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Abstract. Brucellosis is a contagious zoonotic infection caused by bacteria of genus brucella which affects hu-

mans and animals. The disease is of veterinary importance, public health concern and economic significance in

both developed and developing countries. It is transmitted through direct or indirect contact with infected animals

or their contaminated products. In this paper we formulate and analyze a deterministic mathematical model for

the transmission dynamics of brucellosis. The model formulated incorporates contaminated environment to hu-

man, infected livestock to human, and human to human modes of transmission. The impacts of human treatment

in controlling the spread of brucellosis in the human population is investigated. Both analytical and numerical

solutions reveal that prolonged human treatment has a significant impact in reducing the spread of Brucellosis in

human population only while elimination of the disease in domestic ruminants has promising results to both human

and ruminants. Thus, brucellosis control strategies should always focus on elimination of the disease in domestic

ruminants.
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1. INTRODUCTION

Brucellosis is a contagious zoonotic infection caused by Gram-negative bacteria of genus

brucella that includes; B. abortus primarly from cattle, B. melitensis from small ruminants,

B. suis from swine, and B. canis from dogs [1, 2, 3, 4]. It is considered by the international

organizations like Food and Agriculture Organization (FAO), the World Health Organization

(WHO) and World Organization for Animal Health (Office International des Epizooties (OIE))

as one of the most widespread zoonoses in the world alongside bovine tuberculosis and rabies

[5]. The disease is an ancient one that was described more than 2000 years ago by the Romans

[6] and has been known by various names, including Mediterranean fever, Malta fever, gastric

remittent fever, bang’s disease, crimean fever, gibraltar fever, rock fever, lazybones disease and

undulant fever [7].

Brucella bacteria was first isolated in 1887 from an infected individual’s blood by a British

military medical officer David Bruce and by that reason the disease was named brucellosis to

honor his contribution [8]. Furthermore, in 1905 Zamitt carried out an experiment on goats

to investigate the origin of human brucellosis, and found that, human brucellosis originates

from goats [9]. To date, eight species of brucella have been identified and named primarily

for the source animal or features of infection. Of these, the following four have moderate-

to-significant human pathogenicity: Brucella melitensis (highest pathogenicity), Brucella suis

(high pathogenicity), Brucella abortus (moderate pathogenicity), Brucella canis (moderate

pathogenicity) [10, 11, 12].

Brucellosis causes devastating losses to the livestock industry especially small-scale livestock

holders, thereby limiting economic growth and hindering access to international markets [13].

The economic importance of the disease is based on the fact that it causes financial losses

through abortions, sterility, decreased milk production, veterinary fees and animal replacement

costs. In animals, brucellosis is transmitted when a susceptible animal ingest contaminated

materials by licking discharges from infected animals and suckling milk from infected dams.

In humans the bacteria is transmitted through ingestion of contaminated raw blood and meat,

unpasteurized milk or other dairy products. Furthermore, direct contact with aborted fetuses,

vaginal discharges and occupational accidents through needle injection during mass vaccination
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and during laboratory manipulation may be possible route of brucellosis transmission. In view

of this, farmers, laboratory personnels, abattoir workers and veterinarians are at high risk of

contracting the disease. According to Ducrotoy et al. [14], there are epidemiological situations

in which B. melitensis is absent but infections of small ruminants by B. abortus occur in areas

where they are in contact with cattle.

Infected animals exhibit clinical signs that are of economic significance to stakeholders, such

as reduced fertility, late term abortion, poor weight gain, lost draught power, and a substantial

decline in milk production [13, 15]. However, symptoms in human includes; continuous or

intermittent fever, headache, weakness, profuse sweats, chills, joint pains, aches, weight loss as

well as devastating complications that leads to miscarriage that occurs within the early trimester

in pregnant women [16]. Infection may develop into chronic forms that characterised by neu-

rological complications, endocarditis and testicular or bone abscess formation [17, 18]. The

infection can also affect the liver and spleen, and may last for longer terms if not timely treated.

Furthermore, the clinical signs of brucellosis in human presents diagnostic challenges because

they overlap with other febrile conditions such as typhoid fever, malaria, rheumatic fever, joint

diseases and relapsing fever. Since human brucellosis is debilitating disease, it requires pro-

longed treatment with combination of antibiotics [19].

The global burden of human brucellosis remains high and causes more than 500,000 new

human cases per year worldwide. The annual number of reported cases in United States has

dropped significantly to about 100 cases per year due to stringent animal vaccination programs

and milk pasteurization. Most United States cases are now due to the consumption of illegally

imported unpasteurized dairy products from Mexico and approximately 60% of human brucel-

losis cases occur in California and Texas [20].

In Africa, livestock brucellosis exists throughout sub-Saharan Africa, but the prevalence is

unclear and poorly understood with varying reports from country to country, geographical re-

gions as well as animal factors [21]. Most African countries have poor socioeconomic status,

with people living with and by their livestock, while health networks, surveillance and vac-

cination programs are virtually non-existent [20]. Livestock brucellosis is a highly prevalent

disease in many areas of Tanzania with limited data available regarding its distribution, affected
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host species and impact. The first outbreak of brucellosis was reported in Arusha in 1927 [22].

