarkable. To find the optimum equilibrium level Pontryagin’s

maximum principle has been applied.
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