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Abstract. In this paper, we study an SIRS epidemic model with a nonlinear incidence rate and vaccination. We give

the existence of positivity, and boundedness of the equilibrium of the model. We calculate the basic reproduction

number of the proposed model by using the next generation matrix method. By constructing Lyapunov function, we

show that the disease-free equilibrium is globally asymptotically stable when the basic reproduction number is less

or equal than one and that the endemic equilibrium is globally asymptotically stable when the basic reproduction

number is greater than one. Numerical simulations are performed to investigate the effect of vaccinate on model

behavior.
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1. INTRODUCTION

Infectious diseases have been enormous burden to the human society. Every outbreak of

infectious diseases, such as smallpox, plague, cholera, and dengue fever, have caused many
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human deaths. In 2016, the world experienced a massive outbreak of dengue fever. Accord-

ing to the World Health Organization (WHO), more than 2.38 million dengue fever cases were

reported in the American region, of which 1.5 million were Brazilian [1]. In 1906, Hamer [2]

constructed and analyzed a discrete time model to help understand the causes of repeated out-

breaks of measles. This is one of the first applications of mathematical models to infectious

diseases. In 1927, Kermack and McKendrick [3] constructed a famous SIR model, in which the

population is divided into susceptible (S), infective (I) and recovery (R). Mathematical models

have been widely applied to the study of the transmission and control of infectious diseases

since then. The beginning of the western industrial revolution in the late 18th century caused

a large amount of labor to gather in cities. High human density and high-contact lifestyles

caused infectious diseases to occur frequently. People have an immediate need for prevention

and control of infectious diseases. Early prevention plays a key role in reducing the incidence of

infectious diseases. Immunization by vaccination allows susceptible individuals to gain immu-

nity without premature morbidity. For example, in the case of smallpox, people take the sputum

that exposes the individual to the infected person or the skin lesion of the smallpox patient. Now

with the rapid growth of biotechnology, more and more efficient vaccines have been developed

by scientists to help humans overcome various infectious diseases. Immunization of newborns

by vaccination can greatly reduce the incidence of many infectious diseases.

The common incidence of infectious diseases includes bilinear incidence and standard inci-

dence, but sometimes other incidence is used for a specific infectious disease. To better describe

the transmission mechanisms and control decisions of infectious diseases, Capasso and Serio

[4] proposed a saturated nonlinear incidence S f (I) to explain the spread of cholera, where f (I)

represents the infection force from the infective. Later, Liu et al. [5, 6] proposed a nonlinear

incidence rate kSpIq, where k is the transmission rate, p and q are positive constants. Wang

et al. [7] proposed a nonlinear incidence rate ϕ(P,L), where P and L represent the number of

potential smokers and smokers. Yuan et al. [8] considered a generalized saturating incidence

rate k(I)S
1+α(I)S , where k(I) and α(I) are nonnegative functions. These nonlinear incidence rates

are applicable to different mathematical models and the results obtained are more consistent

with the actual data.
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For some infectious diseases, such as jaundice, chickenpox and mumps, infected individuals

will get permanent immunity and will not get the same infectious diseases after rehabilitation.

For some other infectious diseases, such as cholera, whooping cough and influenza, susceptible

individuals will temporarily obtain antibody response after being infected, but return to the sus-

ceptible compartment immediately after the patient recover, or after a short period of time. In

this paper, we present an SIRS model with vaccination immunity, in which susceptible individ-

uals can obtain short-term immunity after vaccination but return to the susceptible compartment

after a short time period. We use the method of Lyapunov-LaSalle invariant principle to analyze

its global stability.

In the second part of the paper, we introduce the model formulation in detail. In the third part,

we analyze some basic properties of the model, and in the fourth part, we analyze the global

stability of the model. In the fifth part, we perform numerical simulations to discuss how the

vaccinate affect the dynamic behavior. Finally, we summarize the article briefly.

