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Abstract. A delayed Leslie-Gower predator-prey model with continuous threshold prey harvesting is studied.
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some numerical simulations are given to support and extend our theoretical results.
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1. INTRODUCTION

Leslie has introduced a predator-prey model [1], including support capability that the en-

vironment provides predators is proportional to the number of prey. Leslie advances that the

growth rate of predators and preys admits an upper limit which can be approached under certain

conditions: for the predator when the number of prey is high, for the prey when predator num-

bers (can be also the number of prey) is low [1,2]. The Leslie-Gower term means in absence of

preys, the predators have an oscillatory behavior.

There are many predator-prey models in the literature with Leslie-Gower term or a modified

Leslie-Gower term and Holling type II functional response [3, 5–8, 11–13]. Some of them

analyze bifurcations [3,4,14], persistence [9] or seasonally varying parameters [10]. The Leslie-

Gower predator-prey model has not yet been analyzed as in this paper, considering optimal

harvest and response function of type III.

Profit, over-exploitation and extinction of a species being harvested are primary concerns in

ecology and commercial harvesting industries. Thus, current research incorporates a harvest-

ing component in mathematical models to study the effects it has on one or multiple species.

This has attracted interest from the commercial harvesting industry and from many scientific

communities including biology, ecology, and economics.

Most predator-prey models in the literature consider either constant or linear harvesting func-

tions [15, 16, 19, 20]. Recently, Tchinda et al., Tankam et al. [21, 23] considered a system of

delay differential equations modeling the predator-prey dynamics with continuous threshold

prey harvesting and Holling response function of type III. In [21], the model system was given

by

(1)


ẋ(t) = ϕ(x(t))−my(t)p(x(t))−H(x(t)),

ẏ(t) = [−d + cmp(x(t− τ))]y(t),

where x(t) and y(t) represent the population of preys and predators at time t respectively. The

parameter d is the natural mortality rate of predators. Parameters c and m are positive constants.

The function

(2) ϕ(x) = rx
(

1− x
K

)
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models the behavior of preys in absence of predators, where r denote the growth rate of preys

when x is small, and K is the capacity of the environment to support the preys. The functions

H(x) and p(x) which are the harvesting function of the preys and the response function of

predators to preys respectively, are defined by

(3) H(x) =


0 if x < T,

h(x−T )
h+ x−T

if x≥ T,

and

(4) p(x) =
x2

ax2 +bx+1
,

where a is a positive constant and b is a nonnegative constant. This function is one of potential

response function of predators to preys, modeling the consumption of preys by predators. It

reflects very small predation when the number of preys is small( p′(0) = 0), and a group of

advantage for the preys when the number of prey is hight (p(x) tends to 1
a when x tends to

infinity). For the harvesting function, T is the threshold value. In this way, once the prey

population reaches the size x = T , then harvesting starts and increases smoothly to a limit value

h. Here, a time delay τ is in the predator response term p(x(t)) in the predator equation. This

delay can be regarded as a gestation period or reaction time of the predators.

In [23], System (1) has been investigated, but with a piecewise linear threshold policy har-

vesting given by

(5) H(x) =



0 if x < T1,

h(x−T1)

T2−T1
if T1 ≤ x≤ T2,

h if x≥ T2.

This piecewise linear threshold policy harvesting has been previously introduced in [22] in a

predator prey model without delay where a Holling response function of type II was considered.
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In these models, global qualitative and bifurcation analysis are combined to determine the

global dynamics of the model. But, note that, all these models do not take into account the fact

that reduction in a predator population has a reciprocal relationship with per capita availability

of its preferred food. This assumption leads the Leslie- Gower formulation.

On the other hand, time delay plays an important role in many biological dynamical systems,

being particularly relevant in ecology, where time delays have been recognized to contribute

critically to the stable or unstable outcome of prey densities due to predation. The introduction

of time delay into the population model is more realistic to model the interaction between the

predator and prey populations and the population models with time delay are of current research

interest in mathematical biology [29,31]. There is extensive literature about the effects of delay

on the dynamics of predator-prey models.

In this paper, we consider a delayed Leslie-Grower predator-prey model both with refuge and

the piecewise linear threshold policy harvesting given by Eq. (5). The Leslie-Gower formula-

tion is based on the assumption that reduction in a predator population has a reciprocal relation-

ship with per capita availability of its preferred food. Indeed, Leslie introduced a predator-prey

model where the carrying capacity of the predator environment is proportional to the number of

prey [1, 2]. He stresses the fact that there are upper limits to the rates of increase of both prey x

and predator y, which are not recognized in the Lotka-Volterra model.

This paper is organized as follows. In the Section 2, we give a description of the model. In

Section 3, some preliminary results on the boundedness of solutions for System (6) when Eq.(5)

are given. Existence and unicity of equilibria are investigated. Section 4 deals with the linear

stability analysis of the model system with and without time delay. In Section 5, direction and

stability of Hopf bifurcation are presented. In Section 6, optimal harvest policy of population

model is derived. Numerical results to illustrate the analytical findings are presented in Section

7 and, finally, a summary is presented in Section 8.

2. THE MODEL

It is well known that time delay can play an important role in biological dynamical systems,

where it has been recognized to contribute critically to the stable or unstable outcome of prey

densities due to predation. Therefore, let us analyze the following delayed predator-prey model:
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(6)


ẋ(t) =

(
r1−b1x(t)

)
x(t)−a1(1−m)x(t)y(t)

− H
(
x(t)
)
,

ẏ(t) =
[
r2−

a2y(t− τ)

(1−m)x(t− τ)

]
y(t),

where x(t) denotes the Prey population at time t and y(t) the Predator population at time t.

All parameters are positive and m is such that 0 ≤ m < 1. This parameter is the rate of refuge

of prey population. This means that when m = 0, all preys are available for predation. mx(t)

models the capacity of a refuge at time t and so refuge protecting mx(t) of the prey population.

It therefore remains (1−m)x(t) of the preys available for predation. Parameters r1 and r2 are

the intrinsic growth rate of the preys and predators respectively, a1 denotes the predation rate

per unit of time,
r1

b1
is the carrying capacity of the prey’s environment and

r2

a2
x(t) is the carrying

capacity of the predator’s environment which is proportional to the number of prey. Here, we

incorporate a single discrete delay τ > 0 in the negative feedback of the predator’s density.

Let us denote by R+
2 the nonnegative quadrant and by int(R+

2 ) the positive quadrant. For

θ ∈ [−τ,0], we use the following conventional notation:

xt(θ) = x(t +θ).

Then the initial conditions for this system take the form

(7)


ẋ0(θ) = φ1(θ),

ẏ0(θ) = φ2(θ),

for all θ ∈ [−τ,0], where (φ1,φ2) ∈C([−τ,0],R2
+),x(0) = φ1(0)> 0 and y(0) = φ2(0)> 0.

For ecological reason, as in [23], we make the following assumption. We assume that:

: (i) 0 < x(0)≤ r1

b1
≡ K;

: (ii) T1 < T2 < K.

In fact, the first assumption comes from the fact that it is not plausible to have an initial value

of the preys x(0) at time t = 0 which is greater than the carrying capacity K of the preys.

Moreover if T1 = T2, then the harvesting function becomes a discrete harvesting. In other hand,
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if we assume T2 ≥ K, then we will not have some harvest after T2 since the first assumption

leads to 0≤ x(t)≤ K.

3. PRELIMINARY RESULTS

3.1. Boundedness of solutions. We start by showing that solutions of System (6) and System

(5) that start in R2
+ will remain there and are uniformly bounded. Indeed, we have the following

theorem.

Theorem 1. : Let Assumption 2-(i) holds. Then, every solution of System (6) that starts in R2
+

will remain there and is uniformly bounded.

Proof. : Let (x0,y0) ∈ R2
+ be given and let us denote for each t ≥ 0, (x(t),y(t)) the orbit of

System (6) passing through (x0,y0) at t = 0. Then, we can find that (x(t),y(t)) ∈ R2
+ for all

t ≥ 0. Thus, every solution of System (1) that starts in R2
+ will remain there. From the ẋ-

equation of System (6), we have

ẋ(t)≤
(

r1−b1x(t)
)

x(t).

Applying a differential inequality [28] gives

x(t)≤ 1
b1

r1
+

(
1

x(0)
− b1

r1

)
e−r1t

for all t ≥ 0. Since 0 < x(0)≤ r1

b1
from Assumption 2-(i), it follows that x(t)≤ r1

b1
for all t ≥ 0.

Now, let us check for the boundedness of y(t).

From the predator equation, we have ẏ(t)≤ r2y(t). Hence, for t > τ , y(t)≤ y(t−τ)er2τ . This

equation is equivalent for t > τ , to

(8) y(t− τ)≥ y(t)e−r2t .

