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Abstract. In the present paper, we discuss an HIV (Human Immunodeficiency Virus) transmission model with

health information campaign about HIV control policies. The reason behind the conception of this model is the

idea to divide the human population that gains awareness of HIV, due to this campaign. We assume that HIV

will not infect people who are aware about the dangers of HIV. We analyze the existence and local stability of the

equilibrium points. We found that the disease-free equilibrium point will be locally asymptotically stable (LAS) if

the basic reproduction number (R0) is less than one, and unstable otherwise. A forward bifurcation of the system

is shown numerically, depending on the intervention parameters. Some numerical simulations for the autonomous

system are given to see the evolution of the system, with respect to some scenarios that might appear in the field.

To accommodate the limitation of budget issue for implementation in the field, the model is reconstructed as

an optimal control problem with two control variables. Numerical simulations for optimal control problems are

presented for five different scenarios. Numerical simulation results suggest that controlling strategies by providing

health campaigns is better, if they precede an endemic prevention strategy than endemic reduction, since the cost

needed for endemic reduction is five times higher, compared with the endemic prevention. Optimal intervention

should also note the value of R0. Larger control levels are needed when R0 > 1 if compared with when R0 < 1.

The results of numerical simulation also show that the lower the cost of the health campaign, the more health

campaigns can be provided. Based on the numerical simulation calculations, the optimal intervention of health

campaign can raise public awareness about HIV, in order to reduce the number of HIV-infected individuals.
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1. INTRODUCTION

Human Immunodeficiency Virus (HIV) is a virus that attacks the human immune system. As

long as the virus impairs immune cell functions, especially CD4 cells, the body becomes im-

munodeficient. The HIV infection further develops into Acquired Immunodeficiency Syndrome

(AIDS). Individuals with AIDS experience severe immune system damage and suffer from op-

portunistic infections. HIV can be transmitted through the exchange of body fluids, such as

blood, breast milk, semen, and vaginal secretions. HIV is spread mainly through unprotected

sexual contact with HIV-infected individuals and sharing HIV-infected syringes. HIV can also

be inherited vertically from an HIV-infected mother to her child. This transmission can occur

during pregnancy, the birth process or breastfeeding [1].

In Indonesia, some government efforts to control HIV/AIDS include expanding access to

CD4 testing and viral load, increasing coverage of antiretroviral treatment and improving the

quality of healthcare facilities [2]. The government also conducts health campaigns to provide

education, information and communication to adolescents and adults. The campaigns aim to

enhance their knowledge concerning HIV and adopt positive behavior to prevent HIV. One of

the programs is ”Aku Bangga, Aku Tahu” (I’m Proud, I Know)–an HIV prevention campaign

aimed at young people aged 15-24 years [3]. There are many methods to understand how HIV

spreads; one among them is through mathematical models.

Some mathematical models have already been introduced to understand how HIV spreads in

the human population, such as by considering ART as prevention and treatment, as proposed by

Huo et al. [4], Aldila D. and Maimunah [5], and Silva and Tores [6]. On the other hand, Naresh,

Tripathi and Sharma [7] modeled the spread of HIV in the population with immigration from

HIV-infected individuals. Furthermore, Giamberardino et al. [8] discussed the HIV prevalence

model with three controls, such as information campaign, test campaign, and an HIV/AIDS

therapy action. Dubey Preeti et al. [9] introduced a model of HIV dynamics in the body.

In this manuscript, a mathematical model of HIV involving informative campaign about the

danger of HIV will be constructed. The model is based on the deterministic model in [8] by

adding a specific compartment for susceptible and infected humans, who may be aware or un-

aware of HIV. Let the human population be divided into six sub-populations; let them be called
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as unaware of HIV susceptible individuals (S1), aware of HIV susceptible individuals (S2), un-

aware of HIV-infected individuals in the acute stage (I1), aware of HIV-infected individuals in

the acute stage (I2), infected individuals in the chronic stage (P) and individuals with AIDS

(A). The total population at time t, denoted by N(t), is given by

N(t) = S1(t)+S2(t)+ I1(t)+ I2(t)+P(t)+A(t).

Newborns will be entered into the unaware susceptible group (S1). There are health cam-

paigns (u1 and u2) conducted by the government to control the spread and increase public

awareness of HIV/AIDS. Let us define that u1 is the individuals transition rate from unaware

to aware, while u2 is the opposite. It is assumed that there is a consideration of individual

consciousness due to health campaigns, for example, with electronic media campaigns. If the

content of the campaign is focused on providing basic knowledge about HIV and its prevention,

then the number of individuals aware of the dangers of HIV will increase. In our model, this

kind of intervention denoted by the increase of the transition rate from the unaware to the aware

compartment (u1). Conversely, if the content of the campaign is focused on regular appeals

to maintain healthy lifestyle habits as a preventive measure of HIV transmission, people are

expected to remain aware of HIV. So it is expected that individuals transition rate from aware to

unaware does not increase. Examples of implementations in the field include direct campaign

in AIDS rehabilitation groups/organization, free distribution of condoms [11], etc. Increasing

u1 and reducing u2 is the best way to control the HIV spread. Unfortunately, this means of

intervention comes at a high cost. Therefore, in this article, both parameters will be treated

as time-dependent variables, u1(t) and u2(t). Further explanation about the optimal control

problem of these parameters will be discussed in section 3.