Previous surveys in Tanzania have demonstrated the occurrence of the disease in cattle in vari-

ous production systems, regions and zones with individual animal level seroprevalence varying

from 1 to 30% while the average prevalence in humans varies from 1 to 5% [23]. A recent study

by [24] shows that brucellosis incidence is moderate in northern Tanzania and suggests that the

disease is endemic and an important human health problem in this area. Moreover, human

cases had been reported in areas of northern, eastern, lake and western zones of Tanzania with

seroprevalence varying from 0.7 to 20.5% [25, 26]. Despite the WHO, FAO, OIE efforts and in-

terventions are available, brucellosis continues to pose great economic threat on livelihood and

food security in both developed and developing countries from generation to generation. Thus,

there is a need to assess the current control strategies and their effectiveness if we are to control

or eradicate the disease. So far few studies [10, 27, 28, 29, 30, 31, 32], have been developed

to analyze dynamics and spread of brucellosis in a homogeneous/heterogeneous populations.

However, none of these studies had considered the mathematical approach to assess the im-

pact of human to human transmission in reducing or eradicating the disease. In this paper, the

dynamics and effectiveness of the control strategies for human brucellosis using mathematical

models are rigorously studied.

2. MODEL FORMULATION

Human to human brucellosis transmission is possible as indicated in various studies including

[16, 33, 34, 35, 36]. The possible modes of human to human brucellosis transmission are

transplancental, breastfeeding, sexual, blood transfusion and organ transplantation [37]. In this

section, we formulate a deterministic mathematical model for the transmission dynamics of

brucellosis in domestic small ruminants, cattle and human populations. The model we formulate

includes: direct transmission of brucellosis within the cattle, within small ruminants, within

humans and from livestock to human, and from the environment to livestock and humans.

Furthermore, susceptible cattle and small ruminants are either vaccinated at some points

(pulse vaccination) or remain susceptible. Based on the epidemiological status of individu-

als, the cattle population at any time t is divided into vaccinated Vc(t) , susceptible Sc(t) , and

infectious Ic(t) classes. Similarly, the small ruminant population at any time t is divided into
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vaccinated Vs(t) , susceptible Ss(t) , and infectious Is(t) subpopulations while the total human

population, Nh(t) at any time t is divided into susceptible, Sh(t), infected, Ih(t) and recovered,

Rh(t) individuals. Susceptible cattle become infected through direct contact with infected cattle

at the rate of βc or through contact with the contaminated environment (indirect transmission)

at the rate αc while susceptible small ruminants become infected when they are in contact with

infectious small ruminants at the rate of βs or through contact with the contaminated envi-

ronment at the rate αs. The transmission to humans is expressed as additive contributions of

transmissions from infective humans, cattle, small ruminants and contaminated environment.

Appertaining to the fact that it is very difficult to determine the quantity of brucella in environ-

ment, we define the average number of brucella that is enough for a host to be infected with

brucellosis as an infectious unit and let B(t) to be the number of infectious units in the environ-

ment. The incubation period for brucellosis is hardly detected, but individuals at this period can

infect the susceptible individuals at the same transmission rate as the infectious individual and

discharge the same quantity of brucella into the environment per unit time as in [28]. It is against

this background, we assume that individuals in the incubation period and post incubation period

are hosted in the same population compartment called infectious class. The interaction within

and between the four populations prompts that veterinary surgeons, laboratory assistants, and

farmers are predominantly exposed to the brucella bacteria.

2.1. Model Assumptions. In formulation of the model we make the following assumptions:

i. The mixing of individuals in each population is homogeneous;

ii. There is no direct transmission between cattle and small ruminants;

iii. Infected animals shed brucella pathogens in the environment;

iv. Livestock seropositivity is life-long lasting;

v. Immunized individuals cannot be infected unless their resistance to infection wanes;

vi. There is constant natural mortality rate in each of the species;

vii. The birth rate for each population is greater than natural mortality rate.

The variables and parameters used in this model are respectively summarized in TABLE 1 and

TABLE 2.
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TABLE 1. Model Variables

Variable Description

Sh(t) Number of susceptible humans at time t

Ih(t) Number of infected human at time t

Rh(t) Number of recovered humans at time t

Sc(t) Number of susceptible cattle at time t

Ic(t) Number of infected cattle at time t

Vc(t) Number of vaccinated cattle at time t

Ss(t) Number of susceptible small ruminants at time t

Is(t) Number of infected small ruminants at time t

Vs(t) Number of vaccinated small ruminants at time t

B(t) Number of brucella bacteria load per unit volume in the environment at time t

2.2. Compartmental Flow Diagram for the Disease Dynamics. The interactions between

the human, cattle, small ruminants populations and the brucella in the environment are illus-

trated in FIGURE 1.

.

