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Abstract. In this paper, we developed and fully analysed a mathematical model for the dynamics of predator and

prey where the carrying capacity is considered to be a logistically increasing function of time, and both populations

are under harvesting. Our results showed that if the harvesting rate is high then both populations could go to

extinction. We also showed that the system undergoes Hopf bifurcation when the harvesting rate of the prey crosses

a critical value; in fact the stability of the system changes with the change of the values of the prey harvesting rate.

Optimal harvesting is shown to give a high yield and keep both population away from extension.
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1. INTRODUCTION

The field of renewable natural resources contains various filed such as, forestry, fishers and

agriculture. In our environment there are a lot of biologically interesting problems which are

dramatically. Mathematical modelling requires to understand critical behaviour and the under-

lying nature of the system. Mathematical modelling and exploited analysis biological resources

attract the attention of researchers from time to time. The main goal of developing the model is
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not to calculate the change in a certain population, but to study the amount of complexity that

exists in the system. In the population environment generally predicts the actual size of the pop-

ulation according to their environment. Carrying capacity is one of the most important factors

because they regulate how fast and the highest level the population can grow. Earlier research

assumes the carrying capacity to be a constant quantity; however in a dynamically changing

environment, carrying capacity is considered as a state variable.

In the predator-prey model presented by Leslie and Gower, it is assumed the carrying ca-

pacity of the prey population is a constant quantity k, and the predator the carrying capacity is

proportional to the carrying capacity of the prey [16, 17]. With the response function of the

second type of Holling model, the above model becomes Holling-Tanner model with marked

dynamic behaviour [4, 6, 13, 14].

Harvesting of different species has a strong effect on predatory environmental prey the sys-

tem. After harvest, population density may be much lower from the previous time. Harvesting

can lead to positive extinction of the population likely. Extinction generally occurred whenever

it was exploitable and exploitable the resource is harvested continuously more than the desired

limit for subsequent preservation. Some works with predator harvesting have already been re-

ported in the literature [1, 2, 3, 7, 8, 10, 11, 12, 15]. Recently, Huang et al. [9] established

analytically that the model is subject to Bogdanov-Takens bifurcation (cusp case) of coding 3

gave a deep insight into various bifurcation scenarios, including the presence from two reduc-

tion cycles, Hopf dendrites are supercritical and subcritical, and coexistence between a stable

homoclinic ring and an unstable reduction cycle, the homoclinic bifurcation of co-dimension.

Another important parameter is needed besides the enrichment parameter is the harvesting

parameter. Over-fishing on fisheries has become an acute crisis that can affect human daily

life. Ganguly et al conducted a recent research on harvesting in an intraguild model [18]. Both

groups are appended to harvesting efforts using the hunting hypothesis per unit. The virtue of

what we know, there is limited literature examining the impact of harvest on system 1 through

independent harvest strategy. Most studies on System (1) in [8] confirmed on Implications of

resource enrichment but not harvest. In addition, this paper aims to investigate both the optimal

thresholds for harvesting prey provide maximum monetary interest while preserving fishery
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resources. In our model, both predatory fish and fish prey obey logistics growth, encounter

different harvesting ranges and cause toxic at different rates.

2. MODEL BUILDING AND ANALYSIS

To build our model, we consider a predator-prey interaction model with Holling type II func-

tional response assuming that there is a harvesting on both predator and prey populations which

is proportional to the size of each population. We assume that the carrying capacity is not con-

stant rather it is takes the form of a logistic function of time. The model is then given by the

following set of differential equations.

(1)

dN
dt

= rN(t)
(

1− N(t)
κ(t)

)
− aN(t)P(t)

1+ γN(t)
−h1N(t)

dκ

dt
= α (κ(t)−κ1)

(
1− κ(t)−κ1

κ2

)
dP
dt

=
εaN(t)P(t)
1+ γN(t)

− (c+h2)P(t)

subject to the initial conditions: N(0) = N0, k(0) = k0 and P(0) = P0, where N,P denote prey

and predator population densities, respectively, and κ(t) denotes the carrying capacity. r rep-

resents prey’s per capita growth rate, c is the death rate of the predator, h1 and h2 represents

the harvesting rates on the prey and the predator, respectively. Note that κ , the carrying capac-

ity that increases sigmoidally between an initial value k0 > k1 and a final value k1 + k2 with a

growth rate α .