Moreover, for any δ > 1, there exists a positive Tδ such that for t > Tδ , x(t)< δ
r1

b1
. Eq.(8) gives

for t > Tδ + τ ,

ẏ(t)< y(t)

r2−
a2e−r2τ

δ (1−m)
r1

b1

y(t)

 ,

which implies, by the same arguments use for x, that limsup
t→+∞

y(t) <
r2

a2δ (1−m) r1
b1

er2τ
. The

conclusion of this lemma holds for δ → 1. �
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3.2. Equilibria of the model. In this section we analyze some equilibria properties of Sys-

tem (6)-(5). These steady states, which are determined analytically by setting ẋ = ẏ = 0, are

independent of the delay τ . The following results holds:

Proposition 1. : Let K =
r1

b1
, b0 = b1 +

r2a1(1−m)2

a2
, K0 =

r1

b0
, ϕ : x 7−→ (r1− b1x)x and

ϕ0 : x 7−→ (r1−b0x)x.

(1) System (6)-(5) has one or more equilibria with y = 0 (without predators).

• One equilibrium in R∗+×{0} under some conditions. More precisely,

– if ϕ(T2)> h, then E1(x1,0) is the unique equilibrium of the model with x1 ∈[
K
2
,K
]

if T2 ≤
K
2

, or x1 ∈ [T2,K] if T2 ≥
K
2

.

– if ϕ(T2)≤ h and T2 ≥
K
2

, then F̃(x̃,0) is the unique equilibrium of the model

with x̃ ∈ [T1,T2].

• Two equilibria F̃(x̃,0) and Ẽ
(

K
2
,0
)

in R∗+×{0}, where x̃ ∈ [T1,T2] under the

conditions T2 ≤
K
2

, ϕ(T2)≤ h and ϕ

(
K
2

)
= h.

• Three equilibria F̃(x̃,0), E1(x1,0) and E2(x2,0) in R∗+×{0}, where x̃ ∈ [T1,T2],

x1 ∈
]

K
2
,K
]

, x2 ∈
[

T2,
K
2

]
under the conditions T2 ≤

K
2

, ϕ(T2)≤ h and ϕ

(
K
2

)
>

h.

(2) Under some conditions, System (6)-(5) has one or more coexistence equilibria.

• A unique equilibrium in these different cases:

– if K0 < T1, then G0(K0,y0) is the equilibrium of the model.

– if K0 ∈ [T1,T2], then G(x∗,y∗) is the equilibrium of the model, with x∗ ∈

[T1,T2] and y∗ =
r2(1−m)x∗

a2
.

– if K0 ≥ T2 and ϕ(T2)> h, then G1(x∗1,y
∗
1) is the equilibrium of the model with

x∗1 ∈ [T2,K0] and y∗1 =
r2(1−m)x∗1

a2
.

• Two equilibria G(x∗,y∗)∈ [T1,T2]×R∗+ and G̃0

(
K0

2
, ỹ0

)
when

K0

2
> T2, ϕ0(T2)≤

h and ϕ0

(
K0

2

)
= h.

• Tree equilibria G(x∗,y∗)∈ [T1,T2]×R∗+, G1(x∗1,y
∗
1)∈

]
K0

2
,K0

]
×R∗+ and G2(x∗2,y

∗
2)∈[

T2,
K0

2

[
×R∗+ when

K0

2
> T2, ϕ0(T2)≤ h and ϕ0

(
K0

2

)
> h.

Remark 1. : Concerning parameters K and K0, we always have K0 ≤ K.
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Proof. : An equilibrium S(x,y) of the model is solution of Eq.(9) when x < T1, Eq. (10) when

T1 ≤ x≤ T2 and Eq. (11) when x≥ T2, where

(9)


(r1−b1x)x−a1(1−m)xy = 0,

[
r2−

a2y
(1−m)x

]
y = 0,

(10)


(r1−b1x)x−a1(1−m)xy− h(x−T1)

T2−T1
= 0,

[
r2−

a2y
(1−m)x

]
y = 0,

and

(11)


(r1−b1x)x−a1(1−m)xy−h = 0,

[
r2−

a2y
(1−m)x

]
y = 0.

From the second equation of System (9), System (10) or System (11), we have y = 0 or

y =
r2(1−m)x

a2
.

When y = 0, the equilibria (0,0) and
(

r1

b1
,0
)

exist on [0,T1[. This is impossible since
r1

b1
= K > T1. Moreover, we have the following equations,

(r1−b1x)x−a1(1−m)xy− h(x−T1)

T2−T1
= 0 on [T1,T2],

and

(r1−b1x)x−a1(1−m)xy−h = 0 on [T2,K].

• On [T1,T2], the identity at the equilibrium gives equation −b1x2 +
(
r1−

h
T2−T1

)
x+

hT1

T2−T1
= 0 which admits a unique positive solution.

Let us consider f (x) = −b1x2 +
(
r1 −

h
T2−T1

)
x +

hT1

T2−T1
. Then f (T1) > 0 and

f (T2) = ϕ(T2)−h. Hence, if ϕ(T2)≤ h, a unique solution exists on [T1,T2].

• On [T2,K], the identity at the equilibrium gives equation −b1x2 + r1x− h = 0. Its dis-

criminant is

∆ = r2
1−4b1h = 4b1

(
ϕ(

K
2
)−h

)
.
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Hence, if
K
2

> h, there are two positive solutions, which are both on [T2,K], when

T2 <
K
2

and ϕ(T2)≤ h. Besides, when ϕ(T2)> h, just one of the solutions is on [T2,K].

Still according to the sign of the discriminant ∆, if ϕ(
K
2
) = h, x =

K
2

is the unique

solution on [T2,K] when
K
2
≥ T2. There is no solution when

K
2
< T2.

When y 6= 0, from the second equation of System (9), System (10) and System (11), we have

y =
r2(1−m)

a2
x. Replacing it in the first equation gives (r1−b0x)x−H(x) = 0. On [0,T1], the

unique solution of this equation is x = K0, which exists if and only if K0 ≤ T1. Moreover, we

have the following equations,

(r1−b0x)x− h(x−T1)

T2−T1
= 0 on [T1,T2]

and

(r1−b0x)x−h = 0 on [T2,K].

• On [T1,T2], if K0 < T1, there is no equilibrium on [T1,T2]. Else, the identity at the equi-

librium gives equation −b0x2 +
(
r1−

h
T2−T1

)
x+

hT1

T2−T1
= 0 which admits a unique

positive solution.

Let us consider f0(x) =−b0x2+
(
r1−

h
T2−T1

)
x+

hT1

T2−T1
. Then f0(T1) = b0T1(K0−

T1) > 0 and f0(T2) = ϕ0(T2)− h. Hence, if ϕ0(T2) ≤ h, a unique solution exists on

[T1,T2].

• On [T2,K], the identity at the equilibrium gives −b0x2 + r1x− h = 0. Its discriminant

is ∆0 = r2
1− 4b0h = 4b0

(
ϕ0(

K0

2
)−h

)
. Hence, when

K0

2
> h, there are two positive

solutions, which are both on [T2,K0], when T2 <
K0

2
and ϕ0(T2) ≤ h. Besides, when

ϕ0(T2)> h, just one of the solutions is on [T2,K] ( particularly on [T2,K0]).

Still according to the sign of the discriminant, when ϕ0

(
K0

2

)
= h, x =

K0

2
is the

unique solution on [T2,K] when
K0

2
≥ T2. There is no solution when

K0

2
< T2.

�

Remark 2. : We summarize the results about equilibria in Fig. 1 and Fig. 2.

4. STABILITY ANALYSIS
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FIGURE 1. Existence and number of equilibria when y = 0.

FIGURE 2. Existence and number of equilibria when y 6= 0 and y∗(x∗) = r2(1−m)x∗
a2

.

4.1. Stability of equilibria when τ = 0. The Jacobian matrix J(x,y) of System (6) at the

equilibrium (x,y) when T1 ≤ x≤ T2, is given by
ϕ ′(x)− h

T2−T1
−a1(1−m)y −a1(1−m)x,

a2y2

(1−m)x2 r2−
2a2y

(1−m)x

 .

We notice that r2 ≥ 0 is always an eigenvalue of any equilibrium E(x,0), which is therefore

unstable.

Concerning stability of any equilibrium G(x∗,y∗) with y∗ 6= 0, the following theorem holds.