FIGURE 1. A schematic diagram for direct and indirect transmission of brucel-

losis in cattle, small ruminants and human populations. Solid arrows represent

transfer of individuals from one subpopulation to another while dotted lines rep-

resent interactions leading to infections.
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TABLE 2. Model Parameters used in the model and their description

Parameter Description

πc Per capita cattle birth rate
φc Cattle vaccination rate
πh Per capita human birth rate
σ Human recovery rate
µh Per capita human natural death rate
ψc Cattle vaccine efficacy waning rate
βc Within cattle transmission rate
dc Culling rate of seropositive cattle
µc Per capita cattle natural death rate
αc Brucella from the environment to cattle transmission rate
αs Brucella from the environment to small ruminants transmission rate
αh Brucella from the environment to human transmission rate
ρc Brucella shedding rate by infected cattle
ρs Brucella shedding rate by infected small ruminants
βch Cattle to human transmission rate
βsh small ruminants to human transmission rate
ε Decaying rate of brucella in the environment
τ Environmental hygiene and sanitation rate
πs Small ruminants per capita birth rate
φs Vaccination rate of small ruminants
ψs Small ruminant vaccine efficacy waning rate
βs Within small ruminants transmission rate
ds Culling rate of seropositive small ruminants
µs Per capita small ruminants natural death rate
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2.3. Model Equations. Based on the assumptions and the inter-relations between the vari-

ables and the parameters shown in FIGURE 1, the transmission dynamics of Brucellosis can be

described by the following ordinary differential equations:

dVc

dt
= φcSc− (ψc +µc)Vc

dSc

dt
= πcNc +ψcVc− (λ1 +φc +µc)Sc

dIc

dt
= λ1Sc− (µc +dc)Ic

dVs

dt
= φsSs− (µs +ψs)Vs

dSs

dt
= πsNs +ψsVs− (λ2 +φs +µs)Ss(1)

dIs

dt
= λ2Ss− (µs +ds)Is

dSh

dt
= πhNh + γRh− (λ3 +µh)Sh

dIh

dt
= λ3Sh− (σ +µh +dh)Ih

dRh

dt
= σ Ih− (γ +µh)Rh

dB
dt

= ρcIc +ρsIs− (ε + τ)B

where,

(2) λ1 = βcIc +αcB.

(3) λ2 = βsIs +αsB.

(4) λ3 = βhcIc +βhhIh +βhsIs +αhB.

3. MODEL PROPERTIES

3.1. Invariant Region. In this subsection we assess the well-posedness of the model by inves-

tigating the existence and feasibility of its solution. In other words, we investigate whether the

solutions are epidemiologically (variables have biological interpretation) and mathematically (a

unique bounded solution exists for all the time) well-posed. That is solutions of model system
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(1) with nonnegative initial data remain nonnegative for all time t ≥ 0. The model system (1)

can be expressed in the compact form as:

dX
dt

= AX +F

where,

A =



−(µc +ψc) φc 0 0 0 0 0 0 0 0

ψc −d0 0 0 0 0 0 0 0 0

0 λ1 −(µc +dc) 0 0 0 0 0 0 0

0 0 0 −(µs +ψs) φs 0 0 0 0 0

0 0 0 ψs −d1 0 0 0 0 0

0 0 0 0 λ2 −(µs +ds) 0 0 0 0

0 0 0 0 0 0 −d2 0 γ 0

0 0 0 0 0 0 λ3 −d3 0 0

0 0 ρc 0 0 0 0 σ −(γ +µh) 0

0 0 ρc 0 0 ρs 0 0 0 −(ε + τ)



with,

d0 = (λ1 +φc +µc), d1 = (λ2 +φs +µs),

d2 = (λ3 +µh), d3 = (σ +µh +dh),

X = (Vc,Sc, Ic,Vs,Ss, Is,Sh, Ih,Rh,B),

and F is a column vector given by

F = (0,πcN0
c ,0,0,πsN0

s ,0,πhN0
h ,0,0,0)

T .

It can be noticed that AX is Meltzer matrix since all of its off diagonal entries are non negative,

for all X ∈R10
+ . Therefore, using the fact that F > 0, the model system (1) is positively invariant

in R10
+ , which means that an arbitrary trajectory of the system starting in R10

+ remains in R10
+

forever. In addition, the right hand F is Lipschitz continuous. Thus, a unique maximal solution

exists and so:

Ω = {(Vc,Sc, Ic,Vs,Ss, Is,Sh, Ih,Rh,B)≥ 0} ∈ R10
+ .
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is the feasible region for the model (1). Thus, the model (1) is epidemiologically and mathe-

matically well-posed in the region Ω.

4. MODEL ANALYSIS

4.1. Disease Free Equilibrium. The Brucellosis free equilibrium point is obtained by setting

the right hand side of equations in model system (1) to zero, that is:

dVc

dt
=

dSc

dt
=

dIc

dt
=

dVs

dt
=

dSs

dt
=

dIs

dt
=

dSh

dt
=

dIh

dt
=

dRh

dt
=

dB
dt

= 0.