2.1. Mathematical Analysis. The system (1) has the following equilibrium points:

E1 = (0,κ1,0), E2 = (0,κ1 +κ2,0), E3 =

(
κ1(r−h1)

r
,κ1,0

)
, E4 =(

(κ1 +κ2)(r−h1)

r
,κ1 +κ2,0

)
, E5 =

(
c+h2

aε− γ(c+h2)
,κ1,

ε(aε− (c+h2)γ)(r−h1)κ1

(aε− γ(c+h2))2κ1

)
,

and

E6 =
(

(c+h2)
aε−γ(c+h2)

,κ1 +κ2,
ε(r(aε(κ1+κ2)−(c+h2))−aεh1(κ1+κ2)−(κ1+κ2)(r−h1)(c+h2)γ)

(aε−γ(c+h2))2(κ1+κ2)

)

Note that κ(t)→ (κ1 + κ2) as t → ∞; therefore the equilibrium points E1,E3 and E5 are

always unstable. The stability of the remaining equilibrium points given by the following The-

orems.
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Theorem 1:

The Local stability of the equilibrium points E2,E4 and E6 of system (1) is given by:

(i) E2 is locally asymptotically stable if h1 > r.

(ii) E4 is locally asymptotically stable if γ(c+h2)> aε .

(iii) E6 is locally asymptotically stable if

(1) aε− γ(c+h2)> 0

(2) (κ1 +κ2)(r−h1)[aε− γ(c+h2)]> r(c+h2)

(3) r[aε + γ(c+h2)]> γ(κ1 +κ2)(r−h1)[aε− γ(c+h2)

Proof:

The Jacobian matrix of the system (1) is:

J =


r
(
1− N

K

)
− rN

K −
aP

γ N+1 +
aNPγ

(γ N+1)2 −h1
rN2

K2 − aN
γ N+1

0 α

(
1− K−κ1

κ2

)
− α (K−κ1)

κ2
0

ε aP
γ N+1 −

ε aNPγ

(γ N+1)2 0 ε aN
γ N+1 − c−h2


(i) Evaluating the Jacobin matrix at E2 gives:

J2 =


r−h1 0 0

0 −α 0

0 0 −c−h2


The eigenvalues are −α , −(c+ h2), and r− h1. Clearly for this point to be locally

asymptotically stable we should have h1 > r.

(ii) Evaluating the Jacobin matrix at E4 gives:

J4 =


−(r−h1)

(r−h1)
2

r − a(κ1+κ2)(r−h1)
(κ1+κ2)(r−h1)γ+r

0 −α 0

0 0 (κ1+κ2)(r−h1)[aε−γ(c+h2)]−r(c+h2)
(κ1+κ2)(r−h1)γ+r


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with eigenvalues −(r−h1), −α , and (κ1+κ2)(r−h1)[aε−γ(c+h2)]−r(c+h2)
(κ1+κ2)(r−h1)γ+r . For the existence

of this point we should have r > h1; therefore the point E4 is locally asymptomatically

stable if γ(c+h2)> aε .

(iii) Evaluating the Jacobin matrix at E6 gives−α to be one of the eigenvalues, and the other

two are the roots of the polynomial

λ
2 +Aλ +B = 0

where

A =
(c+h2)

aε(κ1 +κ2)[aε− γ(c+h2)]
[r[aε + γ(c+h2)]− γ(κ1 +κ2)(r−h1)[aε− γ(c+h2)]]

B =
(c+h2)

aε(κ1 +κ2)
[(κ1 +κ2)(r−h1)[aε− γ(c+h2)]− r(c+h2)]

For E6 to be locally stable we need A < 0, and B > 0; therefore the stability conditions

for E6 are

(1) aε− γ(c+h2)> 0

(2) (κ1 +κ2)(r−h1)[aε− γ(c+h2)]> r(c+h2)

(3) r[aε + γ(c+h2)]> γ(κ1 +κ2)(r−h1)[aε− γ(c+h2)

Which concludes the proof.

Theorem 2:

The global stability of the steady states is given by:

(i) E2 is globally asymptomatically stable whenever it is locally stable.

(ii) E4 is globally asymptomatically stable whenever it is locally stable.

