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Abstract: Bioelectric sources are the bastion of action potentials that pervade abutting cells and their regions. Such 

sources are characterized by impressed current density which originate from a nonelectrical source of energy. In the 

CCS under consideration current density emanates from the movement of ions by reason of concentration gradient, 

which is the main cause of the creation of an electric field. The pertinent issue is the determination of the quantity of 

ionic current that exits a source to a sink, which in effect drives a potential field in a dipole environment. Therefore, 

the quantity of current that transmits through dipoles and the concomitant potential field about the cardiac conduction 

system were sought. The equation satisfying the potential field in the region of interest was found by solving Laplace’s 

equation in cylindrical coordinate. It is hoped that a good knowledge of the quantity of current and the potential field 

may qualitatively inform cardiac procedures. 
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1.  INTRODUCTION 

Volume conduction models are of essence in analysing bioelectric phenomena. They describe the 

geometry and conductivity of any tissue within which electric current flows, and also describe the 

current sources in the tissue. Sources are produced by the passage of current across the membrane 

of active excitable cells. The heart is a known bioelectric source and volume conductor, with most 
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of its nodal structures as electric sources and sinks. It is a veritable site for the propagation of 

autonomous and automatic action potential (AP).  The eventuation of such APs depends on the 

effective conduction of electrical current from an excited cell to a contiguous quiescent cell. This 

excited cell to quiescent cell mode of transmission is required to effectuate cardiac cycle. In the 

event of a cell delivering a charge to an adjoining quiescent cell, the beneficent cell becomes the 

source while the recipient cell becomes the sink. In fine, virtually every cell has the dual role of a 

source and a sink. The source-sink balance is a crucial element of cardiac system. The 

consummation of the conduction system presupposes the generating of the required quantity of 

current that would be sufficient for the local sink. This is one possible way of avoiding source-

sink mismatch which is implicated in deleterious cardiac events. In this regard, Boyle and 

Vigmond [1], Kleber and Rudy [2] stressed the safety need and, therefore, the quantification of the 

source-sink balance. A physiological heart is herein referred to as feasible. This term is used in the 

sense of   bio-communication network. Automaticity is a known characteristic of the heart in the 

initiation of action potentials. 

In analysing source-field models, Malmivuo and Plonsey [3] described bioelectric sources as 

surface/volume distributions of two types of source element, namely the monopole and/or dipole. 

There the source was treated as a bundle of parallel muscle fibres and therefore, a one-dimensional 

problem. Studies on the spread of electric currents arising from sources in the cardiac cells, through 

surrounding tissues are of immense interest. Sources and sinks are spatially localized phenomena 

that are the physical grounds of field potentials. It is believed that impressed currents relate to 

electrical activity at the membranes of excitable cells [4]. This paper treats bio-electric sources and 

sinks phenomena from the standpoint of the cardiac conduction system, CCS. 

 In the CCS electrical sources and fields may be described by (monopole and) dipole fields. In 

current flow fields a monopole refers to a point source or sink of current within a conducting 

medium. It was the view of Plonsey [5] that the monopole is a rarity in bioelectricity since sources 

emanate from active tissues consisting of distinctively spaced source and sink combinations. It is 

instructive to note that pairs of equal and unlike abutting monopoles constitute a central source 

unit in electrophysiology. A combination of current source and current sink is a dipole. A 

distribution of dipoles is found in an active membrane source.  
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The heart’s structure, as a conductor, is considered finite, inhomogeneous and anisotropic. In 

general, conductivity within the tissue differs from point to point (inhomogeneity). Usually, the 

extracellular space is considered a volume conductor when only the electro-migration current 

emanating from the presence of the electric field is put into consideration. Nonetheless, diffusion 

or advection could prompt the migration of ions in the interstitial fluid even in the absence of an 

electric field [6]. Fibrous tissues, such as muscle and nerve, demonstrate anisotropic property; the 

conductivity in the direction of the fibres exceeds the conductivity perpendicular to the fibres [7]. 