2. MODEL FORMULATION

Li et al. [9] considered an SIRS mathematical model with a nonlinear incidence. The recov-

ered person receives a brief immunization and then returns to the susceptible. Their model does

not take into account the vaccination, which plays a critical role in the control of the disease

[10]. Motivated by these, we consider the following mathematical model to study the effect of

immunization on the infectious disease dynamics.

dS(t)
dt

= λ (1− p)−µS−S f (I)+ γ1I +δR,

dI(t)
dt

= S f (I)− (µ + γ1 + γ2 +α)I,

dR(t)
dt

= pλ + γ2I− (µ +δ )R,

(1)

with the initial conditions

S(0) = S0 > 0, I(0) = I0 ≥ 0, R(0) = R0 ≥ 0.(2)
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In model (1), S(t), I(t), R(t) represent the susceptible, infective and recovery individuals,

respectively. Here S f (I) is a nonlinear infection incidence rate. The recruitment rate of sus-

ceptible individuals is λ . We assume that all recruitment are susceptible, of which a fraction

p is vaccinated where 0 ≤ p ≤ 1. µ is the natural mortality rate, γ1 denotes the reversion rate

from infected individuals to susceptible individuals, γ2 denotes the transition rate from infected

individuals to recovered individuals. α is the disease-induced death rate. δ is the immunity loss

rate. Here we assume that λ , µ are positive while other parameters are nonnegative.

In our study, we need some hypotheses about f according to [11]. f is a real locally Lipschitz

function on R+ = [0,+∞) satisfying

(A1). f (0) = 0 and f (I)> 0 for I > 0;

(A2).
f (I)

I is a continuous monotonic nonincreasing function for I > 0, and limI→0+
f (I)

I exists,

denoted by β with β > 0.

According to the hypotheses about f , we can get that f (I)≤ β I.

Obviously, every solution of model (1) with the initial condition (2) keeps nonnegative for all

t > 0. Next, we discuss the boundedness of model (1).

After adding the three equations of model (1), we get

d(S+ I +R)
dt

= λ (1− p)−µS−S f (I)+ γ1I +δR+S f (I)

−(µ + γ1 + γ2 +α)I + pλ + γ2I− (µ +δ )R

= λ −µS−µI−µR−αI

≤ λ −µ(S+ I +R).

According to the comparison principle, we have

limsup
t→+∞

(S(t)+ I(t)+R(t))≤ λ

µ
.

So we can define a bounded set Ω = {(S(t), I(t), R(t))∈ R3
+ : S+R+ I ≤ λ

µ
}, which indicates

that Ω is positive invariant with respect to model (1).
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3. PRELIMINARIES

3.1. The basic reproduction number and existence of equilibrium. By straightforward cal-

culation, we can obtain the disease-free equilibrium E0 = (S0, I0, V0) = (λ (µ(1−p)+δ )
µ(µ+δ ) , 0, pλ

µ+δ
).

Using the method of Diekmann [12] and van den Driessche [13], we can derive the basic repro-

duction number

R0 = ρ(FV−1) =
λβ (µ(1− p)+δ )

µ(µ +δ )(µ + γ1 + γ2 +α)
,

where

F=

 λβ (µ(1−p)+δ )
µ(µ+δ ) 0

0 0


and

V−1 =

 1
µ+γ1+γ2+α

0
γ2

(µ+γ1+γ2+α)(µ+δ )
1

µ+δ

 .

R0 is usually referred to as the basic reproduction number, which can also be obtained by

calculating the threshold for the existence of the endemic equilibrium point.

Next, we prove the existence and uniqueness of the endemic equilibrium E∗ = (S∗, I∗, R∗)

of model (1). From model (1), we can get

S∗ = (µ + γ1 + γ2 +α)
I∗

f (I∗)
,

R∗ =
pλ + γ2I∗

µ +δ
,

h(I∗) = λ −µS∗−µI∗−µR∗−αI∗.

(3)

After substituting S∗ and R∗ by their expressions in the third equation of (3). We obtain the

following equation

h(I) = λ −µ(µ + γ1 + γ2 +α)
I

f (I)
−µI−µ

pλ + γ2I
µ +δ

−αI.

Because h(0+) = λ − µ(µ+γ1+γ2+α)
β

− µ pλ

µ+δ
= µ(µ+γ1+γ2+α)

β
(R0 − 1) > 0 when R0 > 1 and

h( λ

µ+α
) =−µ(µ + γ1 + γ2 +α) λ

(µ+α) f ( λ

µ+α
)
− µλ (pµ+pδ+γ2)

(µ+α)(µ+δ ) < 0. Hence, there exists the posi-

tive zero for h(I) = 0. At the same time we can get that

h
′
(I) =−µ(µ + γ1 + γ2 +α)

f (I)− I f
′
(I)

f 2(I)
− µγ2

µ +δ
−α−µ.
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Based on the assumption (A2) about f (I), we have f (I)− I f
′
(I)> 0, which indicates h

′
(I)< 0.