In this article, although there is a possibility of vertical transmission of HIV to newborn [12],

it is assumed that HIV is only transmitted through sexual contact between unaware susceptible

individuals and unaware infected individuals in the acute stage. The unaware susceptible indi-

viduals will be infected through sexual contact with unaware infected individuals in the acute

stage at a rate of transmission β . Infected individuals in the chronic stage and individuals with

AIDS are assumed to not transmit HIV because they are already aware of their status of the

disease or because of their health conditions that do not permit to make sexual contact.
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FIGURE 1. Epidemiological scheme of the model

Based on the development of HIV/AIDS in humans [10], it is assumed in this article that

infected individuals in the acute stage will move to infected individuals in the chronic stage

at a rate δ . In the other hand, infected individuals in the chronic stage will suffer AIDS at a

rate γ and individuals with AIDS will die caused by AIDS at a rate of α . With these assump-

tions, the model is given as follows, together with the parameters described in Table 1 and the

epidemiological scheme of the system (1) in Figure 1.

dS1(t)
dt

= Λ−u1(t)S1(t)+u2(t)S2(t)−
βS1(t)I1(t)

Nc(t)
−µS1(t)(1a)

dS2(t)
dt

= u1(t)S1(t)−u2(t)S2(t)−µS2(t)(1b)

dI1(t)
dt

=
βS1(t)I1(t)

Nc(t)
−u1(t)I1(t)+u2(t)I2(t)−δ I1(t)−µI1(t)(1c)

dI2(t)
dt

= u1(t)I1(t)−u2(t)I2(t)−δ I2(t)−µI2(t)(1d)

dP(t)
dt

= δ (I1(t)+ I2(t))− (γ +µ)P(t)(1e)

dA(t)
dt

= γP(t)− (µ +α)A(t),(1f)

with Nc(t) = S1(t)+S2(t)+ I1(t)+ I2(t), and the initial conditions given as follows

S1(0) = (S1)0, S2(0) = (S2)0, I1(0) = (I1)0, I2(0) = (I2)0, P(0) = (P)0, A(0) = (A)0.
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Parameters Description Unit

u1(t)
Transition rate from the unaware to the aware com-

partment caused by medical campaign
day−1

u2(t)

Transition rate from the aware to the unaware com-

partment caused by decreased awareness of the dan-

gers of AIDS

day−1

Λ Recruitment rate from newborn individuals
day

β Infection rate day−1

γ Transition rate from infected in chronic stage to AIDS day−1

µ Natural death rate day−1

α death rate caused by AIDS day−1

TABLE 1. Description of parameters in Model (1)

The paper is organized as follows: the state of the art of the model and model construction are

carefully detailed in this section and followed by mathematical analysis about the existence and

local stability of equilibrium points in section 2. The construction of basic reproduction number

is also given in section 2. Mathematical results from the analysis of the basic reproduction

number in section 2 are then used in section 3 to identify the optimal parameters as an optimal

control problem. Numerical experiments on the autonomous model when control parameters

are constant or varying with time are given in section 4. Finally the discussion and conclusion

are presented in section 5.

2. ANALYSIS OF THE AUTONOMOUS SYSTEM

Existence of the equilibrium points. To analyze the behaviour of the model in system (1), let

us consider the control variables are constant (u1(t) = u1,u2(t) = u2), such that model (1) now

reads as:

dS1(t)
dt

= Λ−u1S1(t)+u2S2(t)−
βS1(t)I1(t)

Nc(t)
−µS1(t)(2a)

dS2(t)
dt

= u1S1(t)−u2S2(t)−µS2(t)(2b)
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dI1(t)
dt

=
βS1(t)I1(t)

Nc(t)
−u1I1(t)+u2I2(t)−δ I1(t)−µI1(t)(2c)

dI2(t)
dt

= u1I1(t)−u2I2(t)−δ I2(t)−µI2(t)(2d)

dP(t)
dt

= δ (I1(t)+ I2(t))− (γ +µ)P(t)(2e)

dA(t)
dt

= γP(t)− (µ +α)A(t),(2f)

Taking the right hand side of model (2), system (2) has two equilibrium points. First equilib-

rium is the HIV-free equilibrium point, which is given by:

(3) Ω1 = (S1,S2, I1, I2,P,A) =
(

(µ +u2)Λ

µ(µ +u1 +u2)
,

u1Λ

µ(µ +u1 +u2)
,0,0,0,0

)
.

With the HIV-free equilibrium in hand, we are ready to calculate the basic reproduction

number of model (2).

Basic reproduction number. The Basic reproduction number (R0) is defined as the expected

number of secondary infections caused by one primary infected individual during a period of

infection in a population of all susceptible individuals [13, 14]. Some methods can be used

to construct R0, such as with the Next-Generation matrix approach [14] or with graph theory

[15]. In this article, the Next-Generation Matrix is the approach we choose to find the R0

of system (2). First, let’s construct the infective sub-system of (2), which only involves the

I1(t), I2(t),P(t) and A(t), i.e.,

dI1(t)
dt

=
βS1(t)I1(t)

Nc(t)
−u1I1(t)+u2I2(t)−δ I1(t)−µI1(t)(4a)

dI2(t)
dt

= u1I1(t)−u2I2(t)−δ I2(t)−µI2(t)(4b)

dP(t)
dt

= δ (I1(t)+ I2(t))− (γ +µ)P(t)(4c)

dA(t)
dt

= γP(t)− (µ +α)A(t),(4d)

Next, using the small domain of next-generation matrix, then the next-generation matrix of

system (2) is given by :

NGM =

[
(µ +u2)β (δ +µ +u2)

(µ +u2 +u1)(δ +µ)(u2 +δ +u1 +µ)

]
.
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Therefore, the basic reproduction number R0 of system (2) as the spectral radius of NGM is

given by:

(5) R0 =
β (µ +u2)(µ +δ +u2)

(µ +u1 +u2)(µ +δ )(µ +δ +u1 +u2)
.