(iii) E6 is globally asymptomatically stable if

(κ1 +κ2)(r−h1)[aε− γ(c+h2)]− r(c+h2)< aεr

Proof:

The global stability of stability points will be analysed by transforming the system of equations

(1) into a linear system and then choosing a suitable Lyapunov function.

By letting N = N∗+ n, κ = κ∗+ k and P = P∗+ p, where n, k and p are small perturbations
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about the general equilibrium point (N∗,κ∗,P∗).

The system of equations (1) is turned into a linear system which is of the form ẋ = J(E)x, where

J(E) is the Jacobian matrix of equations (1). Thus, the linear system of equations (1) is,

(2)

dn
dt

=

(
−rN∗

κ∗
+

aN∗P∗

(1+ γN∗)2

)
n− rN∗2

κ∗2
k− aN∗

(1+ γN∗)
p

dk
dt

=−ακ

d p
dt

=

(
εaP∗

(1+ γN∗)
− εaγN∗P∗

(1+ γN∗)2

)
n

(i) To prove the global stability of E2(0,κ∗,0), we define the following Lyapunov function

V (n,k, p) =
n2

2
+

k2

2
+

p2

2

Clearly V (n,k, p) is positive definite, and V (n∗,k∗, p∗) = 0. Now we have

V̇ (n,k, p) = nṅ+κκ̇ + pṗ

= −ακ
2 ≤ 0

therefore the point E2 is globally asymptotically stable.

(ii) Define a Lyapunov function as

L(n,k, p) =
n2

2N∗
+

k2

2
+

p2

2

It is obvious that L(n,k, p) is a positive definite function. Differentiating L with respect

to time t we get,

L̇(n,k, p) =
nṅ
N∗

+ kk̇+ pṗ

= −
[

r
κ∗

n+
rN∗

κ∗2
κ +

a
(1+ γN∗)

p
]

n−ακ
2

Therefore, E4(N∗,κ∗,0) is globally asymptotically stable.

(ii) To prove the global stability of E6(N∗,κ∗,P∗). We define a Lyapunov function as

Q(n,k, p) =
n2

2aN∗
+

k2

2κ∗
+

p2

2εaP∗
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It is obvious that Q(n,k, p) is a positive definite function. Differentiating Q with respect

to time t we get,

Q̇(n,k, p) =
nṅ

aN∗
+κκ̇ +

pṗ
εaP∗

=

[(
−r
aκ∗

+
P∗

(1+ γN∗)2

)
n− rN∗

aκ∗2
κ− 1

(1+ γN∗)
p
]

n−ακ
2

+

[(
1

(1+ γN∗)
− N∗

(1+ γN∗)2

)
n
]

p

=

[(
−r
aκ∗

+
P∗

(1+ γN∗)2

)
n− rN∗

aκ∗2
k
]

n−ακ
2− N∗

(1+ γN∗)2 np

which is negative semi-definite if

−r
aκ∗

+
P∗

(1+ γN∗)2 < 0

Which is equivalent to

(κ1 +κ2)(r−h1)[aε− γ(c+h2)]− r(c+h2)< aεr

Therefore, E6(N∗,κ∗,P∗) is globally asymptotically stable if the above mentioned

condition satisfied. This concludes our proof.

The following Theorem discuss the possibility of the existence of Hopf Bifurcation.

Theorem 3:

System (1) undergoes a Hopf bifurcation at the positive equilibrium E6 when h1, if chosen as

the bifurcation parameter, passes throw h∗1 =
r((κ1+κ2)(c+h2)γ

2+(c+h2−aε(κ1+κ2))γ+ε a)
γ ((c+h2)γ−ε a)(κ1+κ2)

Proof:

The eigenvalues of the linearized system around the equilibrium point E6 are −α and µ1,2 =

α(h1)± iβ (h1)

where

α(h1) =
1
2

trac(J∗)

β (h1) =
√

det( j∗)− (α(h1))2
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Now, at h∗1,

α(h∗1) = 0

β (h∗1) =

√
r (c+h2)

(κ1 +κ2)γ

Also:

dα(h1)

dh1
|h=h∗1 =−

(c+h2)γ

ε a

Therefore the proof is concluded.