Let the disease free equilibrium point of Brucellosis model be E0. In case there is no disease

Ic = Is = Ih = B = 0 that is, the sum of susceptible and vaccinated populations is equal to to-

tal population. There exists a disease free equilibrium E0 = (V 0
c ,S

0
c ,0,V

0
s ,S

0
s ,0,S

0
h,0,0,0) for

model system (1) where:

V 0
c =

φcπcN0
c

µc(φc +ψc +µc)
,S0

c =
(µc +ψc)πcN0

c
µc(φc +ψc +µc)

,V 0
s =

φsπsN0
s

µs(φs +ψs +µs)
, S0

s =
(µs +ψs)πsN0

s
µs(φs +ψs +µs)

,

and

S0
h =

πhN0
h

µh
.

4.2. The Effective Reproduction Number. In this subsection, we compute the effective re-

production number for model system (1) using the standard method of the next generation

matrix developed in [38, 39]. The effective reproduction number, Re is defined as the mea-

sure of average number of infections caused by a single infectious individual introduced in a

community in which intervention strategies are administered [40]. The magnitude of the effec-

tive reproduction number is used to indicate both the risk of an epidemic and effort required

to control an infection. When there are no interventions or controls, the number of secondary

infections caused by typical infected individual during his entire period of infectiousness is

called basic reproduction number, R0. Moreover, due to the natural history of some infections,

transmissibility is better quantified by the effective reproduction number rather than the basic
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reproduction number [42]. Considering the system for the infective variables:

dIc

dt
= (βcIc +αcB)Sc− (µc +dc)Ic

dIs

dt
= (βsIs +αsB)Ss− (µs +ds)Is

dIh

dt
= (βhcIc +βhsIs +βhhIh +αhB)Sh− (µh +dh)Ih

dB
dt

= ρcIc +ρsIs− (ε + τ)B(5)

The effective reproduction number is obtained by taking the spectral radius of the next genera-

tion matrix:

FV−1 =

[
∂Fi(E0)

∂ t

][
∂Vi(E0)

∂ t

]−1

where E0 is the brucellosis-free equilibrium point while Fi and Vi are vectors representing

respectively, the rate of appearance of new infection in compartment i and the transfer of infec-

tions from compartment i to another, such that:

Fi =


(βcIc +αcB)Sc

(βsIs +αsB)Ss

(βhcIc +βhsIs +βhhIh +αhB)Sh

0



Vi =


(µc +dc)Ic

(µs +ds)Is

(σ +µh +dh)Ih

−ρcIc−ρsIs +(ε + τ)B


It is important to note that Vi is a resultant vector of the two vectors: V +

i , defined as the rate of

transfer of individuals into compartment i by all other means(e.g births and immigration); and

V −i , which is the rate of transfer of individuals out of compartment i (e.g deaths, recovery and

emigration). In particular:

Vi = V −i −V +
i , i = {1,2,3,4}

The Jacobian matrices F of Fi and V of Vi evaluated at E0 are respectively:



12 N. NYERERE, L. S. LUBOOBI, S. C. MPESHE, G. M. SHERIMA

F =


βcS0

c 0 0 αcS0
c

0 βsS0
s 0 αsS0

s

βhcSh βhsSh βhhSh αhB

0 0 0 0


and

V =


µc +dc 0 0 0

0 µs +ds 0 0

0 0 σ +µh +dh 0

−ρc −ρs 0 (ε + τ)


Referring to the infected states with indices i and j, for i, j ∈ [1,2,3,4], the entry Fi j is the rate

at which individuals in infected state j give rise or produce new infections to individuals in

infected state i, in the linearized system. Thus, when there is no new cases produced in infected

state i by an individual in infected state j immediately after infection, we have Fi j = 0. The

inverse of V is found to be:

V−1 =



1
µc +dc

0 0 0

0
1

µs +ds
0 0

0 0
1

σ +µh +dh
0

ρc

(µc +dc)(ε + τ)

ρs

(µs +ds)(ε + τ)
0

1
ε + τ


The entry

(
V−1)

i j is the average length of time an infected individual spends in compartment

j during its lifetime when introduced into the compartment i of disease free equilibrium, as-

suming that the population remains near the disease free equilibrium and barring reinfection.

In particular,
1

µc +dc
,

1
µs +ds

,
1

σ +µh +dh
are respectively the average times an infectious

cattle, small ruminant, human spend in the state of being infective, and
1

ε + τ
is the average

time brucella bacteria spend in the environment. Furthermore, brucella from cattle will spend
ρc

µc +dc
× 1

ε + τ
time in the environment where,

ρc

µc +dc
is the probability that an infective cattle

will shed brucella into the environment. On the other hand, brucella shed by small ruminants

will spend
ρs

µs +ds
× 1

ε + τ
time in the environment where

ρs

µs +ds
is the probability that an in-

fected small ruminant will shed brucella into the environment. Moreover, the Next Generation
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Matrix is calculated to be:

(6) FV−1 =



R11 R12 0
αcS0

c
ε + τ

R21 R22 0
αsS0

s
ε + τ

R31 R32 R33
αhS0

h
ε + τ

0 0 0 0


where,

R11 =
βcS0

c
µc +dc

+
αcρcS0

c
(µc +dc)(ε + τ)

,

R12 =
αcρsS0

c
(µs +ds)(ε + τ)

,

R21 =
αsρcS0

s
(µc +dc)(ε + τ)

,

R22 =
βsS0

s
µs +ds

+
αsρsS0

s
(µs +ds)(ε + τ)

,

R31 =
βhcS0

h
µc +dc

+
αhρcS0

h
(µc +dc)(ε + τ)

,

R32 =
βhsS0

h
µs +ds

+
αhρsS0

h
(µc +dc)(ε + τ)

,

R33 =
βhhS0

h
(σ +µh +dh)

.