Further discussion about R0 will be given in the later part of this section.

The next equilibrium is the endemic HIV-equilibrium point, where all susceptible and in-

fected populations coexist. This equilibrium is given by:

(6) Ω2 = (S1,S2, I1, I2,P,A) = (S∗1,S
∗
2, I
∗
1 , I
∗
2 ,P
∗,A∗) ,

where

S∗1 =
(δ +µ +u1 +u2)Λ(µ +u2)

K3(
µ

δ
R0 +R0−1)

,

S∗2 =
(δ +µ +u1 +u2)Λu1

K3(
µ

δ
R0 +R0−1)

,

I∗1 =
Λ(δ +µ +u2)K2(R0−1)

(δ +µ)(δ +µ +u1 +u2)K3(
µ

δ
R0 +R0−1)

,

I∗2 =
(Λu1)K2(R0−1)

(δ +µ)(δ +µ +u1 +u2)K3(
µ

δ
R0 +R0−1)

,

P∗ =
(λδ )K2(R0−1)

(γ +µ)(δ +µ)K3(
µ

δ
R0 +R0−1)

,

A∗ =
(γλδ )K2(R0−1)

(γ +µ)(µ +α)(δ +µ)K3(
µ

δ
R0 +R0−1)

,

where

K1 = β (µ +u2)(µ +δ +u2),

K2 = (µ +u1 +u2)(µ +δ )(µ +δ +u1 +u2),

K3 = δ (µ +u1 +u2)(µ +δ +u1 +u2).

From the expression above, it can be seen that all compartments in Ω2 will be positive if

R0 > 1. These results are stated in the following theorem.
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FIGURE 2. Sensitivity analysis of R0 respect to u1 and u2, where the black curve is when

R0 = 1.

Theorem 2.1. Model (2) has two equilibrium points, i.e., the HIV-free equilibrium (3), which

exists without any constraint and the endemic-HIV-equilibrium point (6), which will exist if

R0 > 1, where R0 is the basic reproduction number of model (2) given in equation (5).

Next, we will analyze how R0 changes with respect to the change in other parameters. Since

∂R0

∂β
=

(δ +µ +u2)(µ +u2)

(δ +µ)(δ +µ +u1 +u2)(µ +u1 +u2)
> 0,

we know that R0 will increase when β increases linearly since ∂R0
∂β

does not depend on β . On

the other hand, since

∂R0

∂u1
=− (δ +µ +u2)(µ +u2)

(δ +µ)(δ +µ +u1 +u2)2(µ +u1 +u2)

(
1

δ +µ +u1 +u2

1
µ +u1 +u2

)
< 0,

we know that R0 will be suppressed non linearly when u1 increases. Please note that when u1 is

large enough, u1 >> 0, the effect of u1 on suppressing R0 is no longer significant. Next, since

∂R0

∂u2
=

β (µ +u2)

(δ +µ)(δ +µ +u1 +u2)(µ +u1 +u2)

(
1− δ +µ +u2

δ +µ +u1 +u2

)
+

(δ +µ +u2)β

(δ +µ)(δ +µ +u1 +u2)(µ +u1 +u2)

(
1− µ +u2

µ +u1 +u2

)
> 0,

then the increasing number of people who return to the unaware sub-population will increase

the basic reproduction number.
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In analysis we have previously conducted, R0 determines the existence and local stability

criteria of the equilibrium points Ω1 and Ω2. Therefore, next we will show how the health

campaign interventions u1 and u2 determine the magnitude of R0, as shown in Figure 2. The

analysis of Figure 2 is given as follows. In region 1, u1 ∈ [0,0.033), the R0 will always be

greater than one, regardless of the magnitude of health campaign intensity. Therefore, the

intervention of the health campaign cannot effectively reduce the spread of HIV to the HIV-

free equilibrium point in region 1. On the other hand, in region 3, when u1 ∈ [0.824,1], the

R0 < 1 will always be smaller than one for all magnitude of u1 and u2. This means that if

u1 > 0.0824, then the disease will always be extinct in the population. Interesting discussions

appear in regions 2a and 2b, where the combination of u1 and u2 will determine the R0, i.e.,

whether it is greater or less than one. To achieve the persistence of HIV in the field (R0 < 1),

for specific values of u1, u2 should fulfill the condition

u2 >
1
2
−β (δ +2µ)+(δ +µ)(δ +2(µ +u1))

β −δ −µ

+
1
2

√
β 2δ 2−2β δ 3−2β δ 2µ +4β δ u12 +4β µ u12 +δ 4 +2δ 3µ +δ 2µ2

β −δ −µ
,

or in the numerical example using the same parameters for Figure 2 except u1 and u2, previous

expression can be written as u2 >−0.22+0.538u1+0.641
√

2.016u2
1 +0.097. Therefore, if the

government can conduct a health campaign u1 in the region of (0.033,0.824), then they have to

really consider the rate of u2 to achieve the persistence of HIV.