The cell geometry, cell size, the directional distribution of gap junctions and membrane ion 

channels constitute the structural determinants of anisotropic conduction. A consequence of 

anisotropy is that the current density may not be in the same direction as the electric field and 

therefore, it (anisotropy) mediates the propagation of action potential [8]. This lends credence to 

the notion that rotational anisotropy accelerates the spread of electrical excitation in the heart [9]. 

In order to ease the cumbersomeness of inhomogeneity, the delineation of volume conductor into 

compartments was perceived. This way, compartmental homogeneity is assumed and therefore 

constant conductivity is enhanced. For the purpose of approximating the cardiac tissue as 

homogeneous and isotropic the heart, as a volume conductor, is assumed made up of layers of 

dipole source elements, which are located in the isochronal activation surfaces.  

 

2. FUNDAMENTAL ELECTRICAL PROPERTIES OF TISSUES  

A universal volume conductor may define a region of volume, Ω, which has conductivity, σ, and 

permittivity, ϵ, wherein there exists a source current, Iω. The current sources stem from bio-

excitable cells undergoing an activation process. In biological volume conductors the central 

question is to acquire the accurate location and strength of the sources inside the conductor by 

knowledge of an electrical potential measured on a point/region of interest. [10]. In the cardiac 

tissue activation can be perceived as the process in which cells experience rapid depolarization. A 

regular problem in bioelectric theory is the determining of the potential distribution, φ(.), arising 

from sources, all through a volume conductor. In cardiac physiology, calculation of the scalar 

potential, φ, is essential in cardiac pacing and defibrillation. In bioelectric problems it is assumed 

to be quasi-static since it frequently changes slowly enough [3]. Therefore, capacitive and 

inductive effects are ignored. In the cardiac conduction system in which source fields exist and 

where source–sink mismatch is seen, the much needed problem shall be to determine the source 
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distribution that give rise to potentials. For instance how does the relatively small SAN cope with 

the electrical exigencies of the much larger atrial tissue? (see Joyner and Capelle [11]). How do 

the Purkinje cells satisfy the ventricular mass to cope with source-sink mismatch? (see Morley et 

al. [12] ). In a resistive volume conductor the equation for the potential field is of the form 

  

                . . ,   in  , = J                                                                                              (1)  

                                                      

 where σ is the conductivity of the medium, φ is the electric potential, and Jω
 
is the source current 

density. A boundary condition for the potential may be found by confining every volume current 

inside the volume, Ω. 

 

               ( )( ) . = 0,  , r n r                                                                                                       (2)                                                  

 

which is the Neuman condition, where n is the outward unit normal vector of the surface ∂Ω.                                              

 

In any region where conductivity is homogeneous and isotropic Poisson’s equation is obtained 

from equation (1) as 

 

                
2  =                                                                                                           (3) 

                                                  

where λ = ∇.J𝛚/σ. In the absence of bioelectric current source λ = 0.Thus, divergence-free 

conducting regions are better described by the potential (Laplace’s) equation. In regions distal 

from the site of an action potential the current density, J(A/m2), is linearly related to the electric 

field intensity, E (V/m). This relationship, in line with the microscopic form of Ohm’s law, given 

by the current density 

 

                  J = σE .                                                                                                                (4)   

                                                    

The above is an estimation of a region devoid of bioelectric sources, with assigned uniform bulk 

conductivity, σ. The current density, J, arises secondary to the existence of the aforesaid electric 



 BIO-ELECTRIC POTENTIAL FIELD AND CURRENT SOURCE DISTRIBUTION 5 

field E. In the absence of electromagnetic wave the electric field at each instant is derivable from 

the gradient of an electric scalar potential, φ.  