3. OPTIMAL CONTROL

In commercial exploitation of renewable resources the fundamental problem from the eco-

nomic point of view, is to determine the optimal trade-off between present and future harvests.

The emphasis of this section is on the profit-making aspect of fisheries. It is a thorough study of

the optimal harvesting policy and the profit earned by harvesting, focusing on quadratic costs

and conservation of fish population by constraining the latter to always stay above a critical

threshold. The prime reason for using quadratic costs is that it allows us to derive an analytical

expression for the optimal harvest; the resulting solution is different from the bang-bang solu-

tion which is usually obtained in the case of a linear cost function. It is assumed that price is a

function which decreases with increasing biomass. Thus, to maximize the total discounted net

revenues from the fishery, the optimal control problem can be formulated as

J(h1,h2) =
∫ t1

t0
e−δ t

(
p1(h1 +h2)− v1(h2

1 +h2
2)−

c1(h1 +h2)

q1N +q2P

)
dt

where c1 be the constant fishing cost per unit effort, p1 is the constant price per unit biomass of

harvested population, v1 is an economic constant and δ is the instantaneous annual discount rate.

Suppose h1 is an optimal control with corresponding states N∗,K∗ and P∗. We are seeking to

derive optimal controls h∗1,h
∗
2 such that

J(h∗1,h
∗
2) = max{J(h1,h2) : h1,h2 ∈U}
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where U is the control set. Applying Pontryagin’s maximum principle this problem is solvable.

Now the current value Hamiltonian of this control problem is

H =

(
p1(h1 +h2)− v1(h2

1 +h2
2)−

c(h1 +h2)

q1N +q2P

)
+λ1

(
rN(t)

(
1− N(t)

κ(t)

)
− aN(t)P(t)

1+ γN(t)
−h1N(t)

)
+λ2α (κ(t)−κ1)

(
1− κ(t)−κ1

κ2

)
+λ3

(
εaN(t)P(t)
1+ γN(t)

− (c+h2)P(t)
)

On the control set we have:

∂H
∂h1

= p1−2v1h1−
c1

q1N +q2P
−λ1

∂H
∂h2

= p1−2v1h2−
c1

q1N +q2P
−λ2

Which implies:

h∗1 =
1

2v1

(
p1−

c1

q1N∗+q2P∗
−λ1

)
(3)

h∗2 =
1

2v1

(
p1−

c1

q1N∗+q2P∗
−λ3

)
Now, the autonomous set of equations of the control problem are

dλ1

dt
= δλ1−

∂H
∂N

= δ λ1−
c1 (h1 +h2)q1

(q1 N +q2 P)2 −λ3

(
ε aP

γ N +1
− ε aNPγ

(γ N +1)2

)

−λ1

(
r
(

1− N
K

)
− rN

K
− aP

γ N +1
+

aNPγ

(γ N +1)2 −h1

)
(4)

dλ2

dt
= δλ2−

∂H
∂K

= δ λ2−δ λ2−
λ1 rN2

K2 −λ2 α

(
1− K−κ1

κ2

)
+

λ2 α (K−κ1)

κ2

dλ3

dt
= δλ3−

∂H
∂P

= δ λ3−δ λ3−
c1 (h1 +h2)q2

(q1 N +q2 P)2 +
λ1 aN

γ N +1
−λ3

(
ε aN

γ N +1
− c−h2

)
Therefore, we arrive to the following theorem:

Theorem 4: There exists an optimal control set {h∗1,h∗2} and corresponding solution N∗,K∗ and

P∗ that maximizes J(h1,h2) over U . Furthermore, there exists adjoint functions, λ1,λ2 and λ3

satisfying equation (4) with transversality conditions λi(t1) = 0, i = 1,2,3. Moreover, the set of

optimal control is given by equation (3).
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4. NUMERICAL SIMULATION AND DISCUSSION

In this section, we will perform some numerical simulations in order to verify our analytic

results.

For simulation purpose, we will take the parameters from the following table

Parameter Value

r 0.25

a 0.06

γ 0.005

α 0.01

ε 0.8

c 0.22

K1 300

K2 500

h1 variable

h2 0.1

TABLE 1. Parameter Values

Using the parameters shown in Table 1 above, we have the following graphs.