Local stability of equilibrium points. Next, the local stability of HIV-free equilibrium point is

investigated analytically, while the local stability for endemic-HIV-equilibrium is investigated

numerically using specific values of R0. The local stability of the equilibrium point is deter-

mined by the eigenvalues of the Jacobian matrix at the corresponding equilibrium point of the

system (2). The general form of the Jacobian matrix of model (2) can be written by:

(9) J =

 J11 J12

J21 J22,


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where Nc = S1 +S2 + I1 + I2 and

J11 =


−u1− β I1

Nc
+ S1β I1

Nc
2 −µ u2 +

S1β I1
Nc

2 −S1β

Nc
+ S1β I1

Nc
2

u1 −µ−u2 0

β I1
Nc
− S1β I1

Nc
2 −S1β I1

Nc
2

S1β

Nc
− S1β I1

Nc
2 −u1−δ −µ

 ,

J12 =


S1β I1

Nc
2 0 0

0 0 0

−S1β I1
Nc

2 +u2 0 0

 , J21 =


0 0 u1

0 0 δ

0 0 0

 ,

J22 =


−δ −µ−u2 0 0

δ −γ−µ 0

0 γ −α−µ

 .

To analyze the local stability of the HIV-free equilibrium point, we evaluate J in HIV-free

equilibrium point which yield:

J (Ω1)=



−u1−µ u2 − β (µ+u2)
µ+u2+u1

0 0 0

u1 −µ−u2 0 0 0 0

0 0 β µ+β u2
µ+u2+u1

−δ −µ−u1 u2 0 0

0 0 u1 −δ −µ−u2 0 0

0 0 δ δ −γ−µ 0

0 0 0 0 γ −α−µ



.

The HIV-free equilibrium point will be stable if all the resulting eigenvalues from the above

matrix are negative. We have four explicit eigenvalues, all of which are negative, i.e.,−µ,−(µ+

u1 + u2),−(α + µ), and −(µ + γ). The other two eigenvalues come from the solution of the

second order characteristic polynomial given by :

(10) a0 +a1λ +a2λ
2 = 0,
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where

a0 = (1−R0)(µ +u1 +u2)(µ +δ )(µ +δ +u1 +u2),

a1 =

(
1−R0

(
µ +δ

µ +δ +u2

)(
µ +δ +u1 +u2

2µ +2δ +u1 +u2

))
(µ +u1 +u2)(2µ +2δ +1 +u2)

a2 = µ +u1 +u2.

It can be seen that the polynomial in (10) will only have negative eigenvalues, if λ1λ2 =
a0
a2

>

0 ⇐⇒ a0 > 0 ( if R0 < 1) and λ1+λ2 =−a1
a2

< 0 ⇐⇒ a1 > 0 (always fulfilled when a0 > 0).

This result is given in the following theorem.

Theorem 2.2. The HIV-free equilibrium (Ω1) is locally asymptotically stable when R0 < 1 and

unstable otherwise.

Due to the complexity of the model and the form of endemic-HIV-equilibrium (Ω2) of sys-

tem (2), the local stability criteria of this equilibrium will be investigated by choosing a specific

set of parameters, such that R0 > 1, i.e., Λ = 200,µ = 0.02,β = 0.6,δ = 0.1,γ = 0.5,α =

0.1,u1 = 0.1 and u2 = 0.05.With this data set, we have that R0 > 1 which makes the HIV-free

equilibrium point unstable (Theorem (2.1)), and the endemic equilibrium point exist (Theo-

rem (2.2)). Using this set of parameters, we have the endemic equilibrium point given by

Ω2 = (1482,2118,672,395,205,101), and when we evaluate it in the Jacobian matrix J , the

result gives us six eigenvalues, all of which are negative. Therefore, we conclude that there is a

set of parameters, such that R0 > 1 that makes the endemic-HIV-equilibrium point Ω2 locally

stable. A forward bifurcation diagram of the equilibrium points depending on u1 is given in

Figure 3. It can be seen that the larger the magnitude of u1 in the set of u1 ∈ [0,0.096], the

endemic equilibrium point Ω2, is stable and the population size of I1,P and A is decreasing and

finally reaches 0 when u1 tends to 0.096. On the other hand, I2 in the endemic equilibrium is

initially increasing, but later decreases to 0, when u1→ 0.096 is caused by the high intensity of

government campaigns to educate people about HIV. When u > 0.096, the R0 is decreasing to

less than one. According to the Theorem (2.1) and Theorem (2.2), the HIV-endemic equilibrium

no longer exist, while the HIV-free equilibrium becomes stable.
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(a)

(b)

FIGURE 3. Forward bifurcation of equilibrium points in system (1) depend on u1.