 

                    E = -∇φ.                                                                                                              (5) 

 

Substituting (4) and (5) into (1) gives 

 

                   ∇⋅J  =  − ∇⋅J𝛚                                                                                                      (6) 

 

These properties of body tissues suggest that the instantaneous currents depend purely on the 

sources at that instant.   

          

2.1 Divergence of current density in a volume  

The concept of divergence is crucial to the analysis of issues on volume conduction.  It relates the 

deviation of the current density in a volume, Ω, to the current density through the surface, ∂ Ω, of 

the volume. In effect we have, 

 

                    . d = dS

 

  J J.n                                                                                              (7) 

 

where n is the outward normal vector on ∂ Ω. From (5) we have 

 

            . d = - dS

 

  J J.n  .                                                                                                (8)     

 

The left hand side of (8) encodes the net current source generated inside the volume, whereas the 

right hand side is the total conduction current flowing through the surface ∂ Ω (leavingΩ). For a 

monopole conveying a current I
𝜔 

and with an infinitesimal small volume Ω
ε 
about the source, 

equation (8) reads 
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0

.J d = -Ilim


 

 → 

  ,                                                                                                   (9) 

and thus, 

          ∇.J𝛚 = -I𝜔δ(τ)                                                                                                        (10) 

where δ(τ) is a three dimensional Dirac-delta function [7]. If tissue capacitance is neglected then 

the sources vary, charges on boundaries and interfaces are self-redistributed in a relatively short 

time such that equation (6) reads 

 

           ∇⋅J = 0.                                                                                                                 (11) 

The above is in line with divergence-free region of the CCS, such as along the internodal pathways 

(see [13]). This is also the case when each node is a sink. For instance, the atrioventricular node 

(AVN) serves as a sink prior to depolarization. It only becomes a source when impulse is 

transmitted to it from the SAN via the SAN-AVN internodal pathways. The CCS is an 

agglomeration of current sources (sinks) connected by conduction pathways. It is marked by 

various phases of action potentials (depolarization) wherewith resting phases apply. The heart 

contains about 5×1010 cells of which possibly 5% are active at any instant during depolarization 

[5]. In this regard, quiescent cells and nodes are only electrically active when they are activated by 

abutting active nodal cells. The quiescent cells are in such a state because an abutting sink has not 

been furnished to act as a source for the next phase of action potential. From the physical electricity 

standpoint, a steady current density, J(x, y, z) presupposes that ∇⋅J = 0 at all directions, x, y, z. The 

conducting bioelectric medium extends continuously with distributed resistances, capacitances, 

and batteries [3].  

 

3. CARDIAC CURRENT SOURCES AND DISTRIBUTION 

The cardiac conduction system comprises five elements [13, 14, 15, 16]: the sino-atrial node 

(SAN), the atrio-ventricular node (AVN), the bundle of His, the bundle branches, the Purkinje 

fibres, all of which are connected by the conduction pathways. Source-sink process determine the 

electrical flow in the system. Fig. 1 below is the CCS. Fig.2, an extract from Fig. 1, shows the 

nodal points among other indications. The nodal points represent the source and sink points. 
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                  Fig.1 Electrical conduction system of the heart [17]                         Fig.2 Nodal point schematic of the CCS [13] 

  In Fig. 2 the nodes are represented by vi (i = 1, 2 ,…, 7). The node: v1 stands for the SAN, v2 

stands for the AVN, v3 stands for the point of bifurcation of the bundle of His, v5 stands for the left 

bundle branch, v6 stands for the right bundle branch. The individual bundle branch has attachments 

to the Purkinje fibres, which have infinitely many miniscule branches and nodes. The arrow heads 

(Fig. 2) indicate flow direction.  