Hence the existence and uniqueness of the zero root of h(I) = 0 is obtained.

4. STABILITY ANALYSIS

In order to simplify the calculation, we consider the following equivalent system of model

(1).

dN
dt

= λ −µN−αI,

dI
dt

= (N− I−R) f (I)− (µ + γ1 + γ2 +α)I,

dR
dt

= pλ + γ2I− (µ +δ )R,

(4)

where N(t) = S(t)+ I(t)+R(t).

The disease-free equilibrium of model (4) is Ē0 = (λ

µ
, 0, pλ

µ+δ
) and like model (1), there

exists a unique endemic equilibrium Ē∗ = (N∗, I∗, R∗) of model (4), where N∗ = λ−αI∗
µ

.

We first discuss the local stability of the disease-free equilibrium Ē0.

Theorem 1. If R0 < 1, then the disease-free equilibrium Ē0 of model (4) is locally asymp-

totically stable in Ω.

Proof. From the model (4) we can get the following Jacobian matrix

JĒ0
=


−µ −α 0

0 (λ

µ
− pλ

µ+δ
)β − (µ + γ1 + γ2 +α) 0

0 γ2 −(µ +δ )

 .

The characteristic equation of the above Jacobian matrix at Ē0 is

(X +µ)(X +(µ +δ ))[X− (
λ

µ
− pλ

µ +δ
)β +(µ + γ1 + γ2 +α)] = 0.

One of the eigenvalues is (λ

µ
− pλ

µ+δ
)β−(µ+γ1+γ2+α) = (µ+γ1+γ2+α)(R0−1), which

is negative when R0 < 1. We can easily get that the other two eigenvalues are negative. Thus

the disease-free equilibrium Ē0 is locally asymptotically stable in Ω when R0 < 1.
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Theorem 2. If R0 < 1, then the disease-free equilibrium Ē0 of model (4) is globally asymp-

totically stable in Ω.

Proof. We define a Lyapunov function

V0(t) =
1

2α
(N− λ

µ
)2 +

∫ I

0

U
f (U)

dU +
1

2γ2
(R− pλ

µ +δ
)2.

The time derivative of V0 along solutions of system (4) is

dV0

dt
=

1
α
(N− λ

µ
)
dN
dt

+
I

f (I)
dI
dt

+
1
γ2
(R− pλ

µ +δ
)
dR
dt

=
1
α
(N− λ

µ
)(λ −µN−αI)+

I
f (I)

((N− I−R) f (I)− (µ + γ1 + γ2 +α)I)

+
1
γ2
(R− pλ

µ +δ
)(pλ + γ2I− (µ +δ )R)

=
1
α
(N− λ

µ
)(−µ(N− λ

µ
)−αI)+ I(N− I−R)

− I2

f (I)
(µ + γ1 + γ2 +α)+

1
γ2
(R− pλ

µ +δ
)(−(µ +δ )(R− pλ

µ +δ
)+ γ2I)

= − 1
α

µ(N− λ

µ
)2− I2− µ +δ

γ2
(R− pλ

µ +δ
)2 +(

λ

µ
− pλ

µ +δ
− I

f (I)
(µ + γ1 + γ2 +α))I

≤ − 1
α

µ(N− λ

µ
)2− I2− µ +δ

γ2
(R− pλ

µ +δ
)2 +(

λ

µ
− pλ

µ +δ
− 1

β
(µ + γ1 + γ2 +α))I

= − 1
α

µ(N− λ

µ
)2− I2− µ +δ

γ2
(R− pλ

µ +δ
)2 +

1
β
(µ + γ1 + γ2 +α)(R0−1)I.

It is easy to have that
dV0

dt
< 0 when R0 < 1. The largest invariant set of model (4) on the set in

which
dV0

dt
= 0 is the singleton {Ē0}= {(λ

µ
, 0, pλ

µ+δ
)}. It follows from the LaSalle’s invariance

principle (see [14, Theorem 5.3.1] or [15, Theorem 3.4.7]) that the disease-free equilibrium Ē0

is globally asymptotically stable on the feasible region Ω. �

Theorem 3. If R0 > 1, then the endemic equilibrium Ē∗ of model (4) is locally asymptoti-

cally stable in Ω.
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Proof. From model (4) we can get the following Jacobian matrix

JĒ∗ =


−µ −α 0

f (I∗) −B − f (I∗)

0 γ2 −(µ +δ )

 .