Theorem 2. : Let consider

∆1 =
[
ϕ ′(x∗)−a1(1−m)y∗− r2

]2
−4
[
2a1(1−m)r2y∗− r2ϕ ′(x∗)

]
,

∆2 =
[
ϕ ′(x∗)−a1(1−m)y∗− h

T2−T1
−r2

]2
−4
[
2a1(1−m)r2y∗−r2[ϕ

′(x∗)− h
T2−T1

]
]
.

(1) Let consider an equilibrium G(x∗,y∗) with x∗ ∈ [0,T1[∪]T2,K].

• If ∆1 > 0, then the equilibrium is a stable node when−ϕ ′(x∗)+a1(1−m)y∗+r2 >

0 and 2a1(1−m)r2y∗− r2ϕ ′(x∗)> 0.
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• If ∆1 = 0, then the equilibrium is a stable node when−ϕ ′(x∗)+a1(1−m)y∗+r2 >

0.

• If ∆1 < 0, then the equilibrium is a stable focus when−ϕ ′(x∗)+a1(1−m)y∗+r2 >

0.

• If −ϕ ′(x∗) + a1(1−m)y∗+ r2 = 0 and 2a1(1−m)r2y∗− r2ϕ ′(x∗) > 0, then the

equilibrium is a center.

(2) Let consider an equilibrium G(x∗,y∗) with x∗ ∈ [T1,T2].

• If ∆2 > 0, then the equilibrium is a stable node when −ϕ ′(x∗) + a1(1−m)y∗+
h

T2−T1
+ r2 > 0 and 2a1(1−m)r2y∗− r2(ϕ

′(x∗)− h
T2−T1

)> 0.

• If ∆2 = 0, then the equilibrium is a stable node when −ϕ ′(x∗) + a1(1−m)y∗+
h

T2−T1
+ r2 > 0.

• If ∆2 < 0, then the equilibrium is a stable focus when −ϕ ′(x∗) + a1(1−m)y∗+
h

T2−T1
+ r2 > 0.

• If −ϕ ′(x∗) + a1(1−m)y∗ +
h

T2−T1
+ r2 = 0 and 2a1(1−m)r2y∗ − r2(ϕ

′(x∗)−
h

T2−T1
)> 0, then the equilibrium is a center.

Proof. : The Jacobian matrix J(x∗,y∗) of System (6) at the equilibrium (x∗,y∗) becomes
ϕ ′(x∗)−a1(1−m)y∗−H ′(x∗) −a1(1−m)x∗

r2
y∗

x∗
−r2,

 ,

where H ′(x) = 0 for x ∈ [0,T1[∪]T2,K] and H ′(x) =
h

T2−T1
for x ∈ [T1,T2].

Therefore, the eigenvalues are given by the following equation:

(12)
λ 2 +λ

[
−ϕ ′(x∗))+a1(1−m)y∗+H ′(x∗)+ r2

]
+2a1(1−m)r2y∗− r2(ϕ

′(x∗)−H ′(x∗)) = 0.

The discriminant of this equation is given by

∆=

[
ϕ ′(x∗)−a1(1−m)y∗−H ′(x)− r2

]2

−4
[
2a1(1−m)r2y∗− r2[ϕ

′(x∗)−H ′(x)]
]
,

which is equal to ∆1 on [0,T1[∪]T2,K] and ∆2 on [T1,T2].

• When ∆> 0, J(x∗,y∗) has two positive eigenvalues which are both negatives if−ϕ ′(x∗)+

a1(1−m)y∗+H ′(x∗)+ r2 > 0 and 2a1(1−m)r2y∗− r2(ϕ
′(x∗)−H ′(x∗))> 0.
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• When ∆= 0, J(x∗,y∗) has one positive eigenvalue which is negative if−ϕ ′(x∗)+a1(1−
m)y∗+H ′(x∗)+ r2 > 0.

• When ∆ < 0, J(x∗,y∗) has two conjugated complex eigenvalues with a positive real part

equal to ϕ ′(x∗)−a1(1−m)y∗−H ′(x)− r2.

• When−ϕ ′(x∗)+a1(1−m)y∗+H ′(x∗)+r2 = 0 and 2a1(1−m)r2y∗−r2(ϕ
′(x∗)−H ′(x∗))>

0, J(x∗,y∗) has pure imaginary eigenvalues.

Hence, the conclusions follow. �

Remark 3. : The importance of this section is due to the fact that, if an equilibrium of System

(6)-(5) is unstable for τ = 0, it remains unstable for τ > 0 [24, 25]. Then, any equilibrium of

System (6) in the form E(x,0) is unstable when τ > 0. Concerning stability of equilibria when

τ > 0, we only consider the coexistence equilibria.

4.2. Stability of coexistence Equilibria for τ > 0 and Hopf Bifurcation. In order to analyze

the stability of coexistence equilibria G(x∗,y∗), let us define new variables u(t) = x(t)− x∗ and

v(t) = y(t)− y∗. Then the linearization of System (6) at G gives

(13)


u̇(t) =

[
r1−2b1x∗−a1(1−m)y∗−H ′(x∗)

]
u(t)

− a1(1−m)x∗v(t),

v̇(t) = −Ψ′(x∗)y∗2u(t− τ)− r2v(t− τ),

where H ′(x∗) = 0 for x∗ ∈ [0,T1[∪[T2,K], H ′(x∗) =
h

T2−T1
for x∗ ∈ [T1,T2] and Ψ(x∗) =

a2

(1−m)x∗
.

The characteristic equation of System (13) at G(x∗,y∗) is given by

(14) λ 2−αλ + r2λe−λτ − r2

(
α1−a1(1−m)y∗

)
e−λτ = 0,

where α = r1−2b1x∗−a1(1−m)y∗−H ′(x∗).

Note that for τ = 0, the characteristic equations (14) becomes

(15) λ
2 +(r2−α)λ − r2

(
α−a1(1−m)y∗

)
= 0.

Since the sum and product of roots are −(r2−α) and −r2

(
α−a1(1−m)y∗

)
respectively, the

two roots of (15) are real and negative or complex conjugate with negative real parts if and only
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if

(16) r2−α > 0 and α−a1(1−m)y∗ < 0.

Hence, in the absence of time delay, the system is locally asymptotically stable if and only if

r2−α > 0 and α−a1(1−m)y∗ < 0.

Now, for τ > 0, if λ = iω is a root of equation (14), then we have

−ω
2 +αω + r2iω

(
cosωτ− isinωτ

)
− c
(

coswτ− isinwτ
)
= 0,

where c = r2

(
α−a1(1−m)y∗

)
.

Separating real and imaginary parts gives

(17) r2ω sinωτ− ccosωτ = ω
2 and r2ω cosωτ + csinωτ = αω.

Eliminating τ by squaring and adding equations of (17), we get the algebraic equation

(18) r2
2ω

6 +
[
c2 + r2

2(α
2− r2

2)
]
ω

4 + c2(α2−2r2
2)ω

2− c4 = 0.

Substituting ω2 = η in the above equation gives a cubic equation in η of the form

(19) r2
2η

3 +
[
c2 + r2

2(α
2− r2

2)
]
η

2 + c2(α2−2r2
2)η− c4 = 0.

Observe that conditions (16) implies α < r2. Since r2
2 > 0 and −c4 < 0, if c2 + r2

2(α
2− r2

2)> 0

or α2−2r2
2 < 0, then by Descartes’ rule of sign, Eq.(19) has at least one positive root.

If α ∈]− r2,r2[, then α2−2r2
2 < 0 and Eq.(19) has only one positive root. If α <−r2, then

c2+ r2
2(α

2− r2
2)> 0 and Eq.(19) has at least one positive root. So, for any cases, Eq.(19) has at

least one positive root.

The following theorem gives a criterion for the switching in the stability behavior of G∗(x∗,y∗)

in terms of the delay parameter τ .

Theorem 3. : Suppose that G(x∗,y∗) exists and is locally asymptotically stable for System (6)

with τ = 0. Also let η0 = ω2
0 be a positive root of Eq.(19). Then there exists a value τ = τ0 such

that G is locally asymptotically stable for τ ∈ (0,τ0] and unstable for τ > τ0. Furthermore, the

system undergoes a Hopf bifurcation at G when τ = τ0.
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Proof. : Since ω0 is a solution of Eq.(18), the characteristic Eq.(14) has the pair of purely

imaginary roots ±iω0. From Eq.(17), τ0
n for n = 0,1, ... as a function of ω0 is given by

(20) τ
0
n =

1
w0

arccos
{

w2
0(−c+αr2)

c2 + r2
2w2

0

}
+

2πn
w0

.