3. OPTIMAL CONTROL CHARACTERIZATION

To investigate the optimal application of the health campaign needed to eliminate the spread

of HIV, we would like to minimize the number of infected population using as low as possible

control interventions. Therefore, let us consider the following objective functional

J(Uj,Xi) =
∫ T

0
(ω1I1(t)+ω2I2(t)+ω3P(t)+ω4A(t)+ϕ1u2

1(t)+ϕ2u2
2(t)) dt,(11)
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subject to model in system (1) where T is the final time of the simulation. Let ωi for i = 1,2,3,4

represent the weight parameters for the infected population, while ϕ1 and ϕ2 represent the

wight parameters for the control variables. Please note that ω1I1(t),ω2I2(t),ω3P(t) and ω4A(t),

represent the related cost as a consequence of the high number of infected populations at time t,

for example for hospitalization cost. On the other hand, ϕ1u1(t) and ϕ2u2(t) represent the cost

related to the effort of the government to implement the health campaign in order to educate

people to become aware about the spread of HIV. To guarantee the balance of the cost function,

the condition of ωiXi ≈ ϕ jUj should be reached, where Xi is the infected compartment, while

Uj is the control variable. In this article, the use of quadratic form in the cost function J is

chosen, since there is no linear correlation between the cost and effect of intervention. Please

see [19, 21, 22] for further example of optimal control in the epidemiological model, using a

quadratic form on their cost function.

We aim to minimize J with the constraint given by

dS1(t)
dt

= Λ−u1(t)S1(t)+u2(t)S2(t)−
βS1(t)I1(t)

Nc(t)
−µS1(t)(12a)

dS2(t)
dt

= u1(t)S1(t)−u2(t)S2(t)−µS2(t)(12b)

dI1(t)
dt

=
βS1(t)I1(t)

Nc(t)
−u1(t)I1(t)+u2(t)I2(t)−δ I1(t)−µI1(t)(12c)

dI2(t)
dt

= u1(t)I1(t)−u2(t)I2(t)−δ I2(t)−µI2(t)(12d)

dP(t)
dt

= δ (I1(t)+ I2(t))− (γ +µ)P(t)(12e)

dA(t)
dt

= γP(t)− (µ +α)A(t),(12f)

with N(t) = S1(t)+S2(t)+ I1(t)+ I2(t)+P(t)+A(t), and the initial conditions given as follows

S1(0) = (S1)0, S2(0) = (S2)0, I1(0) = (I1)0, I2(0) = (I2)0, P(0) = (P)0, A(0) = (A)0.

while also minimizing the control variables u1(t) and u2(t). We seek an optimal control u∗1,u
∗
2,

such that

J(u∗1,u
∗
2) = min{J(u∗1,u∗2)|(u∗1,u∗2) ∈A }
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where A is the admissible control depending on the lower (umin
i ) and upper (umax

i ) bounds for

each control variable. Please note that umin
i ≥ 0 and umax

i < ∞. To guarantee the existence of

the optimal control, it is directly followed by standard results of optimal control theory [23].

To derive the solution of our optimal control problem, we use the Pontryangin’s Maximum

Principle and also to derive the necessary conditions [24]. The Hamiltonian HHH is defined as

HHH = ϕ1u1(t)
2 +ϕ2u2(t)

2 +ω4A(t)+ω3P(t)+ω1I1(t)+ω2I2(t)

+λ1(t)
(

Λ−S1(t)u1(t)+S2(t)u2(t)−
S1(t)β I1(t)

S1(t)+S2(t)+ I1(t)+ I2(t)
−µ S1(t)

)
+λ2(t)(−µ S2(t)+S1(t)u1(t)−S2(t)u2(t))

+λ3(t)
(

S1(t)β I1(t)
S1(t)+S2(t)+ I1(t)+ I2(t)

− I1(t)u1(t)+ I2(t)u2(t)−δ I1(t)−µ I1(t)
)

+λ4(t)(−δ I2(t)−µ I2(t)+ I1(t)u1(t)− I2(t)u2(t))

+λ5(t)(−P(t)γ−P(t)µ +δ I1(t)+δ I2(t))

+λ6(t)(−A(t)α−A(t)µ +P(t)γ)) .

(13)

where λλλ k(t) for k = 1,2, ...,6 is the adjoint variables .

Theorem 3.1. There exists an optimal control solution (u∗1,u
∗
2) that minimizes J over A , given

by

û1(t) = min
(

umax(1),max
(

umin(1),
I1(t)λ3(t)− I1(t)λ4(t)+S1(t)λ1(t)−S1(t)λ2(t)

2ϕ1

))
,

û2(t) = min
(

umax(2),max
(

umin(2),
−I2(t)λ3(t)+ I2(t)λ4(t)−S2(t)λ1(t)+S2(t)λ2(t)

2ϕ2

))
,

(14)

where λλλ k(t) for k = 1,2, ...,6 is the adjoint variable for S1,S2, I1, I2,P and A, respectively, which

satisfy

dλ1

dt
=

(
u1(t)+

β I1(t)
S1(t)+S2(t)+ I1(t)+ I2(t)

)
λ1(t)−

(
S1(t)β I1(t)

(S1(t)+S2(t)+ I1(t)+ I2(t))
2 −µ

)
λ1(t)

(15)
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−u1(t)λ2(t)−
λ3(t)β I1(t)(S2(t)+ I1(t)+ I2(t))

(S1(t)+S2(t)+ I1(t)+ I2(t))
2

dλ2

dt
=−

(
u2(t)+

S1(t)β I1(t)

(S1(t)+S2(t)+ I1(t)+ I2(t))
2

)
λ1(t)+(µ +u2(t))λ2(t)

+
λ3(t)S1(t)β I1(t)

(S1(t)+S2(t)+ I1(t)+ I2(t))
2

dλ3

dt
=−ω1 +

S1(t)β (S1(t)+S2(t)+ I2(t))λ1(t)

(S1(t)+S2(t)+ I1(t)+ I2(t))
2

−λ3(t)

(
S1(t)β

S1(t)+S2(t)+ I1(t)+ I2(t)
− S1(t)β I1(t)