 

3.1 From monopole to dipole 

From the perspective of the CCS, the primary pacemaker, the SAN is the pivotal current source of 

finite extent. At times is beneficial to describe sources of finite extent as a continuum of point 

sources (monopoles). Since the SAN is within the cardiac volume, the left hand side of equation 

(8) holds. The SAN may be considered a point source carrying a current I
𝜔; with an infinitesimal 

small volume Ω
ε 
about the source. Equation (9) holds well for such current source. If Iω is a point 

current source, such as the SAN centre, lying in a conducting medium and conductivity σ, then the 

resulting flow lines must be uniform and directed radially. Therefore, the current density J crossing 

a concentric spherical uniform surface of arbitrary radius r is  

 

                 
24

I
J

r

=


                                                                                                           (12) 

 

By reason of the current being everywhere in the radial direction we express the current density 

as a vector in the form 

 

            
24

r

I

r

=


J e ,                                                                                                                     (13) 
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where er is the unit vector in the radial direction, where the origin is at the point source. Associated 

with the current flow field defined by equation (13) is a scalar potential field φ to which the electric 

field E is related as shown in (5). There is variation of potential along a transverse direction in 

virtue of the fact that the field is everywhere radial. Therefore, the isopotential surfaces are, 

expectedly, a series of concentric spheres surrounding the point source, with the origin at the 

monopole source, whose potentials diminish for increasing values of r. In connection with 

monopole, the potential φm is given by 

 

           m
4

I

r

 =


.                                                                                                             (14) 

 

The CCS comprises several sources, to wit SAN, AVN, His bundle branch point, among others 

each of which may be considered a monopole on individual basis. It is therefore not at all times 

suitable to place the coordinate system origin at the point source. So the coordinates of the point 

source(s) have to be distinguished from that of the field point. This way we have 

 

           

        2 2 2( ) ( ) + ( )  r = x - x + y - y z - z   ,                                                                                                  (15) 

 

with each monopole located at (x, y, z) and the field point is at (x', y', z').  In the feasible conducting 

system in context the respective dipole elements are to wit (see Fig.2): the SAN(v1) → AVN (v2), 

AVN → Bundle of His branch point (v3), both of which are in series arrangement,  v3 → v4, v3 → 

v5, v4 → v6 (the source point of v4 and v5 is v3). Each arrow represents source-sink direction. If d is 

a small distance separating each dipole, the dipole moment is p = Iωd . Thus, d is the displacement 

from negative to positive point source and ed is a unit vector in that direction, and the dipole vector, 

p, is related to d by 

 

            p = Iωd =   Iωded                                                                                                    (16) 

 

The exact expression for a well-defined dipole is [5] 
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1

4
d d

p

r

 
 =   

  
e .                                                   (17)  

 

Now we represent the sources by impressed current density, Jc, which do not emanate from electric 

field; they originate in a nonelectrical source of energy. In the CCS the current density emanates 

from the movement of ions by reason of concentration gradients; it is the primary cause for the 

establishment of an electric field [5]. With this, equation (4) modifies to 

 

 

                 J = σE + Jc                                                                                                         (18) 

 

Thus, the total current density is the sum of the Ohmic component, which gives a linear current –

voltage relationship, and the impressed current density. 

 

Equation (11) combine with (5) and (18) to give  

 

                 𝛁.𝛁σV = 𝛁.Jc   .                                                                                                  (19) 

 

In regions containing sources the source term can be estimated using equation (19). Such estimates 

would furnish information about the divergence of Jc whose dimension is current per unit volume.  

 

3.2 Ionic current through CCS dipoles 

As said earlier, Jc represents the sources which emanate from the movement of ions by reason of 

concentration gradients. Let us take a look at the SAN→AVN dipole, and by extension all other 

dipoles listed here earlier.  

