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Abstract. This essay considers an ordinary differential equation on the phage λ regulatory network model, which

has one and only one steady internal equilibrium by simplifying the calculation. Meanwhile, we use Ensemble

Kalman Filter (EnKF) approach to compute the ratio of chemical reaction rate constant in the phage gene regulation

network and combine the regulatory mechanism of the network to infer the amount of protein or DNA to avoid the

high cost of protein-DNA detection. By changing the size of the initial ensemble of parameters, we get estimates

with different precision. Numerical results clarify that the Ensemble Kalman Filter have an effect on parameter

estimation of the phage regulatory network compared with the least square method. It perhaps is a relatively

effective method to calculate unknown parameters in the biochemical network model by parameter estimation to

lower the cost of biological experiments.
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1. INTRODUCTION

The process of cell is regulated by the genetic program which takes advantage of the in-

teraction between protein-DNA in regulating function [1]. CI and Cro, as products of gene
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expression in λ bacteriophage, play a distinct role in determining its mode of growth[2]. In

an infected host cell, the phage λ pours its chromosome into the host and leaves the shell of

protein outside the host. Subsequently, phage selects one of two survival modes including lyso-

genic and bacteriolytic states. That is, it may produce new phage particles in the host cell by

causing cell lysis, or it may build a dormant state lysogenic, nucleic acid is integrated into the

host bacterial chromosome, where the reconstituted genome is called as a prophage[3]. Numer-

ous positive regulatory factors and negative regulatory factors have been found in this model to

regulate gene expression after transcriptional regulation[4].

Comprehending the physiological properties of interactions between regulatory factors of

the gene regulation networks is significant. Here, the networks are simulated as a biochemical

reaction model and the synergistic effect of biochemical reactants is considered in the model.

Until now, there are four main types of models used to control network simulation, i.e., boolean

networks, ordinary differential equation, stochastic model and hybrid model. Boolean networks

are the first model to be discussed, the state is determined by a boolean function of the genes

state(ON and OFF)[5, 6]. Chao established the stochastic model of gene expression regulation

based on the two-state model and studied its performance[7]. The work covered in the article

involves in analyzing the stability of the equilibrium of the ordinary differential equation in

phage λ regulatory network model. In addition to measuring technical deficiencies, comput-

ing protein concentration is difficult and more expensive, it also takes more time to distinguish

between different translations of the same protein in some biological experiments[8]. There-

fore, it is significant to use parameter estimation to computer the unknown parameters in the

biochemical network.

Our article is structured as follows. In section 2, we introduce the Genetic-Regulatory net-

works model and study the existence and stability of system equilibrium. Section 3 outlines the

estimated approach to model parameters, i.e., the magnitude of proteins Y and dimer Y2 with the

ratio of the rate constants of chemical reactions in a gene regulatory network are estimated by

Ensemble Kalman Filter(EnKF). In section 4 we simulate the stability of the genetic regulatory

networks and parameter estimation. Finally, the conclusion is drawn in section 5.
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FIGURE 1. The regulatory region of λ phage PRM promoter.

2. GENETIC-REGULATORY NETWORKS MODEL AND PROPERTIES

Specific consequences from the dynamics of genetic-regulatory networks are instrumental. it

not only instrumental to comprehend the properties of the inherent stochasticity quantitatively

but also to parameter estimating[9]. Therefore, let us turn to the introduction to the regulation

process of the gene regulation network system that λ phage infects escherichia coli. The PRM

region of the λ bacteriophage involving the transcription factor binding sites(TFBS) are OR1,

OR2, and OR3 in the promoter region, respectively, as shown in Fig.1. The CI repressor which

expressed by CI gene is the most dynamic protein in the lysogen state. The binding sites of

transcription factors are OR1 and OR2, and the CRo gene is inhibited in the lysogen state,

whereas the CI gene is transcribed. When λ phage is in the bacteriolytic state, the CRo repressor

(CRo gene product) is integrated and occupies sites OR2 and OR3.

According to the magnitude of the reaction rate constant, we divide the biochemical reactions

from the process of gene regulation into two types: fast reaction and slow reaction[10, 11].