(S1(t)+S2(t)+ I1(t)+ I2(t))
2

)

−λ3 (−u1(t)−δ −µ)−u1(t)λ4(t)−λ5(t)δ

dλ4

dt
=−ω2−

λ1(t)S1(t)β I1(t)

(S1(t)+S2(t)+ I1(t)+ I2(t))
2 −λ3(t)

(
− S1(t)β I1(t)

(S1(t)+S2(t)+ I1(t)+ I2(t))
2 +u2(t)

)

+λ4(t)(δ +µ +u2(t))−λ5(t)δ

dλ5

dt
=(µ + γ)λ5(t)−λ6(t)γ−ω3

dλ6

dt
=λ6(t)(α +µ)−ω4

and the transversality condition λλλ i(T ) = 0.

Proof. First, to get the adjoint system (15), we differentiate the Hamiltonian HHH (13) with respect

to each state variable

λ̇1(t) =−
∂H

∂S1(t)
, λ̇2(t) =−

∂H

∂S2(t)
, λ̇3(t) =−

∂H

∂ I1(t)
,

λ̇4(t) =−
∂H

∂ I2(t)
, λ̇5(t) =−

∂H

∂P(t)
, λ̇6(t) =−

∂H

∂A(t)
,

with the terminal condition λλλ i(T ) = 0 for i = 1,2,3,4,5,6. To obtain the optimality condi-

tion (14), we will also differentiate the Hamiltonian in equation (13) with respect to control

variables u1 and u2, which gives

∂H

∂u1(t)
=−I1(t)λ3(t)+ I1(t)λ4(t)−S1(t)λ1(t)+S1(t)λ2(t)+2u1(t)ϕ1 = 0,

∂H

∂u2(t)
= I2(t)λ3(t)− I2(t)λ4(t)+S2(t)λ1(t)−S2(t)λ2(t)+2u2(t)ϕ2 = 0,
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and set these equations equal to zero. Solving them with respect to each control variable, we

obtain

u∗1(t) =
I1(t)λ3(t)− I1(t)λ4(t)+S1(t)λ1(t)−S1(t)λ2(t)

2ϕ1
,

u∗2(t) =
−I2(t)λ3(t)+ I2(t)λ4(t)−S2(t)λ1(t)+S2(t)λ2(t)

2ϕ2
.

To determine an acceptable control variable value based on the needs and ability in field appli-

cations (lower and upper bounds), the optimal control variables now are

û1(t) = min
(

umax(1),max
(

umin(1),
I1(t)λ3(t)− I1(t)λ4(t)+S1(t)λ1(t)−S1(t)λ2(t)

2ϕ1

))
,

û2(t) = min
(

umax(2),max
(

umin(2),
−I2(t)λ3(t)+ I2(t)λ4(t)−S2(t)λ1(t)+S2(t)λ2(t)

2ϕ2

))
.

with umax(i) and umin(i) for i = 1,2 being the upper and lower bounds for each control variable,

respectively. �

In the next section, numerical simulation for the autonomous model in system (2) and the

optimal control problem explained in Theorem (3.1) will be conducted.

4. NUMERICAL RESULTS

4.1. Simulation of the autonomous model. We examined how the dynamics of HIV spread

among the population, according to the changed values of some parameters in this section. To

do this, all numerical simulations were carried out using the set of parameter values given in the

following Table 2, except it is stated differently.

Parameter Value Parameter Value

Λ 200 γ 0.5

µ 0.02 α 1

β 1.2 u1 (0,∞)

δ 0.4 u2 (0,∞)

TABLE 2. Numerical values used for simulation of the autonomous model in Fig. 4 and Fig. 5.
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FIGURE 4. Dynamics of system (2) with respect to different values of u1 = 0.01k, k = 1,2, ...,30

Some parameters in Table 2 are given in intervals. This approach raises the question of how

sensitive those parameters are in determining the results of the system (2). This is important

to give a better understanding of the results of the optimal control problem in the next sub-

section. Thus, we have a sensitivity contour of parameters with respect to R0, before we gave

the simulation of the autonomous model. In Figure 4 we can see how different values of u1 =

0.01 k, k = 1,2, ...,30 affect the change of the dynamic of model (2). On the other hand, we

can see how different values of u2 = 0.01 k, k = 1,2, ...,30 affect the change of the dynamic

of model (2) in Figure 5. Increasing the value of u1 for u2 as a constant, will increase total

susceptible population (S1 + S2) and suppress the total infected population (I1 + I2 +P+A).

On the other hand, for u1 as a constant and u2 increasing, it will increase the total infected

population and decreasing the total susceptible population. The reason behind this is that larger

values of u2 make more people unaware of the risk of HIV, making them more vulnerable to

infection by I1, I2,P or A individuals.

4.2. Simulation of the optimal control problem. In this section, we examine the optimal

control problem of system (1) with the cost function given in (11). The optimal control set

is obtained by solving the optimality system with a forward-backward scheme [16]. Please
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FIGURE 5. Dynamics of system (2) with respect to different values of u2 = 0.01k, k = 1,2, ...,30

FIGURE 6. Flowchart diagram of a forward-backward method to solve the optimal control

problem of system (1) with respect to cost function in (11).

see [17, 18, 19, 20] for further examples of implementation of this method in epidemiological

models. The rough algorithm is given in flowchart in Figure 6.