For τ = 0, theorem 2 ensures that G is locally asymptotically stable. Hence, by Butler’s

lemma [27], G remains stable up to the minimum value of τ0
n , obtained here for n = 0, i.e. for

τ < τ0
0 , so that τ0 = min

n≥0
τ0

n ≡ τ0
0 . The theorem can be completely proved if we can show that

sign
{

d(Reλ (τ))

dτ
)

}∣∣∣∣
λ=iω0

> 0.

Differentiating equation (14) with respect to τ yields

(21)
[
2λ −α +

(
r2− r2τλ + cτ

)
e−λτ

]dλ

dτ
=
(
r2λ

2− cλ
)
e−λτ ,

which gives (
dλ (τ)

dτ

)−1

=
2λ −α +

(
r2− r2τλ + cτ

)
e−λτ(

r2λ 2− cλ
)
e−λτ

,

= − 2λ 2−αλ

λ 2(λ 2−αλ )
− r2

λ (c− r2λ )
− τ

λ
,

= − 1
λ 2−αλ

− 1
λ 2 −

r2

λ (c− r2λ )
− τ

λ
.

Thus, µ0 = sign
{

d(Reλ (τ))
dτ

)
}∣∣∣

λ=iw0
is given by

µ0 = sign
{

Re

(
dλ (τ)

dτ

)−1
}∣∣∣∣

λ=iw0

,

= sign
{

Re

[
− 1

λ 2−αλ
− 1

λ 2 −
r2

λ (c− r2λ )

]}∣∣∣∣
λ=iw0

,

= sign
{

w2
0

w4
0 +α2w2

0
+

1
w2

0
−

r2
2w2

0

r2
2w4

0 +w2
0c2

}
= sign

{
r2

2w4
0 +2c2w2

0 +α2c2

(w4
0 +α2w2

0)(r2w2
0 + c2)

}
> 0.

Hence, sign
{

d(Reλ (τ))
dτ

)
}∣∣∣

τ=τ0,λ=iω0
> 0. The transversality condition is satisfied and a Hopf

bifurcation occurs at τ = τ0. This achieves the proof. �
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5. PROPERTIES OF HOPF BIFURCATION

In this section, we give some properties of the Hopf bifurcation presented in Theorem 3 and

analyse the stability of bifurcated periodic solutions occurring through Hopf bifurcations by

using the normal form theory and the center manifold reduction for retarded functional differ-

ential equations (RFDEs) due to Hassard, Kazarinoff and Wan [17]. We assume that System (6)

undergoes Hopf bifurcation at the positive equilibrium G(x∗,y∗) for τ = τ0
j , ( j = 0,1,2, ...) and

then ±iω0 is corresponding purely imaginary roots of the characteristic equation.

Let x1(t) = x(t)− x? and x2(t) = y(t)− y?. Then, system (6)-(5) is equivalent to :

(22)



ẋ1(t) =
[
r1−2b1x∗−a1(1−m)y∗

]
x1(t)

−H ′(x∗)x1(t)−a1(1−m)x∗ x2(t)

+ f1
(
x1(t),x2(t)

)
,

ẋ2(t) =−Ψ′(x∗)y∗2 x1(t− τ)− r2x2(t− τ)

+ f2
(
x2(t),x1(t− τ),x2(t− τ)

)
,

where

f1
(
x1(t),x2(t)

)
=−a1(1−m)x1(t)x2(t)

−b1x2
1(t),

and

f2
(
x2(t),x1(t− τ),x2(t− τ)

)
= r2(x2(t)+ y?)

−
[
Ψ(x1(t− τ)+ x∗)(x2(t− τ)+ y∗)

](
x2(t)+ y?)

+Ψ′(x∗)y∗2 x1(t− τ)+ r2x2(t− τ).

Let τ = τ0
j + µ . Then, µ = 0 corresponds to Hopf bifurcation value of System (6) at the

positive equilibrium G(x?,y?). Since System (6) is equivalent to System (22), in the following

discussion we use System (22).
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In System (22), let x̄k(t) = xk(τt) and drop the bars for simplicity of notation. Then, System

(22) can be rewritten as a system of RFDEs in C
(
[−1,0],R2) of the form:

(23)



ẋ1(t) = (τ0
j +µ)

[
r1−2b1x∗−a1(1−m)y∗

]
x1(t)

− (τ0
j +µ)H ′(x∗)x1(t)

− (τ0
j +µ)a1(1−m)x∗ x2(t)

+ (τ0
j +µ) f1

(
x1(t),x2(t)

)
,

ẋ2(t) = −(τ0
j +µ)Ψ ′(x∗)y∗2 x1(t− τ)

− (τ0
j +µ)r2x2(t− τ)

+ (τ0
j +µ) f2

(
x2(t),x1(t− τ),x2(t− τ)

)
.

Define the linear operator L(µ) : C → R2 and the nonlinear operator f (·,µ) : C → R2 by:

(24)

Lµ(φ) = (τ0
j +µ)


J0 J1

0 0




φ1(0)

φ2(0)



+(τ0
j +µ)


0 0

−Ψ ′(x∗)y∗2 −r2




φ1(−1)

φ2(−1)


and

(25) f (φ ,µ) = (τ0
j +µ)


f1
(
φ1(0),φ2(0)

)
f2
(
φ2(0),φ1(−1),φ2(−1)

)


respectively, where φ = (φ1,φ2)
T ∈C , J0 = r1−2b1x∗−a1(1−m)y∗−H ′(x∗), J1 =−a1(1−

m)x∗.

By the Riesz representation theorem, there exists a 2×2 matrix function η(θ ,µ),−1≤ θ ≤ 0

whose elements are of bounded variation such that

(26) Lµ(φ) =
∫ 0

−1
dη(θ ,µ)φ(θ) for φ ∈ C

(
[−1,0],R2).
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In fact, we can choose

(27)

η(θ ,µ) = (τ0
j +µ)


J0 J1

0 0

δ
(
θ
)

+(τ0
j +µ)


0 0

−Ψ ′(x∗)y∗2 −r2

δ
(
θ +1),

where δ is the Dirac delta function defined by

(28) δ (θ) =


0 if θ 6= 0,

1 if θ = 0.

For φ ∈ C
(
[−1,0],R2), define

(29) A(µ)φ =


dφ(θ)

dθ
if θ ∈ [−1,0),

∫ 0

1
dη(µ,s)φ(s) if θ = 0,

and

(30) R(µ)φ =


0 if θ ∈ [−1,0),

f (µ,φ) if θ = 0.

Then, System (23) is equivalent to

(31) ẋ(t) = A(µ)xt +R(µ)xt ,

where xt(θ) = x(t +θ), θ ∈ [−1,0].
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For ψ ∈ C 1([0,1],R2), define

(32) A∗ψ =


−dψ(s)

ds
if s ∈ (0,1],

∫ 0

1
dη(t,0)φ(−t) if s = 0,

and a bilinear inner product

(33)
〈ψ(s),φ(θ)〉 = ψ̄(0)φ(0)

−
∫ 0

−1

∫
θ

ξ=0
ψ̄(ξ −θ)dη(θ)φ(ξ )dξ ,

where η(θ) = η(θ ,0). In addition, by Theorem 3 we know that ±iω0 τ0
j are eigenvalues of

A(0). Thus, they are also eigenvalues of A∗. Let us assume that q(θ) is the eigenvector of A(0)

corresponding to iω0τ0
j and q∗(s) is the eigenvector of A∗ corresponding to −iω0τ0

j .

Let q(θ) =
(

1, ν1

)T
eiω0τ0

j θ and q∗(s) = D
(

1, ν∗1

)T
eiω0τ0

j s. From the above discus-

sion, it is easy to know that A(0)q(0) = iω0τ0
j q(0) and A∗(0)q∗(0) =−iω0τ0

j q∗(0). That is

τ0
j


J0 J1

0 0

q(0)

+τ0
j


0 0

−Ψ ′(x∗)y∗2 −r2

q(−1) = iw0τ0
j q(0)

and

τ0
j


J0 0

J1 −r2

q∗(0)

+τ0
j


0 −Ψ ′(x∗)y∗2

0 −r2

q∗(−1) =−iw0τ0
j q∗(0).
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Thus, we can easily obtain

(34) q(θ) =
(

1 ,
J0− iω0

a1(1−m)x∗

)T

eiω0τ0
j θ ,

(35) q∗(s) = D

(
1 ,

J0 + iω0

Ψ ′(x∗)y∗2e−iω0τ0
j

)T

eiω0τ0
j s.