Supposing the fast reactions for dimerization and the slow reactions for binding with sites are

in equilibrium[9]. Then, satisfying the equilibrium reactions of genetic-regulatory network

reactions are given by

Y +Y k1←→
k2

Y2 D+P kt−→ D+P+nY

D+Y2
k3←→
k4

D1 D1 +Y kt−→ D1 +P+nY

D1 +Y2
k5←→
k6

D2 D2 +Y akt−→ D2 +P+nY
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D2 +Y2
k7←→
k8

D3 Y
kd−→ φ

where Y , Y2, and D specified as the repressor, repressor dimer, and DNA promoter site, and Di

denotes the dimer binding to the ORi site for i = 1,2,3,4, with k j( j = 1,2, · · ·) the constants of

reaction rate. kt and kd are transcription and degradation constants, respectively. P represents

the concentration of RNA polymerase, n signifies the count of proteins per mRNA transcripts,

and constraint a > 1 is the extent of transcription is strengthened by protein dimer binding to

OR2. We discern that the reactants involved in biochemical reactions include:Y , Y2, D, D1,

D2, D3, P. For the concentration of reactant P may be permanent as catalysis, therefore, we

concern the concentration variation of other reactants:Y , Y2, D, D1, D2, D3. Meanwhile, the

time evolution of the fast and slow reaction system concentrations is described by the system of

ordinary differential equations as follows

(2.1)



dY
dt

=
−k1Y (Y −1)

2
− kdY + k2Y2 +nktDP+nktD1P+anktD2P,

dY2

dt
=

k1Y (Y −1)
2

− (k2 + k3D+ k5D1 + k7D2)Y2 + k4D1 + k6D2 + k8D3,

dD
dt

= k4D1− k3DY2,

dD1

dt
= k3DY2− k4D1− k5D1Y2 + k6D2,

dD2

dt
= k5D1Y2− k6D2− k7D2Y2 + k8D3,

dD3

dt
= k7D2Y2− k8D3.

We suppose that the total concentration of DNA promoter sites H = D+D1 +D2 +D3 is con-

stant. Even when the set of ODEs is analytically awkward, it is possible to discuss an “equi-

librium” solution of the system by analytic means. An equilibrium solution is a set of concen-

trations which will not vary over time, hence that is discovered by setting the RHS(Right Hand

Side) of simultaneous equations to zero. the equilibriums of gene regulation network system

are obtained by the calculation: E0 = (0,0,0,0,0,0); E1 = (1,0, kd
nktP ,0,0,0). However, when

Y2 6= 0,D = 0,D1 6= 0,D2 6= 0,D3 6= 0,Y 6= 0, there may be two equilibria by computation. On

the basis of supposing condition: H = D+D1 +D2 +D3(i.e. dD
dt +

dD1
dt + dD2

dt + dD3
dt = 0), the



GENE-REGULATION NETWORK OF BACTERIOPHAGE 5

system (2.1) is simplified as follows

(2.2)
dY
dt = −k1Y (Y−1)

2 − kdY + k2Y2 +A,

dY2
dt = k1Y (Y−1)

2 − k2Y2−CY2 +B,

where A = (a+2)nktPD > kd
2 ,B = (k4 + k6 + k8)D,C = (k3 + k5 + k7)D. Next, we explore the

stability of the equilibrium signified by E∗(Y ∗,Y ∗2 ) with Y ∗ > 0 and Y ∗2 > 0. A straightforward

observation from the equation (2.2), which is never exists three boundary equilibria O(0,0),

E1(Y ∗,0), E2(0,Y ∗2 ), while the interior equilibrium of system (2.2) meet the characteristic equa-

tion at E∗ satisfies

(2.3) λ
2 +Pλ +Q = 0,

where

P =
k1(2Y ∗−1)

2
+ kd + k2 +C, Q =

Ck1(2Y ∗−1)
2

+ kd(k2 +C),

as a consequence, the interior equilibrium E∗ = (Y ∗,Y ∗2 ) is stabilized with P > 0 and Q > 0.

When you put it all together, there is only a stable internal equilibrium in the system (2.2).
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FIGURE 2. (a) shows that the evolution of gene regulation system with time. (b)

displays that the interior equilibria E∗ is stable, when parameters Y and Y2 take

different initial values, differentially.

3. METHOD

Mathematical modeling is instrumental in estimating the parameters of the model reliably

and accurately[12]. We may be hampered by the unknown parameters such as rate constant
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Algorithm 1 : EnKF Algorithm pseudocode.

Input: Input: the initial value of state vector, α0 = [Y,Y2]
T ;the true value of parameter β0 =

[A,B];thus,generating the initial ensemble ψ = [β ,α];

Output: Output:the Assimilation value of ensemble ψa
t ;

1: initial: tspan,Zt ,Y0,Y20,A0,B0;

2: for each t ∈ [0, tspan] do

3: get the prediction value ψ
f

t =prediction(t,Y0,Y20,Ai,Bi); B using(3.5)

4: get the measurement value with perturbationZt ; B using(3.7)

5: caculate the kalman gain K; B using(3.9)

6: update:get the Assimilation value Xa
t ; B using(3.10)

7: caculate the covariance matrix of the Assimilation value Pa
t ; B using(3.12)

8: end for

9: return Xa
t ,P

a
t .