.                                                                                                  

                                                                                                      

                                                                                      

                                                                                                 

 
In Fig 3. above the green box (v1) represents the active node (source), while the blank box (v2)  represents the inactive node (sink); the arc indicates 

the source-to-sink path. and the arrow indicates flow direction. 

d 

v1 v2 

Fig.3. A dipole separated by a distance, d 
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 The governing differential equation of the action potential of coupled cells is given by [18] 

 

                        m
j m m,i

m

d 1
( )

d
= − − −

i

V
I g V V

t C
,                                                                    (20) 

where Vm is the membrane potential, IΣ is total ionic current, Vm,i is the membrane potential of cells 

connected to the cell of interest, Cm is the membrane capacitance of an individual cell and gj is the 

coupling conductance. In the absence of coupling, gj = 0, and the second term of the right hand 

side of equation (20) vanishes. Assume the membrane potential is constant over some time 

interval. Then, a quasi-static current that flows across the dipole is,  

 

                 m j m m,i

i

( )I C g V V = − −  .                                                                                                       (21) 

(It may be of note that the ionic current IΣ is in the form of impressed current density, Jc). The flow 

of current from the SAN (source) via the atrial conduction pathways to the AVN (sink), Fig. (2) 

can be obtained from (21) as 

 

                IΣ = I = −Cmg(Vm(SAN) − Vm(AVN)) .                                                                         (22) 

 

Suppose these ions move autonomously from concentration c1 to concentration c2 (i.e. 

SAN→AVN). The current they carry has the form ( Peskin [19]) 

 

         I = − q(l1(V)c1−l2 (V)c2) ,                                                                                            

 

where, for an ionic species, q is the charge per molecule, V is the voltage across the two nodal 

cells, and l1, l2 are the voltage-dependent rate constants. Both l1(V) and l2(V) are constrained by 

ionic thermodynamics. In thermodynamic consideration, the work done in moving the ion 

molecules from concentration c1 to concentration c2 can be calculated as 

             
2

1

c
qV = lTlog

c                                                                                                                                  (23) 

From (23) above we get 
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2

1

Vc
e

c


=

,                                                                                                                   (24) 

(where 
q

lT
 = )  At equilibrium ( I = 0), we have 

 

             
1

2

( )

( )

Vl V
e

l V

=
.                                                                                                                (25) 

Therefore the current reads 

              2
1 1

1

( ) 1 .
Vc

I ql V c e
c

− 
= − 

 
                                                                                                                 (26)        

The conservation law requires that concentrations c1, c2 be in equilibrium. Let V0 (c1, c2) be the 

potential at which equilibrium holds. Then 

 

             
02

1

Vc
e

c


=

,                                                                                                                                            (27)                                                                                                         

           ( )0( )
1 1( ) 1 .

V V
I ql V c e

− −
= −                                                                                                                    (28)                                                                                                      

The issue of linear current-voltage relationship is quite salient since the voltage across the resistor 

is linearly proportional to the current through it- the basis of Ohm’s Law. There is no choice of 

l1(V) independent of V0 that may furnish linearity for all concentrations. To this effect a recourse 

to Peskin [19] for a linear relationship by constructing such l1(V) for a particular V0 is  considered. 

Let 

          1 ( )

( )
( )

1 V V

H V V
l V

e  − −

−
=

−
                                                                                                                             (29)                                                                                                                   

           2 ( )

( )
( )

1

V

V V

H V V e
l V

e





−

− −

−
=

−
                                                                                                                       (30)  

where H is some value that depends on its argument. 

Therefore, 
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                ( )
1( )

( )
1

1

V V

V V

qH V V
I c e

e





− −

− −

 −
= − 

 −  

 .                                                                                                  (31) 

With V0 = V' we get  

                    

                   I = qc1H(V- V ') .                                                                                                  (32) 

 

The above is a linear current-voltage relations which holds for all c1, c2 such that  

                
2

1

Vc
e

c


=

                                                                                                                 (33) 

From equation (31) we see that the equation 

               ( )
*( )

( )
1

1

V V

V V

qH V V
I c e

e





− −

− −

 −
= − 

 −  

                                                                                 (34) 

holds well for any dipole current, where c* is the ionic concentration at each dipole source. The 

details supplied by the SAN→AVN dipole shall therefore by analogous to those of other diploes 

of the CCS. 