In order to assure 〈q̄∗(s),q(θ)〉= 1, we need to determine the value of D. From (33), we have

〈q∗(s),q(θ)〉= q̄∗(0)q(0)

−
∫ 0

−1

∫
θ

ξ=0
q̄∗(ξ −θ)dη(θ)q(ξ )dξ

= q̄∗(0)q(0)

−
∫ 0

−1

∫
θ

ξ=0
D̄
(

1, ν̄
∗
1

)
e−iω0τ0

j (ξ−θ)dη(θ)
(

1, ν1

)T
eiω0τ0

j ξ dξ

= q̄∗(0)q(0)

−q̄∗(0)
∫ 0

−1
θeiω0τ0

j θ dη(θ)q(0)

= q̄∗(0)q(0)

−q̄∗(0)τ0
j


0 0

−Ψ ′(x∗)y∗2 −r2

(− e−iω0τ0
j

)
q(0)

= D̄
[
1+ν1ν̄∗1 − τ0

j e−iω0τ0
j ν̄∗1 (Ψ

′(x∗)y?2 + r2)
]
.

Therefore, we have

(36)

D̄ =
1

1+ν1ν̄∗1 − τ0
j e−iω0τ0

j ν̄∗1 (Ψ
′(x∗)y?2 + r2)

,

D =
1

1+ ν̄1ν∗1 − τ0
j eiω0τ0

j ν∗1 (Ψ
′(x∗)y?2 + r2)

.

Using the same notations as in [17], we first compute the coordinates to describe the center

manifold C0 at µ = 0. Let xt be the solution of Eq. (22) when µ = 0. Define

(37)

z(t) = 〈q∗ , xt〉,

W (t,θ) = xt(θ)−2Re

(
z(t)q(θ)

)
= xt(θ)−

(
z(t)q(θ)+ z̄(t)q̄(θ)

)
.
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On the center manifold C0, we have

(38) W (t,θ) =W (z, z̄,θ),

where

(39)
W (z, z̄,θ) =W20(θ)

z2

2 +W11(θ)zz̄+W02
z̄2

2

+W30(θ)
z3

6 + · · · · ,

z and z̄ are local coordinates for center manifold C0 in the direction of q∗ and q̄∗. Note that W is

real if xt is real. We only consider real solutions. For solution xt ∈ C0 of Eq.(22), since µ = 0,

we have

(40)

ż(t) = iω0τ0
j z

+ q̄∗(0) f
(

0,W (z, z̄,0)+2Re
(
z(t)q(θ)

))
≡ iω0τ0

j z+ q̄∗(0) f0(z, z̄).

We rewrite this equation as

(41) ż(t) = iω0τ
0
j z+g

(
z, z̄
)
,

where

(42)
g
(
z, z̄
)

= g20(θ)
z2

2 +g11(θ)zz̄+g02
z̄2

2

+g21(θ)
z2z̄
2 + · · ·

Then, xt(θ) =
(
x1t(θ),x2t(θ)

)
and q(θ) =

(
1,ν1

)T eiω0τ0
j θ . So, from Eq.(37) and Eq.(39), it

follows that

(43)

xt(θ) = W (t,θ)+2Re

(
z(t)q(θ)

)
= W20(θ)

z2

2 +W11(θ)zz̄+W02
z̄2

2

+
(
1,ν1

)T eiω0τ0
j θ z(t)+

(
1, ν̄1

)T e−iω0τ0
j θ z̄(t)+ · · ·
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Then, we have

(44)

x1t(0) = z+ z̄+W (1)
20 (0)

z2

2
+W (1)

11 (0)zz̄

+ W (1)
02 (0)

z̄2

2
+ · · ·

x2t(0) = ν1z+ ν̄1z̄+W (2)
20 (0)

z2

2
+W (2)

11 (0)zz̄

+ W (2)
02 (0)

z̄2

2
+ · · ·

x1t(−1) = ze−iω0τ0
j + z̄eiω0τ0

j +W (1)
20 (−1)

z2

2

+ W (1)
11 (−1)zz̄+W (1)

02 (−1)
z̄2

2
+ · · ·

x2t(−1) = ν1ze−iω0τ0
j + ν̄1z̄eiω0τ0

j +W (2)
20 (−1)

z2

2

+ W (2)
11 (−1)zz̄+W (2)

02 (−1)
z̄2

2
+ · · ·

It follows together with Eq.(25) that

(45)

g(z, z̄) = q̄∗(0) f0(z, z̄)

= q̄∗(0) f (0,xt) = τ0
j D̄
(

1, ν̄∗1

)
×



−b1x2
1t(0)−a1(1−m)x1t(0)x2t(0);

−Ψ ′(x∗)x2t(−1)x2t(0)

−Ψ ′(x∗)x1t(−1)x2t(−1)x2t(0);

−Ψ ′(x∗)y∗x1t(−1)x2t(−1)

−Ψ ′(x∗)y∗x1t(−1)x2t(0);

−Ψ ′′(x∗)
2

y∗x2
1t(−1)x2t(−1)

−Ψ ′′(x∗)
2

y∗x2
1t(−1)x2t(0);

−Ψ ′′(x∗)
2

y∗2x2
1t(−1)x2t(0)

−Ψ (3)(x∗)
6

y∗2x3
1t(−1)−· · ·


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=
z2

2
{2τ

0
j D̄[−b1−ν1a1(1−m)

− ν̄∗1 (Ψ(x∗)ν2
1 e−iω0τ0

j −Ψ ′(x∗)y∗ν1e−2iω0τ0
j

− y∗ν1e−iω0τ0
j − Ψ ′′(x∗)

2
y∗2e−2iω0τ0

j

)]}

+
z̄2

2
{2τ

0
j D̄[−b1− ν̄1a1(1−m)

− ν̄∗1 (Ψ(x∗)ν̄2
1 eiω0τ0

j −Ψ ′(x∗)y∗ν̄1e2iω0τ0
j

− y∗ν̄1eiω0τ0
j − Ψ ′′(x∗)

2
y∗2e2iω0τ0

j

)]}

+ zz̄{2τ0
j D̄[−b1−Re(ν1)a1(1−m)

− ν̄∗1 (Re(ν1ν̄1e−iω0τ0
j )Ψ(x∗)−Re(ν̄1)y∗Ψ ′(x∗)

− y∗Re(ν1eiω0τ0
j )− y∗2Ψ ′′(x∗)

)]}

+
z2z̄
2

{
τ

0
j D̄
[
−b1

(
(2W (1)

20 (0)+2W (1)
11 (0)

)
− a1(1−m)(2W (2)

11 (0)+W (2)
20 (0)+ ν̄1W (1)

20 (0))

+ 2ν1a1(1−m)W (1)
11 (0))

− ν̄∗1 Ψ(x∗)(2ν1W (2)
11 (0)+ ν̄1W (2)

20 (0)eiω0τ0
j )

+ ν̄∗1 Ψ(x∗)(ν̄1W (2)
20 (−1)+2ν1W (2)

11 (−1))

− ν̄∗1 Ψ ′(x∗)(2ν1ν̄1e−2iω0τ0
j )

+ ν̄∗1 Ψ ′(x∗)(2ν1ν̄1 +2ν2
1 e−2iω0τ0

j )

− ν̄∗1 Ψ ′(x∗)y∗(2W (2)
11 (−1)e−iω0τ0

j (1+ν1)

+ ν̄∗1 Ψ ′(x∗)y∗W (1)
20 (−1)eiω0τ0

j (1+ ν̄1)

− 2W (2)
11 (0)e−iω0τ0

j +W (2)
20 (0)eiω0τ0

j

+ ν̄1W (1)
20 (−1)+2ν1W (1)

11 (−1))

− ν̄∗1
Ψ ′′(x∗)y∗

2
(6ν1e−iω0τ0

j +4ν1 +2ν̄1e−2iω0τ0
j )

+ 4y∗ν̄∗1
Ψ ′′(x∗)y∗

2
W (1)

11 (−1)e−iω0τ0
j

+ 2y∗eiω0τ0
j W (1)

20 (−1)

− ν̄∗1
Ψ ′′′(x∗)y∗

3

(
2e−iω0τ0

j + eiω0τ0
j
)
.