The characteristic equation of the above Jacobian matrix at Ē∗ is

X3 +CX2 +DX +E = 0,(5)

where,

B = f (I∗)− (N∗− I∗−R∗) f
′
(I∗)+(µ + γ1 + γ2 +α),

C = 2µ +δ +B,

D = B(µ +δ )+ γ2 f (I∗)+Bµ +µ(µ +δ )+α f (I∗),

E = µ(B(µ +δ )+ γ2 f (I∗))+α f (I∗)(µ +δ ).

Plugging Ē∗ into the second equation of model (4), we obtain

(µ + γ1 + γ2 +α) = (N∗− I∗−R∗)
f (I∗)

I∗
.

From the hypotheses about f , it is easy to know that f
′
(I∗)≤ f (I∗)

I∗ . Hence, we get

B = f (I∗)− (N∗− I∗−R∗) f
′
(I∗)+(µ + γ1 + γ2 +α)

= f (I∗)+(N∗− I∗−R∗)(
f (I∗)

I∗
− f

′
(I∗))> 0.

Thus, it is easily seen that C,D,E > 0 when R0 > 1. Further

CD−E = αB f (I∗)+(µ +δ +B)(B(µ +δ )+ γ2 f (I∗)+Bµ +µ(µ +δ ))

+µ(Bµ +µ(µ +δ )+α f (I∗))> 0.

From Routh-Hurwitz criteria, it follows that all roots of (5) have negative real part if R0 > 1.

Hence, the endemic equilibrium Ē∗ of (4) is locally asymptotically stable in Ω.

Next, we prove the global stability of the endemic equilibrium Ē∗. Model (4) has a unique

positive equilibrium Ē∗ = (N∗, I∗, R∗). Substituting the endemic equilibrium Ē∗ into model
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(4), we get

λ −µN∗−αI∗ = 0,

(N∗− I∗−R∗) f (I∗)− (µ + γ1 + γ2 +α)I∗ = 0,

pλ + γ2I∗− (µ +δ )R∗ = 0.

(6)

From the second equation of (6), we have

(N∗− I∗−R∗)− (µ + γ1 + γ2 +α)
I∗

f (I∗)
= 0.

Thus, the model (4) can be rewritten as

dN
dt

=−µ(N−N∗)−α(I− I∗),

dI
dt

= f (I){(N−N∗)− (I− I∗)− (R−R∗)− (µ + γ1 + γ2 +α)

[
I

f (I)
− I∗

f (I∗)

]
},

dR
dt

= γ2(I− I∗)− (µ +δ )(R−R∗).

(7)

Theorem 4. If R0 > 1, then the endemic equilibrium Ē∗ of model (4) is globally asymptoti-

cally stable in Ω.

Proof. We define a Lyapunov function

V1(t) =
1

2α
(N−N∗)2 +

∫ I

I∗

U− I∗

f (U)
dU +

1
2γ2

(R−R∗)2.

The time derivative of V1 along solutions of system (7) is

dV1

dt
=

1
α
(N−N∗)

dN
dt

+
I− I∗

f (I)
dI
dt

+
1
γ2
(R−R∗)

dR
dt

=
1
α
(N−N∗)[−µ(N−N∗)−α(I− I∗)]

+
I− I∗

f (I)
f (I){(N−N∗)− (I− I∗)− (R−R∗)− (µ + γ1 + γ2 +α)[

I
f (I)
− I∗

f (I∗)
]}

+
1
γ2
(R−R∗)[γ2(I− I∗)− (µ +δ )(R−R∗)]
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= −µ

α
(N−N∗)2− (N−N∗)(I− I∗)+(N−N∗)(I− I∗)− (I− I∗)2

−(I− I∗)(R−R∗)− (µ + γ1 + γ2 +α)(I− I∗)[
I

f (I)
− I∗

f (I∗)
]

+(I− I∗)(R−R∗)− µ +δ

γ2
(R−R∗)2

= −µ

α
(N−N∗)2− (I− I∗)2− µ +δ

γ2
(R−R∗)2− (µ + γ1 + γ2 +α)(I− I∗)[

I
f (I)
− I∗

f (I∗)
]

Because f (I)
I is a continuous monotonic nonincreasing function, we can obtain that (µ +γ1+

γ2+α)(I− I∗)[ I
f (I)−

I∗
f (I∗) ]> 0. Therefore, it follows from the Lyapunov stability theorem that

the endemic equilibrium Ē∗ is globally asymptotically stable in Ω. �

5. NUMERICAL SIMULATION

In this section, we use numerical simulations to verify the results obtained in sections 3 and

4. We consider the following system

dS(t)
dt

= λ (1− p)−µS− βSI
1+α1I

+ γ1I +δR,

dI(t)
dt

=
βSI

1+α1I
− (µ + γ1 + γ2 +α)I,

dR(t)
dt

= pλ + γ2I− (µ +δ )R.