The matrix FV−1 can be written as: The (i,k) entry of the Next Generation Matrix FV−1 is the

expected number of secondary infections in compartment i produced by individuals initially in

compartment k assuming that the environment of an infective individual remains homogeneous

for the duration of its infection [41, 42, 43]. In particular; R11 is the expected number of in-

fected cattle produced by one infectious cattle, R12 is the expected number of infected cattle

produced by one infectious small ruminant via consumption of brucella from the environment,

R21 is the expected number of infected small ruminant as a result of one infected cattle, R22

is the expected number of infected small ruminant as a result of effective contact with one in-

fected small ruminant, R31 is the expected number of infected people caused by one infectious

cattle,R32 is the expected number of infected people caused as a result of contact with brucella

from small ruminants, R33 is the expected number of infected people caused by one infectious
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person, and R34 is the expected number of infected people as a result of contact of brucella from

the environment. It can further be noticed that, matrix FV−1 is non-negative and therefore,

has a nonnegative eigenvalue. The non-negative eigenvalue is associated with a non-negative

eigenvector which represents the distribution of infected individuals that produces the greatest

number Re of secondary infections per generation [44]. Thus, the spectral radius for our Next

Generation Matrix is:

(7) ρ(FV−1) = Re = max

{
R11 +R22 +

√
(R22−R11)2 +4R12R21

2
,

βhhπhN0
h

µh(σ +µh +dh)

}
where,

R11 =
(βc(ε + τ)+αcρc)(ψc +µc)πcN0

c
µc(µc +dc)(ε + τ)(φc +ψc +µc)

,

R12 =
(ψc +µc)αcρsπcN0

c
µc(µs +ds)(ε + τ)(φc +ψc +µc)

,

R22 =
(βs(ε + τ)+αsρs)(ψs +µs)πsN0

s
µs(µs +ds)(ε + τ)(φs +ψs +µs)

,

R21 =
(ψs +µs)αsρcπsN0

s
µs(µc +dc)(ε + τ)(φs +ψs +µs)

.

The first and the second expressions of equation (7) represents respectively the effective repro-

duction numbers in the livestock and human populations. It can further be noticed that, the first

expression which is independent of the human population represents the threshold transmission

dynamics of brucellosis in the cattle and small ruminants populations that was analyzed and

discussed in [45]. The fact that human brucellosis significantly reduces work performance of

individuals calls for a special interest of investigating the transmission dynamics and controls

of human brucellosis. Thus, we focus on brucellosis transmission dynamics within the human

population. The effective reproduction number within the human population is found to be:

Reh =
βhhπhN0

h
µh(σ +µh +dh)

.

When there is no treatment, σ = 0, we have the within human basic reproduction number which

is given by:

R0h =
βhhπhN0

h
µh(µh +dh)

.
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Besides, brucellosis is a zoonosis; it is transmitted to human from animals, referring to our par-

ticular case in the next generation matrix (6) the cattle to human effective reproduction number

is intuitively given by:

Rhc = R31 =
(βhc(ε + τ)+αhρc)πhN0

h
(µc +dc)(ε + τ)

.

On the other hand, the small ruminants to human effective reproduction number is given by:

Rhs = R32 =
(βhs(ε + τ)+αhρs)πhN0

h
(µs +ds)(ε + τ)

.

Moreover, equation (4) indicates that, the transmission of brucellosis in the human population

results from human to human transmission, small ruminants to human transmission, cattle to

human transmission and environment to human transmission. Thus, if it happens one infected

cattle, one infected small ruminant and one infected human are simultaneously introduced in

the human population, then the effective human reproduction number is intuitively given by:

(8) Rh =
βhhπhN0

h
µh(σ +µh +dh)

+
(βhc(ε + τ)+αhρc)πhN0

h
(µc +dc)(ε + τ)

+
(βhs(ε + τ)+αhρs)πhN0

h
(µs +ds)(ε + τ)

.

4.3. Local Stability of the Disease Free Equilibrium. In this subsection we use the trace-

determinant method to investigate the local stability of the brucellosis free equilibrium point.

Theorem 4.1. The disease free equilibrium for the brucellosis model system(1) is locally asymp-

totically stable if R0 < 1 and unstable if R0 > 1.