with analyzing the main idea of systems biology. Meanwhile, estimating parameters in partially

observed noise data is a challenging problem[13]. Here, parameter estimation was performed

using the Ensemble Kalman Filter(EnKF), which is capable of dealing with high-dimensional

nonlinear systems simultaneously[14]. The basic idea is to initialize the state and parameter

vectors and update each individual in the initial data set with observation information through

Kalman filtering to obtain the assimilation set. It is noteworthy that the sealed parameter vector

θ = (θ1,θ2, . . .θk)
T that we undertake to estimate is constants. It is possible to view them as

plus state variables with a rate of variation equal to zero. With these settings, we regard them

as constant functions of time instead of constant numbers. This approach is usually referred to

as state extension[8, 12]. Our system (2.2) is given

(3.1)



dX
dt = G(Y,Y2;θ),

dθ

dt = 0,

η = h(X0),

where the state vector X = (Y,Y2;θ)T , θ = (A,B)T , G is satisfied with the nonlinear system

(2.2). The output function h is used to yield the measurement value, X0 represents the original
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value of the state. To put it more precisely, we estimate the continuous time process of the

model by using the discrete measurement value of the output function y. As to the parameters

θ , since θ̇ = 0 it is visible that θ(t) = θ0 for all t ≥ t0. Primarily, we demand some initial

definition to prepare for proceeding the filter. Ideally, X0 should be the initial conditions of the

process, but this is obviously impossible. Since we do not have any measurements available to

estimate X0, it might make senses to take our initial value of X0 equal to the average given by

G(t;X). Therefore, we write

(3.2) X f
t , (X f (1)

t ,X f (2)
t , · · · ,X f (q)

t ), X f (i)
t , (Yt ,Y2t ,At ,Bt)

T , i = 1,2, · · · ,n.

where X f
t ∈ Rn×q, which is the predicting samples ensemble of state X at time t. n and p denote

the dimension of state and the number of samples, respectively. Meanwhile, mean of state

prediction X f as well as the matrix of state prediction error covariance P f
t are defined by

(3.3) X f
t = 1

q ∑
q
i=1 X f (i)

t , i = 1,2, · · · ,n, P f
t = 1

q−1 ẽxx
t (ẽxx

t )T .

Where ẽxx
t is the residual of state prediction

(3.4) ẽxx
t , (X f (1)

t −X f
t ,X

f (2)
t −X f

t , · · · ,X
f (q)

t −X f
t ).

Upon the above definition, we employ the prediction equation and the update equation to

estimate the state X in the phage model.

1. Initialization: Y0,Y20,A0,B0, tspan.

2. Prediction: Input the i-th (i= 1,2, · · · ,n) data into the model (2.2) with the parameter A and

B. We would obtain the prediction state of the next observation moment t, then the prediction

state and model parameters are integrated into a joint state vector X f
t . The EnKF prediction

equation is written as follow
Y f
(t)

Y f
2(t)

A f
(t)

B f
(t)

=



−k1Y(t−1)(Y(t−1)−1)
2 − kdY(t−1)+ k2Y2(t−1)+A

k1Y(t−1)(Y(t−1)−1)
2 − k2Y2(t−1)−CY2(t−1)+B

0

0

+


ε

j
1

ε
j

2

ε
j

3

ε
j

4

 .(3.5)

Superscript t and f denote as the time and prediction of state separately. Variable ε assigned

the process noise generally, which is referred to as a Gaussian random variable with zero mean
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FIGURE 3. At the ensemble size is 20, (a) illuminates that the estimated pa-

rameter set {A,B} (blue line) and the real values( broken line) become {A =

1189.2,B = 6.48} and {A = 1200,B = 4.58}, respectively. (b) shows that the

amount of state collection {Y,Y2} is {Y = 484.1,Y2 = 189.1} by EnKF(full line

), while the red solid triangle dotted line denotes the measured values, which is

{Y = 486.8,Y2 = 191.1}.

and covariance R, dimensions are consistent with model members,i.e., j = 1,2, · · · ,q[15]. To

simplify the calculation, we would write it as

(3.6) X f
t = G(Xt−1)+ ε.

3. Measurement: generating the assemble of measurement

Y l
(t)

Y l
2(t)

=

1 0 0 0

0 1 0 0




Y l
(t)

Y l
2(t)

Al
(t)

Bl
(t)

+

ε l
1

ε l
2

 , l = 1,2, · · ·q.(3.7)

Let H =

1 0 0 0

0 1 0 0

 , ηt = (Y l
(t),Y

l
2(t),A

l
(t),B

l
(t))

T , Zl
t = (Y l

(t),Y
l
2(t))

T , ε = (ε l
1,ε

l
2)

T . Variable

ε is assumed to be the measurement noise and represents the reliability of the measurements.

The measurement noise is also assumed to be Gaussian with zero mean and the covariance
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matrix would be denoted by ω . Once more. We combine the output function h in the system

(2.2) with the measured value at time t as the measurement of state ηt , so this is simplified

(3.8) Zl
t = Hηt + ε l, l = 1,2, · · ·q.