(8)

Obviously, model (8) is a particular case of model (1), which contains the saturate incidence
βSI

1+α1I . Besides, it is easy to see that the hypotheses (A1) and (A2) are verified. And also the

basic reproduction number R0 = λβ (µ(1−p)+δ )
µ(µ+δ )(µ+γ1+γ2+α) . According to [10], we set λ = 10,µ =

0.04,β = 0.02,α = 0.5,α1 = 0.3,γ1 = 0.1,γ2 = 0.85,δ = 0.005.

Next, based on different p, we perform numerical simulations with model (8) by using Mat-

lab. Firstly, we take p = 0.9, then the basic reproduction number R0 = 0.6711 < 1. It follows

from Theorem 2 that the disease-free equilibrium E0 is globally asymptotically stable, which

implies that the disease dies out eventually (see Figure 1). This is consistent with the conclusion

of Figure 1. Secondly, we replace p with p = 0.5. It follows that the basic reproduction num-

ber R0 = 1.8043 > 1. By Theorem 4, the endemic equilibrium E∗ is globally asymptotically

stable and the disease will persist (see Figure 2). If we choose the parameter value p = 0.1,

then R0 = 3.0574 > 1 and the endemic equilibrium E∗ is globally asymptotically stable (see



ANALYSIS OF AN SIRS EPIDEMIC MODEL WITH NONLINEAR INCIDENCE AND VACCINATION 11

0 50 100 150 200
0

20

40

60

80

100

120

140

t

S
(t
)

0 50 100 150 200
0

2

4

6

8

10

12

14

16

18

20

t

I(
t)

0 50 100 150 200
0

50

100

150

200

250

300

350

400

450

500

t

R
(t
)

FIGURE 1. Taking λ = 10,µ = 0.04,β = 0.02,α = 0.5,α1 = 0.3,γ1 = 0.1,γ2 =

0.85,δ = 0.005, p = 0.9, then R0 = 0.6711 < 1 and the disease-free equilibrium

E0 = (50,0,200) of model (8) is globally asymptotically stable.
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FIGURE 2. Taking λ = 10,µ = 0.04,β = 0.02,α = 0.5,α1 = 0.3,γ1 = 0.1,γ2 =

0.85,δ = 0.005, p = 0.5, then R0 = 1.8043 > 1 and the endemic equilibrium

E∗ = (106.5913,0.8654,127.3850) of model (8) is globally asymptotically sta-

ble.
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FIGURE 3. Taking λ = 10,µ = 0.04,β = 0.02,α = 0.5,α1 = 0.3,γ1 = 0.1,γ2 =

0.85,δ = 0.005, p = 0.1, then R0 = 3.0574 and the endemic equilibrium E∗ =

(146.9651,1.9453,58.9684) of model (8) is globally asymptotically stable.

Figure 3). According to our calculations, we can change the value of p to control the basic

reproduction number R0 to measure whether the disease will persist. Compared with Figure

1, Figure 2 and Figure 3, we obtain a higher value of vaccination rate p, which can lead to the

disease extinction. On the other hand, when the vaccination rate p is at a lower level, the disease

will become popular.

6. DISCUSSION

In this paper, we introduce an SIRS epidemic model with a generalized nonlinear incidence

rate and vaccination. In the model, a fraction of infected individuals resolve the infection and

the recovered lose immunity in a short period and return to the susceptible compartment. We

use the monotonicity of f (I) to show that there is a unique positive equilibrium for our proposed

model.

The basic reproduction number R0 is an important threshold in our model. By using the

LaSalles invariance principle and the Lyapunov direct method, we proved that when R0 is

less than one, the disease-free equilibrium is globally asymptotically stable and the infectious
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disease eventually dies out over time. When R0 is greater than one, the endemic equilibrium

is globally asymptotically stable and the disease becomes endemic. From the expression of the

basic reproduction R0, we conclude that the vaccinated portion p can effectively reduce the

number of infected to transmit the disease to susceptible individuals. Therefore, vaccination,

when available, should be given to the maximum extent for the optimal control of infectious

diseases in the scenario we discussed in this paper.
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