Proof. We show that, variational matrix J(E0) of the brucellosis model at DFE has a negative

trace and positive determinant. The Jacobian matrix for system (1) is given by:
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J(E0) =



−a1 φc 0 0 0 0 0 0 0 0

ψc −a2 a3 0 0 0 0 0 0 −αcS0
c

0 0 a 0 0 0 0 0 0 αcS0
c

0 0 0 −b1 φs 0 0 0 0 0

0 0 0 ψs b2 b3 0 0 0 −αsS0
s

0 0 0 0 0 b 0 0 0 αsS0
s

0 0 −βhcSh 0 0 −βhsSh −µh −c1 γ −αhS0
h

0 0 βhcSh 0 0 βhsSh 0 c 0 αhS0
h

0 0 0 0 0 0 0 σ −(γ +µh) 0

0 0 ρc 0 0 ρs 0 0 0 −(ε + τ)


where,

a1 = µc +ψc, a2 = (φc +µc) ,a3 =−βcS0
c ,

b1 = µs +ψs, b2 =−(φs +µs) ,b3 =−βsS0
s ,

c1 = βhhS0
h, ,c = βhhS0

h− (σ +µh +dh),

a = βcS0
c− (µc +dc),

and

b = βsS0
s − (µs +ds).

The trace of the Jacobian matrix J(E0)is given by:

Tr(J(E0)) =− (µc +dc)

(
1− βcS0

c
µc +dc

)
− (µs +ds)

(
1− βsS0

s
µs +ds

)
−(σ +µh +dh)

(
1−

βhhS0
h

σ +µh +dh

)
− (φc +ψc +2µc)

−(φs +ψs +2µs)− (γ +2µh)− (ε + τ)

Thus, the trace of the Jocobian matrix is the less than zero, that is Tr(J(E0))< 0 if:

βcS0
c

µc +dc
< 1,

βsS0
s

µc +ds
< 1 and

βhhS0
h

σ +µh +dh
< 1.
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Furthermore, the determinant of matrix J(E0) is computed using Maple 16 Software and is

found to be:

Det(J(E0)) =a0 (1−Rh)

(
(1−Rc)(1−Rec)−

ρcαcS0
c

(µc +dc)(ε + τ)
(1−Rs)

)
.

where,

Rh =
βhhS0

h
σ +µh +dh

, Rs =
βsS0

s
µs +ds

, Rc =
βcS0

c
µc +dc

, Res =
(ε + τ)βsS0

s
(ε + τ)(µs +ds)

,

and

a0 = (φc +ψc +µc)(φs +ψs +µs)(γ +µh)(σ +µh +dh)(µc +dc)(µs +ds)(ε + τ)µcµsµh.

The determinant of the Jacobian matrix is positive (i.e. J(E0)> 0) if:

Rc < 1, Rs < 1, Res < 1, and (1−Rc)(1−Rec)>
ρcαcS0

c
(µc +dc)(ε + τ)

(1−Rs).

Furthermore, Rh, Rs, Rc, and Res are respectively the average number of secondary human

infections as a result of direct contact between susceptible and infected humans, susceptible

and infected small ruminants, susceptible and infected cattle, and the average number of sec-

ondary infections caused directly or indirectly by one infected small ruminant in the suscepti-

ble ruminant population. Thus, the brucellosis free equilibrium for each population is locally

asymptotically stable if Re < 1. A similar result is found on Theorem 2 of [41] and Theorem

6.13 of [46]. �

4.4. Global Stability of the Disease-Free Equilibrium. In this section, we analyze the global

stability of the disease-free equilibrium point by applying the [47] approach. We write model

system (1) in the form:

(9)


dXs

dt
= A(Xs−XDFE,S)+A1Xi

dXi

dt
= A2Xi

where Xs is the vector representing the non-transmitting compartments and Xi is the vector

representing the transmitting components. The DFE is globally asymptotically stable if A has
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real negative eigenvalues and A2 is a Metzler matrix (i.e. the off-diagonal elements of A2 are

non-negative). From model system (1) we have:

Xi = (Ic, Is, Ih,B)T ,Xs = (Vc,Sc,Vs,Ss,Sh,Rh)
T ,

Xs−XDFE,s =



Vc−
φcπcN0

c
µc(ψc +φc +µc)

Sc−
(φc +µc)πcN0

c
µc(ψc +φc +µc)

Vs−
φsπsN0

s
µs(ψs +φs +µs)

Ss−
(φs +µs)πsN0

s
µs(ψs +φs +µs)

Sh−
πhN0

h
µh

Rh



and

A1 =



0 0 0 0

−βcSc 0 0 −αcSc

0 0 0 0

0 −βsSs 0 −αsSs

−βhcSh −βhsSh −βhcSh −αhSh

0 0 σ 0



We need to check whether a matrix A for the non-transmitting compartments has real negative

eigenvalues and that A2 is a Metzler matrix. From the equation for non-transmitting compart-

ments in (1) we have:
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A =



−(ψc +µc) φc 0 0 0 0

ψc −(φc +µc) 0 0 0 0

0 0 −(ψs +µs) φs 0 0

0 0 ψs −(φs +µs) 0 0

0 0 0 0 −µh γ

0 0 0 0 0 −(γ +µh)


with eigenvalues λ1 =−µs,λ2 =−(ψs +φs +µs),λ3 =−µc,λ4 =−(ψc +φc +µc); and

A2 =


βcS0

c− (µc +dc) 0 0 αcS0
c

0 βsS0
s − (µs +ds) 0 αsS0

s

βhcSh βhsS0
h βhhSh− (µh +dh) αhS0

h

ρc ρs 0 −(ε + τ)


Appertaining the fact that all model parameters and variables are non-negative, it is evident that

A2 is a Metzler matrix and A, have real negative eigenvalues. This implies that the disease free

equilibrium for the model system (1) is globally asymptotically stable.