4. Update: the Kalman gain:

(3.9) Kt = P f
t HT (HP f

t HT +ω)−1.

Usually in actual computation, we could calculate P f
t HT and HP f

t HT directly. The objective is

to obtain the filter to update status

(3.10) Xa
t = X f

t +Kt(Zl
t −HX f

t ), l = 1,2, · · ·q.

Where Zl
t −HX f

t is residuals between measured and predicted values, Kt could be used to

adjust X f
t . In addition to weigh the covariance of the prediction state P f

t and the magnitude of

the measurement error covariance ω .

5. The mean of the assimilation values and the covariance matrix of assimilation data Pa
t are

following

(3.11) E(Xa
t ) = E(X f

t )+K(E(Zl
t )−HE(X f

t )),

(3.12)

Pa
t =E[(Xa

t −E(Xa
t ))(X

a
t −E(Xa

t ))
T ]

=[(I−KtH)(X f
t −X f

t )+Kt(Zt−E(Zt))][(I−KtH)(X f
T −X f

t )+Kt(Zt−E(Zt))]
T

=(I−KtH)P f
t (I−KtH)T +ω.

4. RESULT

The primarily kinetic behavior of the regulatory system of phage has been discussed. We

know the model steady positive solution is existent and only one. From Fig.1, it is clear that the

progress of gene regulation system up to a certain state. Meanwhile, we select n,a,kt,kd,ki(i =

1,2, . . . ,8) as the parameters to produce some numerical modelings. For instance, let n =

2,a= 2,kt = 0.3,kd = 0.04,k1 = 0.01,k2 = 0.01,k3 = 0.4,k4 = 0.008,k5 = 0.12,k6 = 0.25,k7 =

0.1,k8 = 0.2. (it assumes the reaction rate in the process of gene regulation to be a positive num-

ber less than 1.) By direct numerical calculation, the initial concentration of protein Y and dimer
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Y2 take different initial conditions separately, while the effect of gene expression is changeless,

which tends to equilibrium E∗= (486.8,191.1). Because of the stochasticity should be inherent

in gene regulation from transcription to protein synthesis, there are many uncertainties in gene

regulatory. We may not pay more attention to the quantity of protein and dimer change in the

gene expression process. While we are concerned with the quantity of protein and dimer, which

would be in a stable state after approximately 10 minutes. The real value of the parameter col-

(a) (b)

FIGURE 4. The estimated parameter(full line) and the real values(dash) become

{Y = 483.9,Y2 = 189.1,A = 1198.9,B = 4.75} and {Y = 486.8,Y2 = 191.1,A =

1200,B = 4.58} at the ensemble size is 100.

lection is equivalent to {Y = 486.8,Y2 = 191.1,A= 1200,B= 4.58}. Fig.3 briefly illustrates that

the values of estimated parameters are equivalent to {Y = 484.1,Y2 = 189.1,A = 1189.2,B =

6.48} in case of the ensemble size is 20. Nevertheless, Fig.4 makes clear that the magnitude of

the ensemble is 100, the parameters are equal to {Y = 483.9,Y2 = 189.1,A= 1198.9,B= 4.75},

it may be noted that the initial estimates are the same as above. Next, a comparison of the dif-

ferent ensemble size indicates that modest-sized ensemble can track the evolution of the state

with high accuracy.

Least-squares method center around finding the collection of parameters that minimize some

distance measure between the simulated data and the observed data[16]. The state parameters

Y and Y2 estimated by the Least Square method are shown in Figure 5. The filled triangles
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and circles are the true value of Y and Y2, respectively. The blue and green line represent the

simulation data of Y and Y2, separately. While the parameters A and B are estimated by least

square method act as 1217 and 2.75. Consequently, the set of parameters that meet the minimum

distance between the simulated data and the real data is discontented.
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FIGURE 5. The filled Triangles and circles are the true value of Y and Y2. the

blue and green line represent the simulation data of Y and Y2, respectively.

5. DISCUSSION AND PROSPECT

This essay takes the regulation network of bacteriophage gene with ODE in the model into

account and analyzes the existence and stability of the equilibrium of the model. Our conclusion

is that the rate of reaction of the chemical reaction equation satisfies the condition of (a +

2)nktPD> kd
2 and just only one steady equilibrium E∗(Y ∗,Y ∗2 ). While assuming that we possess

limited information about the regulation network model and the experiment is too expensive and

time-consuming. It makes sense to apply the Ensemble Kalman Filter to estimate the parameters

of interest based on limited library information. Furthermore, this essay considered that the size

of the estimated ensemble is bigger the cost of some related experiments is higher. Therefore,

the better parameter ensemble size in the future work needed to be computed.
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