Comparing the coefficient with Eq.(42) gives

g20 = 2τ0
j D̄(−b1−ν1a1(1−m))

− 2τ0
j D̄ν̄∗1 Ψ(x∗)ν2

1 e−iω0τ0
j

− 2τ0
j D̄Ψ ′(x∗)y∗ν1e−2iω0τ0

j

− 2τ0
j D̄y∗ν1e−iω0τ0

j

− 2τ0
j D̄

Ψ ′′(x∗)
2

y∗2e−2iω0τ0
j ,
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(46)

g02 = 2τ0
j D̄(−b1−ν1a1(1−m))

− 2τ0
j D̄ν̄∗1 Ψ(x∗)ν2

1 e−iω0τ0
j

− 2τ0
j D̄Ψ ′(x∗)y∗ν1e−2iω0τ0

j

− 2τ0
j D̄y∗ν1e−iω0τ0

j

− 2τ0
j D̄

Ψ ′′(x∗)
2

y∗2e−2iω0τ0
j ,

g11 = 2τ0
j D̄(−b1−Re(ν1)a1(1−m))

− 2τ0
j D̄ν̄∗1Re(ν1ν̄1e−iω0τ0

j )Ψ(x∗)

− 2τ0
j D̄ν̄∗1Re(ν̄1)y∗Ψ ′(x∗)

− 2τ0
j D̄ν̄∗1 y∗Re(ν1eiω0τ0

j )

− 2τ0
j D̄ν̄∗1 y∗2Ψ ′′(x∗),

g21 = −τ0
j D̄b1(2W (1)

20 (0)+2W (1)
11 (0))

− τ0
j D̄a1(1−m)(2W (2)

11 (0)+W (2)
20 (0))

+ τ0
j D̄ν̄1a1(1−m)W (1)

20 (0)+2ν1W (1)
11 (0))

− ν̄∗1 Ψ(x∗)(2ν1W (2)
11 (0)+ ν̄1W (2)

20 (0)eiω0τ0
j )

+ ν̄∗1 Ψ(x∗)(ν̄1W (2)
20 (−1)+2ν1W (2)

11 (−1))

− ν̄∗1 Ψ ′(x∗)(2ν1ν̄1e−2iω0τ0
j +2ν1ν̄1

− 2ν̄∗1 Ψ ′(x∗)ν2
1 e−2iω0τ0

j )

− ν̄∗1 Ψ ′(x∗)y∗2W (2)
11 (−1)e−iω0τ0

j (1+ν1)

+ ν̄∗1 Ψ ′(x∗)y∗W (1)
20 (−1)eiω0τ0

j (1+ ν̄1)

− 2ν̄∗1 Ψ ′(x∗)y∗W (2)
11 (0)e−iω0τ0

j

+ ν̄∗1 Ψ ′(x∗)y∗W (2)
20 (0)eiω0τ0

j + ν̄1W (1)
20 (−1)

+ 2ν̄∗1 Ψ ′(x∗)y∗ν1W (1)
11 (−1)

− ν̄∗1
Ψ ′′(x∗)y∗

2
(6ν1e−iω0τ0

j +4ν1)

+ 2ν̄∗1
Ψ ′′(x∗)y∗

2
ν̄1e−2iω0τ0

j

+ 4ν̄∗1
Ψ ′′(x∗)y∗

2
y∗W (1)

11 (−1)e−iω0τ0
j

+ 2y∗eiω0τ0
j W (1)

20 (−1)

− ν̄∗1
Ψ ′′′(x∗)y∗

3

(
2e−iω0τ0

j + eiω0τ0
j )
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Since there are W20(θ) and W11(θ) in g21, we still need to compute them. From Eq.(31) and

Eq.(37), we have

(47)

Ẇ = ẋt− żq− ˙̄zq̄

=


AW −2Re

{
q̄∗(0) f0q(θ)

}
if θ ∈ [−1;0),

AW −2Re

{
q̄∗(0) f0q(θ)

}
+ f0 if θ = 0,

≡def AW +H
(
z, z̄,θ

)
,

where

(48)
H
(
z, z̄,θ

)
= H20(θ)

z2

2
+H11(θ)zz̄

+H02(θ)
z̄2

2
+ · · ·

Substituting the corresponding series into Eq.(47) and comparing the coefficients give

(49)

(A−2iω0τ0
j )W20(θ) = −H20(θ),

AW11(θ) = −H11(θ).

From Eq.(47), we know that for θ ∈ [−1,0),

(50)
H
(
z, z̄,θ) =−q̄∗(0) f0q(θ)−q∗(0) f̄0q̄(θ)

=−g(z, z̄)q(θ)− ḡ(z, z̄)q̄(θ).

Comparing the coefficient with Eq.(48) gives

(51) −g20q(θ)− ḡ02q̄(θ) = H20(θ),

(52) −g11q(θ)− ḡ11q̄(θ) = H11(θ).

From Eq.(49) and Eq.(51) and the definition of A, it follows that

(53) Ẇ (θ) = 2iw0τ
0
j W20 +g20q(θ)+ ḡ02q̄(θ).
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Notice that q(θ) =
(

1,ν1

)T
eiw0τ0

j θ . Hence,

(54)
W20(θ) =

ig20

w0τ0
j
q(0)eiω0τ0

j θ +
iḡ02

3w0τ0
j
q̄(0)e−iω0τ0

j θ

+E1e2iω0τ0
j θ ,

where E1 =
(

E(1)
1 ,E(2)

1

)
∈ R2 is a constant vector. Similarly, from Eq.(49) and Eq.(52), we

obtain

(55) W11(θ) =−
ig11

w0τ0
j
q(0)eiω0τ0

j θ +
iḡ11

w0τ0
j
q̄(0)e−iω0τ0

j θ +E2,

where E2 =
(

E(1)
2 ,E(2)

2

)
∈ R2 is also a constant vector.

In what follows, we will seek appropriate E1 and E2. From the definition of A and Eq.(49),

we obtain

(56)
∫ 0

−1
dη(θ)W20(θ) = 2iω0τ jW20(0)−H20(0),

(57)
∫ 0

−1
dη(θ)W11(θ) =−H11(0),

where η(θ) = η(0,θ). By Eq.(47), we have

(58)

H20(0) =−g20q(0)− ḡ02q̄(0)+2τ0
j×

−b1−ν1a1(1−m)

−Ψ(x∗)ν2
1 e−iω0τ0

j −Ψ ′(x∗)y∗ν1e−2iω0τ0
j

−y∗ν1e−iω0τ0
j −Ψ ′′(x∗)

2
y∗2e−2iω0τ0

j


,

(59)

H11(0) =−g11q(0)− ḡ11q̄(0)+2τ0
j×

−b1−Re(ν1)a1(1−m)

−Re(ν1ν̄1e−iω0τ0
j )Ψ(x∗)−Re(ν̄1)y∗Ψ ′(x∗)

−y∗Re(ν1eiω0τ0
j )− y∗2Ψ ′′(x∗)

 .
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Substituting Eq.(54) and Eq.(58) into Eq.(56) and using the fact that

(60)

(
iω0τ0

j I−
∫ 0

−1
eiω0τ0

j θ dη(θ)

)
q(0) = 0,

(
−iω0τ0

j I−
∫ 0

−1
e−iω0τ0

j θ dη(θ)

)
q̄(0) = 0,

we obtain (
2iω0τ0

j I−
∫ 0

−1
e2iω0τ0

j θ dη(θ)

)
E1 = 2τ0

j×

−b1−ν1a1(1−m)

−Ψ(x∗)ν2
1 e−iω0τ0

j −Ψ ′(x∗)y∗ν1e−2iω0τ0
j

−y∗ν1e−iω0τ0
j −Ψ ′′(x∗)

2
y∗2e−2iω0τ0

j


.

This leads to 
2iω0− J0 −J1

Ψ ′(x∗)y∗2e−2iω0τ0
j 2iω0 + r2e−2iω0τ0

j

E1 =

2



−b1−ν1a1(1−m)

−Ψ(x∗)ν2
1 e−iω0τ0

j −Ψ ′(x∗)y∗ν1e−2iω0τ0
j

−y∗ν1e−iω0τ0
j −Ψ ′′(x∗)

2
y∗2e−2iω0τ0

j


.

Solving this system for E1 gives

E(1)
1 =

2
σ

∣∣∣∣∣∣∣∣∣∣∣∣

−b1−ν1a1(1−m) a1(1−m)x∗

e0 2iω0 + r2e−2iω0τ0
j

∣∣∣∣∣∣∣∣∣∣∣∣
,

where

e0 =−Ψ(x∗)ν2
1 e−iω0τ0

j −Ψ ′(x∗)y∗ν1e−2iω0τ0
j

−y∗ν1e−iω0τ0
j −Ψ ′′(x∗)

2
y∗2e−2iω0τ0

j ,
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E(2)
1 =

2
σ

∣∣∣∣∣∣∣∣∣
2iω0− J0 −b1−ν1a1(1−m)

Ψ ′(x∗)y∗2e−2iω0τ0
j e0

∣∣∣∣∣∣∣∣∣ ,
where

σ =

∣∣∣∣∣∣∣∣∣∣∣∣

2iω0− J0 a1(1−m)x∗

Ψ ′(x∗)y∗2e−2iω0τ0
j 2iω0 + r2e−2iω0τ0

j

∣∣∣∣∣∣∣∣∣∣∣∣
.