4.5. Global Stability of Endemic Equilibrium. The local stability of the disease free equi-

librium suggests local stability of the endemic equilibrium for the reverse condition. In this

subsection we study the global behaviour of the endemic equilibrium, E∗ for the model system

(1).

Theorem 4.2. The endemic equilibrium point for the brucellosis model system (1) is globally

asymptotically stable on Ω if R0 > 1.

Proof. We construction an explicit Lyapunov function for model system (1) using [48, 49, 50,

51, 52] approach as it is useful to most of the sophisticated compartmental epidemiological

models. In this approach, we construct Lyapunov functions of the form:

V = ∑ai(xi− x∗i lnx)
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where ai is a properly selected positive constant, xi is the population of the ith compartment and

x∗i is the equilibrium level. We define the Lyapunov function candidate V for model system (1)

as:

L =(Sc−S∗c lnSc)+A1(Vc−V ∗c lnVc)+A2(Ic− I∗c ln Ic)+(Ss−S∗s lnSs)

+A3(Vs−V ∗s lnVs)+A4(Is− I∗s ln Is)+(Sh−S∗h lnSh)+A5(Ih− I∗h ln Ih)

+A6(Rh−R∗h +A7(B−B∗ lnB)).(10)

where A1,A2,A3,A4,A5,A6 and A7 are positive constants. The time derivative of the Lyapunov

function L is given by:

dL
dt

=

(
1− S∗c

Sc

)
dSc

dt
+A1

(
1− V ∗c

Vc

)
dVc

dt
+A2

(
1− I∗c

Ic

)
dIc

dt
+

(
1− S∗s

Ss

)
dSs

dt

+A3

(
1− V ∗s

Vs

)
dVs

dt
+A4

(
1− I∗s

Is

)
dIs

dt
+

(
1−

S∗h
Sh

)
dSh

dt
+A5

(
1−

I∗h
Ih

)
dIh

dt

A6

(
1−

R∗h
Rh

)
dRh

dt
+A7

(
1− B∗

B

)
dB
dt

.(11)

Considering (1) at the endemic equilibrium solution E∗ we have:

πhNh =−γR∗h +(βhcI∗c +βhsI∗s +βhhI∗h +αhB∗)S∗h,

σ +µh +dh = (βhcI∗c +βhsI∗s +βhhI∗h +αhB∗)
S∗h
I∗h
,

πsNs = (βsI∗s +αsB∗+φs +µs)S∗s −ψsV ∗s ,

πcNc = (βcI∗c +αcB∗+φc +µc)S∗c−ψcV ∗c ,

µc +dc =
(βcI∗c +αcB∗)S∗c

I∗c
,

µs +ds =
(βsI∗s +αsB∗)S∗s

I∗s
,

(ε + τ) =
ρcI∗c +ρsI∗s

B∗
,

φc =
(ψc +µc)V ∗c

S∗c
,

φs =
(ψs +µs)V ∗s

S∗s
,

σ =
(γ +µh)R∗h

I∗h
.
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Then, equation (11) may be re-written as:

dL
dt

=− (φc +µc)Sc

(
1− S∗c

Sc

)2

− (φs +µs)Ss

(
1− S∗s

Ss

)2

−µhSh

(
1−

S∗h
Sh

)2

−
(

1− S∗c
Sc

)(
βcIcSc

(
1− I∗c S∗c

IcSc

)
+αcBSc

(
1− B∗S∗c

BSc

)
+ψcVc

(
V ∗c
Vc
−1
))

−
(

1− S∗s
Ss

)(
βsIsSs

(
1− I∗s S∗s

IsSs

)
+αsBSs

(
1− B∗S∗s

BSs

)
+ψsVs

(
V ∗s
Vs
−1
))

−a1

(
1− V ∗c

Vc

)(
1− V ∗c Sc

VcS∗c

)
− (ψs +µs)BVsA3

(
1− V ∗s

Vs

)(
1− V ∗s Ss

VsS∗s

)
+A2

(
1− I∗c

Ic

)(
βcIcSc

(
1− S∗c

Sc

)
+αcBSc

(
1− B∗S∗cIc

BScI∗c

))
+A4

(
1− I∗s

Is

)(
βsIsSs

(
1− S∗s

Ss

)
+αsBSs

(
1− B∗S∗s Is

BSsI∗s

))
−A5

(
1−

S∗h
Sh

)(
a2

(
R∗h
Rh
−1
)
+a
(

1−
I∗c S∗h
IcSh

)
+b
(

1−
I∗s S∗h
IsSh

)
+ c
(

1−
B∗S∗h
BSh

))
+A6

(
1−

I∗h
Ih

)(
βhcIcSh

(
1−

I∗c S∗hIh

IcShI∗h

)
+βhsIsSh

(
1−

I∗s S∗hIh

IsShI∗h

))
+A6

(
1−

I∗h
Ih

)(
βhhIhSh

(
1−

I∗h S∗hIh

IhShI∗h

)
+αhBSh

(
1−

B∗S∗hIh

BShI∗h

))
−A7(γ +µh)Rh

(
1−

R∗h
Rh

)(
1−

IhR∗h
I∗h Rh

)
+A8

(
1− B∗

B

)(
ρcIc

(
1− BI∗c

B∗Ic

)
+ρsIs

(
1− BI∗s

B∗Is

))
.(12)

where,

a1 = (ψc +µc)BVcA1, a2 = γRh,

a = βhcIcSh, b = βhsIsSh, c = αhBSh.