To investigate the optimal control simulation, the numerical experiments will be conducted

into four different scenario, i.e :
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Scenario I: : Different initial R0.

Scenario II: : Different initial conditions of infected population.

Scenario III: : Different weight parameters of infected compartment ωi.

Scenario IV: : Different weight parameters of control variables ϕi.

There are two different initial conditions used to conduct numerical simulations in this section.

The first initial condition is when the number of infected individuals already relatively high,

which named as the ”endemic reduction” scenario. The second initial condition is the ”endemic

prevention” scenario, where the number of infected individuals is still relatively small in t =

0. Therefore, we have (S1,S2, I1, I2,P,A) = (8000,0,2000,0,0,0) for the endemic reduction

scenario, and (S1,S2, I1, I2,P,A) = (9800,0,200,0,0,0) for the endemic prevention scenario.

Recapitulation of the numerical experiments related to the cost functions and equilibrium

points are given in Table 3, before the control variables are implemented in Table 4, when the

control variables are implemented into the system (1).
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4.2.1. Scenario I: Different initial R0. The simulation in this chapter is provided to illustrate

how environmental conditions (infectious rate, recovery rate and other factor that described

in R0) affect the dynamics of control variables needed to suppress the spread of HIV. The

simulation is given for two different R0 conditions at t = 0 when u1 = u2 = 0, but with the

same initial value for each variable in system (1), i.e R0 > 1 and R0 < 1. According to the

analytical results in Theorem (2.1) and (2.2), system (1) will tend to HIV-endemic equilibrium

when R0 > 1 and goes to HIV-free equilibrium when R0 < 1. For this simulation, we use the

set of parameters in Table 2 except β = 0.5 such that R0 = 1.19 > 1 and β = 0.3 such that

R0 = 0.71 < 1. We use the ”endemic reduction” scenario for the initial value in this section.

We also bound the value of control variables, i.e u1 ∈ [0.01,0.5] and u2 ∈ [0.01,0.5]. The result

is given in Table 5, while the details for each compartment before and after implementation of

controls can be seen in Table 3 and 4.

Scenario I J Total number of infected individual in t = 40 years

u1 = u2 = 0 u1 6= u2 6= 0

R0 > 1 286.3238 729 1

R0 < 1 56.1561 25 2
TABLE 5. Final condition of total susceptible and infected population in t = 40 for scenario I

and the cost functions related to it.

Based on Table 5, it can be seen that the cost function, when R0 > 1, is almost five times

higher than when R0 < 1. This result is not surprising, since the system will tend to endemic

equilibrium when R0 > 1, i.e., (S1,S2, I2, I2,P,A) = (2009,2,380,0,293,143). Therefore, more

intervention is needed to control the spread of HIV. After t = 40, the number of infected indi-

viduals could be suppressed to 1 when R0 > 1 and to 2 when R0 < 1. The dynamics of the

total susceptible population, the total infected population, and control variables for each case of

scenario I could be seen in Figure 7 .

In Figure 7, it can be seen that in both cases, the behavior of control variables is almost

the same. u1(t) behaves monotonically decreasing for all t ∈ [0,40] while u2(t) is increasing,
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FIGURE 7. The numerical result of scenario I for the dynamics of total susceptible, total

infected and control variables. Figure (a) is the case when R0 > 1, while Figure (b) when R0 < 1.

in the beginning, to suppress the number of infected individuals and then decreasing when

the dynamics of infected individuals show a decreasing trend. Even though the magnitude of

controls when R0 < 1 is slightly higher than when R0 > 1, the cost function is higher when

R0 > 1. This is because the number of infected individuals when R0 > 1 that should be reduced
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is much higher than when R0 < 1, since the number of infected individuals determines the cost

function.

4.2.2. Scenario II : Different initial conditions of infected population. In this scenario, control

variables u1 and u2 were used to optimize the cost function (11) for different initial conditions

of each infected population as mentioned before in the early part of section (4.2) : endemic pre-

vention and endemic reduction scenario. This simulation is important to illustrate the influence

of alertness from the government in controlling the spread of HIV. As with the previous simula-

tion in section 4.2.1 when R0 > 1, we use the set of parameters in Table 2, u1 ∈ [0.01,0.5] and

u2 ∈ [0.01,0.5].

Scenario II J Total number of infected individual in t = 40 years

u1 = u2 = 0 u1 6= u2 6= 0

Endemic prevention 51.5710 1530 331

Endemic reduction 137.9025 729 293
TABLE 6. Final conditions of total susceptible and infection population in t = 40 for scenario

II and the cost function related to it.

It can be seen from Table 6 that the cost function for endemic reduction is relatively large,

compared to the endemic prevention case. This is simply because more intervention is needed

to control the number of infected individuals in an endemic reduction case. The dynamics of the

total susceptible population, total infected population, and control variables for scenario II are

given in Figure 8. Although the dynamics of humans for both cases has no big difference, the

extreme difference is shown in the dynamics of control variables. In the endemic reduction case,

the dynamic of u1 follows the dynamics of infected individuals. A huge amount of u1 is needed

when the number of infected individuals is increasing. Different from the endemic reduction

case, the behavior of control variables in the endemic prevention case is almost always constant

all the time. The value of u1 ∈ [0,40] is the lower bound of u1, which means that no major

intervention is needed, which gave a small magnitude of the cost function.
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FIGURE 8. The numerical results of scenario II for the dynamics of total susceptible, total

infected and control variables. Figure (a) is the case for endemic prevention scenario, while

Figure (b) is for the endemic reduction case.