Similarly, substituting Eq.(55) and Eq.(59) into (57) gives
−J0 −J1

Ψ ′(x∗)y∗2 r2

E2 =

2



−b1−Re(ν1)a1(1−m)

−Re(ν1ν̄1e−iω0τ0
j )Ψ(x∗)−Re(ν̄1)y∗Ψ ′(x∗)

−y∗Re(ν1eiω0τ0
j )− y∗2Ψ ′′(x∗)


.

Therefore,

E(1)
2 =

2
ρ

∣∣∣∣∣∣∣∣∣
−b1−Re(ν1)a1(1−m) −J1

e1 r2

∣∣∣∣∣∣∣∣∣ ,
where

e1 =−Re(ν1ν̄1e−iω0τ0
j )Ψ(x∗)−Re(ν̄1)y∗Ψ ′(x∗)

−y∗Re(ν1eiω0τ0
j )− y∗2Ψ ′′(x∗)

E(2)
2 =

2
ρ

∣∣∣∣∣∣∣∣∣
−J0 −b1−Re(ν1)a1(1−m)

Ψ ′(x∗)y∗2 e1

∣∣∣∣∣∣∣∣∣ ,
where
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ρ =

∣∣∣∣∣∣∣∣∣∣∣∣

−J0 a1(1−m)x∗

Ψ ′(x∗)y∗2 r2

∣∣∣∣∣∣∣∣∣∣∣∣
.

Thus, we can determine W20 and W11 from Eq.(54) and Eq.(55). Furthermore, g21 in Eq.(46)

can be expressed in terms of parameters and delay. Thus, we can compute the following values

(61)

C1(0) =
i

2w0τ0
j

(
g20g11−2|g11|2−

|g02|2

3

)
+

g21

2
,

ν2 = − Re{C1(0)}

Re

{
λ ′(τ0

j )
} ,

β2 = 2Re{C1(0)},

T2 = −
Im{C1(0)}+ν2Im

{
λ ′(τ0

j )
}

w0τ0
j

,

which determine the qualities of bifurcating periodic solution in the center manifold at the

critical value τ0
j .

Theorem 4. [17]: In Eq. (61), the sign of ν2 determines the direction of the Hopf bifurcation.

Thus, if ν2 > 0, then the Hopf bifurcation is supercritical and the bifurcating periodic solution

exists for τ1 > τ0
1 . If ν2 < 0, then the Hopf bifurcation is subcritical and the bifurcating periodic

solution exists for τ1 < τ0
1 . β2 determines the stability of the bifurcating periodic solution: The

bifurcating periodic solutions are stable if β2 < 0 and unstable if β2 > 0. T2 determines the

period of the bifurcating periodic solutions: the period increase if T2 > 0 and decrease if T2 < 0.

6. BIONOMIC EQUILIBRIUM AND OPTIMAL HARVEST POLICY

The first part of this section deals with the bionomic equilibrium of System (6). The term bio-

nomic equilibrium is an amalgamation of the concepts of biological equilibrium and economic

equilibrium. As we already saw, a biological equilibrium is given by ẋ = 0 = ẏ. The economic
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equilibrium is said to be achieved when TR (the total revenue obtained by selling the harvested

biomass) equals TC (the total cost for the effort devoted to harvesting).

To discuss the bionomic equilibrium of the prey-predator model, we consider the parameters

such as c = cost per unit effort for prey; p = price per unit biomass for the prey.

The net economic rent or net revenue (R) at any time is given by

(62) R(x,h, t) =
(

p
x−T1

T2−T1
− c
)

h if T1 ≤ x≤ T2,

and

(63) R(x,h, t) =
(

p− c
)

h if x≥ T2.

The bionomic equilibrium is P∞(x∞,y∞,h∞), where x∞, y∞ and h∞ are the positive solutions of

the following simultaneous equations

(64)


(r1−b1x)x−a1(1−m)xy− h(x−T1)

T2−T1
= 0,[

r2−
a2y

(1−m)x

]
y = 0, if T1 ≤ x≤ T2(

p
x−T1

T2−T1
− c
)

h = 0,

and

(65)


(r1−b1x)x−a1(1−m)xy−h = 0,[

r2−
a2y

(1−m)x

]
y = 0, if x≥ T2(

p− c
)

h = 0,

It may be noted here that if c > p
x−T1

T2−T1
when T1 ≤ x ≤ T2 or if c > p when x ≥ T2, i.e. if

the prey cost exceeds the revenue obtained from it, then the economic rent obtained from the

prey becomes negative. Hence the prey will be closed and no bionomic equilibrium exists.

Therefore, for the existence of bionomic equilibrium, it is natural to assume c < p
x−T1

T2−T1
when
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T1 ≤ x≤ T2 and c < p when x≥ T2. Then, for T1 ≤ x≤ T2,

x∞ = T1 +
c
p
(T2−T1),(66)

y∞ =
r2(1−m)x∞

a2
,(67)

h∞ =
p
(

r1−b1x∞−a1(1−m)y∞

)
x∞

c
.(68)

It is clear that h∞ > 0 if

(69) r1−b1x∞−a1(1−m)y∞ > 0.

Thus, the bionomic equilibrium P∞(x∞,y∞,h∞) exists if x∞ ≤ T2 and inequality (69) holds.

In what follows, our objective is to maximize the total discounted net revenues from the

fishery. In commercial exploitation of renewable resources, the fundamental problem from

the economic point of view, is to determine the optimal trade-off between present and future

harvests. If we look at the problem, it is observed that the marine fishery sectors become more

important not only for domestic demand but also from the imperatives of exports.

Symbolically our strategy is to maximize the present value J given by

(70) J(h) =
∫ t f

0
R
(
x(t),h(t), t

)
e−δ tdt,

where R(x,h, t) =
(

p
x−T1

T2−T1
−c
)

h if T1 ≤ x≤ T2, R(x,h, t) =
(

p−c
)

h if x≥ T2 and δ denotes

the instantaneous annual rate of discount. Our problem is to maximize J subject to the state

System (6) by invoking Pontryagin’s Maximum principle for retarded optimal control problem

[26]. The control variable h(t) is subjected to the constraints 0≤ h(t)≤ K. So, in other words,

our problem now is to find h∗ such that

(71) J(h∗) = max
h∈Ω

J(h),

where Ω = {h ∈ L1(0, t f );0≤ h≤ K}.

The existence of an optimal harvesting is due to the concavity of integrand of J with respect

to h, a boundedness of the state solutions (x(t),y(t)), and the Lipschitz property of the state

system (6) with respect to the state variables (see [32]).



OPTIMAL HARVESTING AND STABILITY ANALYSIS 31

Using the Pontryagin’s maximum principle for delayed control problem [26, 30], problem

(71) is reduced to maximize the Hamiltonian H defined by:

H (x(t),y(t),x(t− τ),y(t− τ),h(t),λ (t)) =

e−δ tR(x(t),h(t), t)+λ1(r1−b1x(t))x(t)

+λ1

[
−a1(1−m)x(t)y(t)−H(x(t))

]
+λ2

[
r2y(t)− a2y(t− τ)y(t)

(1−m)x(t− τ)

]
,

where λ = (λ1,λ2). By the maximal principle, there exists adjoint variables λ1(t) and λ2(t) for

all t ≥ 0 such that

(72)



dλ1(t)
dt

= −χ[0,t f−τ](t)
∂H

∂x(t−τ)(t + τ),

− ∂H

∂x(t)
(t)

dλ2(t)
dt

= −χ[0,t f−τ](t)
∂H

∂y(t−τ)(t + τ),

− ∂H

∂y(t)
(t)

and

(73)
∂H

∂h(t)
(x(t),y(t),x(t− τ),y(t− τ),h(t),λ (t)) = 0,

where χ[0,t f−τ](t) is the indicatrice function on [0, t f − τ].

Therefore, we obtain the adjoint system:

(74)



λ̇1(t) = − ph
T2−T1

e−δ t +λ1(t)(−r1 +2b1x(t))

+ λ1(t)
(

a1(1−m)y(t)+
h

T2−T1

)
− χ[0,t f−τ](t)

a2y(t + τ)λ2(t + τ)y(t)
(1−m)x2(t)

,

λ̇2(t) = −a1(1−m)x(t)λ1(t)− r2λ2(t)

+ χ[0,t f−τ](t)
a2y(t + τ)λ2(t + τ)

(1−m)x(t)
.

The transversality conditions of System (74) are

λ1(t f ) = λ2(t f ) = 0.
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Since H is linear in the control variable h, the optimal control will be a combination of bang-

bang control and singular control. Let

σ(t) = e−δ t
(

p(x−T1)

T2−T1
− c
)
−λ1(t)

(x−T1)

T2−T1
.