 

3.3 Potential field and current in the dipole path 

Potential field in the region between each dipole nodal cells is considered in this section. The 

analysis in this section takes from the seminal work by Heppner and Plonsey ([20], it also may 

interest one to see [21]). The abutting dipole cells are assumed cylindrical, each of radius ro, one 

assumed active and the other assumed inactive, and are separated by a distance d.    

                            

 

 

                                             z 
                                                                      z 

 

                        

Rf (Ω) 

 

Active 

region 

              

φ=φa 

           ro 

            r 

Fig.4. Resistances across dipole path    

 

Inactive 

region  

 

𝜑=0 

 

v1 v2    

 d 
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Assume the potential field φ(r, z) dominate a region, 0 < z < d; 0 ≤ r ≤ ro about the dipole v1, v2. It 

is assumed that the connecting fibres are swathed with non-excitable membranes, with specific 

resistance Rf (Ω-cm2) and the flow of current depends only on the voltage drop across the gap. In 

the specified region the potential, φ, will satisfy Laplace’s equation 2 ( , ) 0r z = . With the cylinder 

assumed axisymmetric we have 

 

             
2

2

1
0r

r r r z

    
+ = 

   
                                                                                               (35) 

The associated boundary conditions in relation to the current density satisfies the Neumann 

condition at z = 0 and z = d, and together with the behaviour of φ in the radial direction we get 

[20]: 

(i)  
0

( ,0 )
,a

f z

r

R z

  


+

+

=

− 
=


 

(ii) 
,

( , )

f z d

r d

R z

 


−

−

=


= −


,                                                                                                   (36) 

(iii)   is finite at r = 0, 

(iv)   = 0 at r = ro. 

 

Conditions (iii) and (iv) of (36) are imposed to have a solution of equation (35) is in the form      

 

 ( ) ( )0

1

, [ cosh( ) sinh( )]n n n n n

n

r z J k r A k z B k z


=

= + ,                                                                      (37) 

where kn are the roots of Jo(k, r) = 0. Applying boundary conditions (i) and (ii) of (36) gives 

              0

1 1

( ) ( )n n a d n n n

n n

A J k r R k B k r
 

= =

− =  ,                                                                         (38) 

and 

                

( )

( )

0

1

0

1

[ cosh( ) sinh( )]

[ cosh( ) sinh( )].

n n n n n

n

f n n n n n n

n

J k r A k d B k d

R J k r k A k d B k d



=



=

+

= +




         (39) 
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The coefficients An and Bn are obtained by multiplying both sides of the above two equations by 

rJ0(kmr), integrating with respect to r over [0,r0] and applying the orthogonality property of the 

Bessel functions. Substitute the resulting expressions into equation (36) and get 

               ( )
( )

( )
0

0 1 01

2
, .[ cosh( ) sinh( )],

( )

n
a n n n

n f n n nn

J k r
r z f k z k z

f R k k r J k r
 





=

= −
+

                                    (40) 

where 

        [ tanh( )] / [1 tanh( )].n f n n f n nf R k k d R k k d = + +  

The gap region accommodates current density , −  with  given by equation (40) above. Three 

notable currents come to play. They are the currents crossing the active and quiescent disc surfaces 

and the current across the cylindrical wall at r = r0 (0 < z < d). Denote these currents by IA, IQ and 

IW respectively. The total current flowing into the gap from IA is     

               
0

0
0

2 .
r

A

z

I r r dr
z




=


= −

  

The current flowing into the quiescent cell is 

        
0

0
2 .

r

Q

z d

I r r dr
z




=


= −

   

The residual current, IW, across the cylindrical gap boundary is 

           
0

0
0

2 .
r

W

r r

I r r dz
r




=


= −

      

Substitute equation (37) into the above three equations and interchange the order of integration to 

get  

                 0

1

1
4 ,A a

nn

I r
e

 