4.2.3. Scenario III: Different weight parameters of infected compartment ωi. We consider

the different possibilities of the cost function as a consequence of the existence of infected

individuals. As already mentioned before,
∫ T

0 (ω1I1(t)+ω2I2(t)+ω3P(t) +ω4A(t)) dt is related

to a cost, which should be incurred as a consequence of the cost of hospitalization of infected

humans, improvement of health service quality, etc. To do this simulation, we use different
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value of ωi i.e., (ω1,ω2,ω3,ω4) i.e., (0.05,0.05,0.05,0.05) when the cost of hospitalization is

low and (0.2,0.2,0.2,0.2) when the cost of hospitalization is high. Other parameters’ values are

the same with the previous simulation when R0 > 1.

Scenario III J Total number of infected individuals in t = 40 years

u1 = u2 = 0 u1 6= u2 6= 0

small ωi 65.2435 729 261

large ωi 935.9736 729 0
TABLE 7. Final conditions of total susceptible and infected population in t = 40 for scenario

III and the cost function related to it.

The dynamics of control and human population for this scenario can be seen in Figure 9,

where the numerical result is given in Table 7. A large value of ωi will increase the cost func-

tion. It can also be seen in Figure 9(b) that since the cost function for hospitalization is four

times larger than in Figure 9(a), then the solution will be emphasized in the control function.

Therefore, we can see that the dynamics of the control variable in Figure 9(b) is much larger

than in Figure 9(a) to avoid the larger cost caused by hospitalization. Please note that the to-

tal number of infected humans in Figure 9(b) already tends to 0, when t > 20 years, while in

Figure 9(a) it needs more than 40 years.

4.2.4. Scenario IV : Different weight parameters of control variables ϕi. In this scenario, the

simulation is obtained to illustrate a condition when the unit cost of each control variable (ϕi)

is different. We use ϕ1 = 7500,ϕ2 = −1400 to describe when the cost for health campaign

is relatively low and ϕ1 = 30000,ϕ2 = −560 when the cost are relatively high. The other

parameters are the same as with the simulation in section 4.2.1 when R0 > 1, and the initial

condition is for the endemic reduction scenario.

The dynamics of controls and human population for the fourth scenario can be seen in Fig-

ure 10, where the numerical results regarding the cost function and total of infected population

are given in Table 8. The huge value of weighted parameters for control variables will intervene

with controls not in high numbers (Figure 10(b)) if compared with a situation when the weight
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FIGURE 9. The numerical results of scenario III for the dynamics of total susceptible, total

infected and control variables. Figure (a) is for the case when ωi is relatively small while Figure

(b) is when ωi is relatively large.

parameters for control variables are smaller (Figure 10(a)). This situation will result in a large

infected population. The cost function for the case when ϕi is relatively small is 467.9888,
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Scenario IV J Total number of infected individual in t = 40 years

u1 = u2 = 0 u1 6= u2 6= 0

small ϕ j 467.9888 729 0

large ϕ j 130.4865 729 261
TABLE 8. Final conditions of total susceptible and infected population in t = 40 for scenario

IV and the cost function related to it.

which is dominated by the cost for controls. On the other hand, the cost related to hospitaliza-

tion is more dominant, when ϕi is relatively large, i.e., 130.4865. This is because the preferred

solution is to spend all the resources on hospitalization, rather than on the expense of controls.

5. CONCLUSION

Mathematical modelling is an important tool to understand how a disease spreads and how

many factors effect it. In this article, we have developed a mathematical model about the spread

of HIV in the population, where medical campaigns are required to encourage the human pop-

ulation to become more aware about HIV. The model was constructed as a system of six di-

mensional ordinary differential equations with two control variables. This paper aims to find

an optimal dynamics of control variables (medical campaign) to reduce the number of infected

individuals to as small as possible. This task is designed as an optimal control problem.

Mathematical analyses concerning the equilibrium points and their local stability, along with

the related basic reproduction numbers have been conducted analytically and numerically. We

find that the HIV-free equilibrium point is locally stable when the basic reproduction number is

smaller than one, and unstable otherwise. The instability of HIV-free equilibrium points then

make the existence of the HIV-endemic equilibrium exist and locally stable. From analysis of

the basic reproduction number with respect to the medical campaign parameters, we find that

these controls are likely success to control the spread of HIV significantly.

The optimal control problem is solved with the Pontryagin Maximum/Minimum Principle

(PMP). Four different numerical simulation scenarios are conducted to describe a possible situ-

ation that might occur in the field. We find that conducting the intervention in the early stage of
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FIGURE 10. The numerical results of scenario IV for the dynamics of total susceptible, total

infected and control variables. Figure (a) is when ϕ j is relatively small, while Figure(b) is when

ϕ j is relatively large.

the endemic (endemic prevention scenario) can reduce the intervention cost significantly, rather

than waiting for the endemic to already occur.
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In this present study, we consider the medical campaign as the only intervention to control

the spread of HIV. There are many more interventions that can be considered and modelled

with mathematics, such as controlling the misuse of needles, mass campaign about digress sex

behaviour, and many more. Also, many other factors should be considered to make the model

become more realistic, such as the vertical transmission of HIV, impact of blood transfusion

containing HIV, etc. Thus, we can consider more detailed models to accommodate these issues.
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