The optimal control h(t) which maximizes H must satisfy the following conditions:

h(t) = K if σ(t)> 0(75)

i.e eδ t
λ1(t)< p− c

x−T1
T2−T1

,(76)

h(t) = 0 if σ(t)< 0(77)

i.e eδ t
λ1(t)> p− c

x−T1
T2−T1

,(78)

where eδ tλ1(t) is the usual shadow price [18] and p− c
x−T1
T2−T1

is the net economic revenue on a

unit harvest. This shows that h = K or zero according to the shadow price is less than or greater

than the net economic revenue on a unit harvest. Economically, condition (76) implies that if

the profit after paying all the expenses is positive, then it is beneficial to harvest up to the limit

of available effort. Condition (78) implies that when the shadow price exceeds the fisherman’s

net economic revenue on a unit harvest, then the fisherman will not exert any effort.

When σ(t)= 0, i.e. when the shadow price equals the net economic revenue on a unit harvest,

then the Hamiltonian H becomes independent of the control variable h(t), i.e. ∂H /∂h = 0.

This is the necessary condition for the singular control h(t) to be optimal over the control set

0≤ h≤ K. Thus, the optimal harvesting policy is

h(t) =


0 i f σ(t)< 0,

h∗ i f σ(t) = 0,

K i f σ(t)> 0.

Solving σ(t) = 0, we get

(79) λ1(t) = e−δ t

(
p− c

x−T1
T2−T1

)
.
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Substituting Eq(79) into System (74) gives

(80)



λ̇1(t) =−
ph

T2−T1
e−δ t + e−δ t

p− c
x−T1

T2−T1

×
(
−r1 +2b1x(t)+a1(1−m)y(t)+

h
T2−T1

)
−χ[0,t f−τ](t)

a2y(t + τ)λ2(t + τ)y(t)
(1−m)x2(t)

,

λ̇2(t) =−a1(1−m)x(t)e−δ t

p− c
x−T1

T2−T1



−r2λ2(t)+χ[0,t f−τ](t)
a2y(t + τ)λ2(t + τ)

(1−m)x(t)
.

Using equilibrium conditions and integrating System (80), we obtain λ1(t) and λ2(t). Solving

equation

λ1(t) = p− c
x−T1

T2−T1

,

we obtain the optimal harvesting efforts h∗.

7. NUMERICAL SIMULATIONS

In this section, we give some numerical simulations for a special case of System (6) with har-

vesting function (5) to support our analytical results in this paper. As an example, we consider

systems (6) and (5) with the coefficients r1 = 1.1, b1 = 1.1/300, which gives K = 300, m = 0.1,

a1 = 0.11, r2 = 0.2, a2 = 1, h = 0.2∗K, T1 = 60, T2 = 90 and τ = 20. When there is no delay,

we choose x(0) = 40 and y(0) = 25. That is,

(81)


ẋ(t) = (1.1− 1.1

300
∗ x)∗ x

− 0.11∗ (1−0.1)∗ x∗ y−H(x(t)),

ẏ(t) =

(
0.2− 1.2∗ y(t− τ)

(1−0.1)∗ x(t− τ)

)
∗ y(t).
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In Figure 3, we have ∆1 = 117.5377 > 0, −ϕ ′(K0)+ a1(1−m)y0 + r2 = 11.2751 > 0 and

2a1(1−m)r2y0−r2ϕ ′(K0)= 2.3975> 0. So, the conditions of stability of equilibrium G0(K0,y0)

are satisfied and G0 is locally asymptotically stable.
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FIGURE 3. The numerical approximations of system (6) when τ = 0 and K0 =

51.1945 < T1. The positive equilibrium G0(51.1945,9.2150) is a asymptotically

stable.

Fig. 4 shows that under some conditions, equilibrium G1(x∗1,y
∗
1) is the only equilibrium of

the model system (6) and is locally asymptotically stable. More precisely, we have x∗1−T2 =

68.065, K0− x∗1 = 83.28, ϕ(T2)−h = 9.3, ∆1 = 1.14×103,

−ϕ
′(x∗1)+a1(1−m)y∗1 + r2 = 33.8253 > 0
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and 2a1(1−m)r2y∗1− r2ϕ ′(x∗1) = 0.3396 > 0. So, we have T2 < x∗1 < K0, ϕ(T2) > h and all

conditions which give the stability of G1.
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FIGURE 4. The numerical approximations of system (6) when τ = 0, r2 = 0.01

and K0 = 241.35 > T2. The positive equilibrium G1(158.0658,1.4226) is a

asymptotically stable.

We now present some numerical results of the system for different values of τ . From the

above discussion, we may determine the direction of Hopf-bifurcation and the direction of

bifurcating periodic solution. We consider the system when the parameter values are given as

in Figure (3). So, the model has a positive equilibrium G0(51.1945,9.2150) which is locally

asymptotically stable for τ = 0. When τ passes through the critical value τ = τ0
1 = 95.2311

and d(Reλ (τ))
dτ

)
∣∣∣
λ=iw0,τ=τ0

1

= 7.6799 > 0, the equilibrium G0 losses its stability and the system

(6) experiences Hopf-bifurcation. From Sect. 5 we can determine the nature of the stability and
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direction of the periodic solution bifurcating from the interior equilibrium at the critical point

τ0
0 .
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FIGURE 5. Hopf bifurcation behavior of the system (6) around the interior equi-

librium G0(51.1945,9.2150) when τ = τ0
0 = 95.2311. The other parameter are

the same as in Fig. (3). We obtain the existence of unstable supercritical bifurcat-

ing periodic solution around the interior equilibrium G0 with the same parameter

values as in Fig. (3).

Using (61), we can compute C1(0)= 69.7625−28.9307 i, ν2 = 968.6446> 0, β2 = 139.5250>

0 and T2 =−120.1525. Hence, the bifurcating periodic solution exists when τ crosses τ0
1 from

left to right and the corresponding periodic solution is supercritical and unstable (as β2 > 0)

as evident from Fig. 5 (a)-(b). The negative sign of T2 indicates the decreasing period of the
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periodic solution of the system. Moreover, this system is locally asymptotically stable around

the interior equilibrium G0, which is clearly depicted from Fig. 6(a).(b) for τ = 16 < τ0
0 .
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FIGURE 6. The system (6) is globally asymptotically stable around the interior

equilibrium G0 at τ = 16 < τ0 = 95.2311. The other parameter values are given

in the previous figure.

Figure (7) gives the optimal harvesting of prey in the presence of the two population. We

observe that the control increase the period of limit cycle (see Figure (7 a)) and also increase

the predator and prey population (see Figure (7 b and c)). In order to obtain this result, the

harvesting will be made periodically (see Figure (7 d)). From this figure, it is clear that as the

time progresses the prey and predator populations fluctuate in different period depending on the

values of the optimal harvesting. We observe that when we harvest, the predator population

decrease quickly and the prey population starts to rise rapidly. On the other hand as the predator
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population rises, the prey population descends speedily. This figure is obtained when p = 30,

c = 35 and δ = 0.1.

8. CONCLUSIONS

In this paper, the properties of Hopf bifurcations in a Leslie-Gower Predator-Prey model with

delay in predator’s equation have been studied. We have also investigated optimal harvesting

when the harvesting is given by a continuous function in this model. Although bifurcations

in a population dynamics without delay have been investigated by many researchers, there are

few papers on the bifurcations of a population dynamics with delay, which have shown di-

rection of global Hopf-bifurcation and optimal harvesting simultaneously. We have obtained

sufficient conditions on the parameters for which the delay-induced system is asymptotically

stable around the positive equilibrium for all values of the delay parameter and if the conditions

are not satisfied, then there exists a critical value of the delay parameter below which the system

is stable and above which the system is unstable. By applying the normal form theory and the

center manifold theorem, the explicit formulae which determine the stability and direction of

the bifurcating periodic solutions have been determined. Our analytical and simulation results

show that when the delay τ passes through the critical value τ0
0 , the coexisting equilibrium G0

losses its stability and a Hopf bifurcation occurs, that is, a family of periodic solutions bifurcate

from G0. Also, the amplitude of oscillations increases with increasing τ . For the considered

parameter values, it is observed that the Hopf bifurcation is supercritical and the bifurcating

periodic solution is unstable. The problem of optimal harvesting policy has been solved by

using the new result of retarded optimal control which is an extension of Pontryagin’s Maximal

principle theory. We hope that the theoretical investigations which have been carried out in this

paper will certainly help the experimental ecologists to do some experimental studies and as a

consequence the theoretical ecology may be developed to some extent.
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FIGURE 7. Trajectory of the model system (6) with and without the control.
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