=

=                                                                                                                          (41) 

            0

1

1
4 [ sinh( ) cosh( )],Q a n n n

nn

I r f k d k d
e

 


=

= − −                                                                               (42) 

            0

1

1
4 [ sinh( ) cosh( ) 1],W a n n n

nn

I r f k d k d
e

 


=

= − +                                                                             (43) 

where 

         

( ) 0 ,

tanh( )
,

1 tanh( )

n n f n n

f n n

n
f n n

e f R k k r

R k k d
f

R k k d







= +

+
=

+ +
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and φa is the constant which denotes the potential assigned to the active cell relative to the resting 

potential. The quiescent cell has zero potential. 

 

We have come to an important expression for source/sink in the milieu of a potential field. When 

dipole current is expressed as the current crossing the active and quiescent nodal cells via the 

pathways, which are assumed cylindrical, we get 

 

          ( )
*( )

( )
1

1

V V
AV V

qH V V
I c e I

e





− −

− −

 −
= − = 

 −  

 ,     (see equation (41)).                                        (44) 

By continuity law,  

 

          IA = IQ + IW.                                                                                                            (45) 

Thus, the current across each dipole satisfies 

             

    ( )
*( )

( )
1

1

V V
Q WV V

qH V V
I c e I I

e





− −
 − −

 −
= − = + 

 −  

                                                                                           (46) 

        

4. SUMMARY AND DISCUSSION 

A feasible automatic volume conductor is, in this context, a bio-electric medium within which 

electrical impulse is generated and transmitted as a network. The term feasible indicates that the 

current flow is through a physiological conductor- the cardiac conduction system, as was treated 

here. In the next work, an inverse problem is being treated to analyse possible pathologies that affect 

the sources in order to propose the basis for their diagnostic decisions. This work treated each active cell 

as a current source and the quiescent cell as a sink. It is of note, however that every quiescent cell 

becomes a source when depolarised. Each intuitive cell centre is considered a node. The arcs 

(paths) connecting two nodes are the appurtenances of the of the network structure. 

 

A combination of source and sink, which are equal but opposite, is a dipole. In a physiological 

state, a dipole obeys the continuity principle. This is the bastion of feasibleness of electric current. 

The independent flow of ions was considered. In standard physics of electricity, J obeys Ohm’s 

law. However, in bio-electric volume conduction sources are represented by impressed current 
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density, Jc, which do not derive from electric field. In the CCS the current density emanates 

basically from the movement of ions as a sequel to concentration gradients. 

 

A potential field φ(r,z) is created in the region between each dipole nodal cells. In any region of 

interest the potential field is assumed to satisfy Laplace’s equation in cylindrical coordinates with 

axial symmetry. If φ is known, usually by solving the Laplace’s equation, the currents leaving the 

active node (source) to the inactive node (sink) may be evaluated. This was done here. For 

avoidance of clumsy repetitions only the SAN-AVN dipole was used; the analysis of the other 

dipoles of the CCS is similar to the aforesaid dipole. 

 

We now turn to the divergence of the current density, J, and its implication as regards the CCS. 

From the physical electricity standpoint, a steady current density, J(x, y, z) presupposes that ∇⋅J = 

0 at all directions, x, y, z. This encodes a solenoidal vector field, typical of region of the CCS such 

as the dipole distance, d, where a current source does not exist within the cardiac volume. By this, 

the heart fails to be autonomous and automatic in the creation of electricity 

.  

The intrinsic of the CCS, and perhaps isolated bio-electric systems with sources, does oppugn the 

presumption of physical electricity. So long as sources exist and quiescent cells await impulse, 

divergence condition must prevail! This means that the divergence of current density must be 

nonzero (i.e.∇⋅J ≠ 0) at source points. The existence of divergence in the CCS entrenches the 

benefit of sovereign and adequate energy creation, which may be niggardly supplied from an 

outside source in critical cases of demand. 
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