Equation (12) can be written as:

dL
dt

=−

(
(φc +µc)Sc

(
1− S∗c

Sc

)2

+(φs +µs)Ss

(
1− S∗s

Ss

)2

+µhSh

(
1−

S∗h
Sh

)2
)

+F(Sc,Vc, Ic,Ss,Vs, Is,B).

where, F is the balance of the right hand terms of equation (12). Following the approach

of [29, 48, 49, 51, 50, 52], F is a non-positive function for Sc,Vc, Ic,Ss,Vs, Is,Sh, Ih,Rh,B ≥ 0.

Thus,
dL
dt

< 0 for Sc,Vc, Ic,Ss,Vs, Is,Sh, Ih,Rh,B≥ 0 and is zero if Sc = S∗c ,Vc =V ∗c , Ic = I∗c ,Ss =
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S∗s ,Vs = V ∗s , Is = I∗s ,Sh = S∗h, Ih = I∗,Rh = R∗h, and B = B∗. Therefore, if Re > 1, model system

(1) has a unique endemic equilibrium point E∗ which is globally asymptotically stable. �

5. NUMERICAL SIMULATIONS

This section presents numerical simulations of model system (1) for the purpose of verifying

some of the analytical results. The parameter values used in our computations are mainly from

[3], a literature similar to this work. The parameter values are in TABLE 3 and FIGURE 2

illustrates the variations in livestock, human and brucella subpopulations as time increases.

FIGURE 2. Time Series graph for Brucellosis

Furthermore, FIGURE 2 shows that susceptible human subpopulation decreases rapidly as

time increases due to brucellosis infections and natural mortality rate. On the other hand, the

number of infective humans initially increases with time due to large number of susceptible

individuals that gets infected while its decrease is associated with the increase and decrease

in effective treatment and susceptibility of individuals respectively. The recovered population

increases as a result of increase in the effective treatment of infected humans.

Similarly, from FIGURE 3a we see that effective environmental hygiene and sanitation con-

trols the transmission route of brucellosis from contaminated environment to human population.
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TABLE 3. Model Parameter Values

Parameter Value Unit

πc 0.3 year−1

βc 0.0011 year−1

φc 0.7 year−1

ψc 0.4 year−1

µc 0.25 year−1

dc 0.35 year−1

αc 0.00035 year−1

ρc 10 year−1

φh 0.03 year−1

βh 0.0002 year−1

σh 0.9 year−1

µh 0.00005 year−1

dh 0.000002 year−1

αh 0.002 year−1

βhc 0.000158 year−1

βhs 0.000158 year−1

γ 0.5 year−1

ε 8 year−1

τ 12 year−1

πs 0.4 year−1

βs 0.001 year−1

φs 0.8 year−1

ψs 0.5 year−1

µs 0.35 year−1

ds 0.4 year−1

αs 0.00032 year−1

ρs 15 year−1

However, the ruminants to human effective reproduction number does not reduce to less than

unit due to the fact that direct contact between infective cattle or small ruminants is not effec-

tively controlled. In addition FIGURE 3b illustrates that, human treatment has a significant
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(A) (B)

FIGURE 3. Variations in the effective reproduction number with respect to

changes in environmental hygiene and human treatment

contribution in reduction or elimination of human to human brucellosis transmission. This is

based on the fact that human treatment reduces the number of infective humans.

(A) (B)

FIGURE 4. The impact of transmission rates on susceptible humans and treat-

ment rate on recovered human populations with respect to time.

Moreover, FIGURE 4a shows that both cattle to human and small ruminants to human trans-

mission reduces the number of susceptible humans to almost zero in one year period of time.

On the other hand, FIGURE 4b illustrates that, recovered humans increases with the increase in

treatment rate. This implies that, in order to minimize or eliminate the prevalence of brucellosis
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in the human population, measures should be taken to control the disease in animals as well as

eliminating the disease in humans through treatment.

6. CONCLUSION

This paper aimed at formulating and analyzing a mathematical model to investigate the im-

pacts of different control parameters to the transmission dynamics of brucellosis in the human

and animal populations. We focused on livestock vaccination, gradual culling of ruminants

through slaughter, environmental hygiene and sanitation, and human treatment. Analytical so-

lutions as well as numerical simulations reveals that human brucellosis can be prevented or

controlled only if the prevalence in both ruminants and humans can be controlled. Moreover,

prevention of human brucellosis largely depends on prevention of the disease in domestic an-

imals. In view of that, the effective control of brucellosis needs cooperation between public

health and animal health sectors.
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