As discussed earlier in Theorem 2, the system exhibits the phenomena of Hopf bifurcation

as the bifurcation parameter h1 passes through a critical value. This is very clear from figures

1 - 8. In figure 1, the system has a stable limit cycle, for 0.001 < h1 < 0.1, which looses its

stability as h1 increases and the coexistence equilibrium became stable, as shown in figure

3. When h1 increases further, the coexistence equilibrium point losses its stability and now

the predator-free equilibrium point became stable, as shown in figure 5. When h1 increases

above 0.3, the predator-free equilibrium point looses its stability and the trivial equilibrium

(i.e. the equilibrium point where both populations extent) became stable, which is very clear

from figure 7. The same storyline is clear when looking at the phase-diagrams instead of the



OPTIMAL CONTROL ANALYSIS OF A PREDATOR-PREY MODEL 11

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

t

0

50

100

150

200

250

300

350

400

N
(t

),
 

(t
),

 P
(t

)

N(t)
(t)

P(t)

FIGURE 1. Stable limit cycle appears when 0.001 < h1 < 0.1

time-series solution, which is shown in figures 2,4,6 and 8.

To study the optimal control problem numerically, we use the forward-backward Rung-Kutta

sweep method. The results are given in the following graphs. Note that all the parameters are

taken from table 1.

Figures 9 and 10 show that when the constant effort harvesting on the prey (i.e. h1) is very low

(i.e. h1 = 0.001), then both prey population and predator populations with constant harvesting

effort exhibit oscillations with very long period and the densities of both populations is very

high; however under optimal harvesting both populations are kept in a low density, but away

from extension, with periodic solutions which have very short periods. Whilst when the constant

harvesting on the prey is medium (i.e. h1 = 0.17), both prey and predator populations with

constant harvesting efforts keep oscillating but now the density decreases a little bit, and also

the period decreases in a drastic manner; and the prey and predator populations have a similar

behaviour as the previous case; which can be shown from figures 11 and 12. When the constant

harvesting on prey increases (i.e. h1 = 0.31) then both prey and predator populations with

constant effort harvesting go extinct; however both the populations exhibit periodic solutions

under optimal effort harvesting, as could be seen from 13 and 14. Actually, the optimal effort

harvesting might reach a maximum as high as 0.6; which could never been achieved through

constant effort harvesting, which is clear from figures 15 and 16.
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FIGURE 2. Phase digram showing the limit cycle when 0.001 < h1 < 0.1
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FIGURE 3. Stable coexistence equilibrium appears when 0.17 < h1 < 0.25
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FIGURE 4. Phase digram showing the appearance of stable coexistence equilib-

rium when 0.17 < h1 < 0.25
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FIGURE 5. The stability of the predator-free equilibrium for 0.285 < h1 < 0.295
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FIGURE 6. Phase digram showing the stability of the predator-free equilibrium

when 0.285 < h1 < 0.295
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FIGURE 7. The stability of the trivial equilibrium when h1 > 0.3



14 I.M. ELMOJTABA, A. AL-SAWAII, M. AL-MOQBALI

0 10 20 30 40 50 60 70 80 90 100

N(t)

0

5

10

15

20

25

30

35

40

P
(t

)

FIGURE 8. Phase digram showing that the trivial equilibrium is stable h1 > 0.3
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FIGURE 9. Prey population with effort harvesting and optimal harvesting, with

very low efforts

5. CONCLUSION

In this paper, we present and analysed a mathematical model describing a prey-predator in-

teraction under harvesting when the carrying capacity is variable. Our results show that the

system has six steady-states 3 of which are locally and globally stable under some conditions.

It is also shown that the system undergoes Hopf bifurcation when the bifurcation parameter h1
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FIGURE 10. Predator population with effort harvesting and optimal harvesting,

with very low efforts
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FIGURE 11. Prey population with effort harvesting and optimal harvesting, with

medium efforts
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FIGURE 12. Predator population with effort harvesting and optimal harvesting,

with medium efforts
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FIGURE 13. Prey population with effort harvesting and optimal harvesting, with

high efforts
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FIGURE 14. Predator population with effort harvesting and optimal harvesting,

with high efforts
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FIGURE 15. The control profile for the optimal effort h1
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FIGURE 16. The control profile for the optimal effort h2

passes a critical value. Numerical simulations show that the stability of the equilibrium points

changes when from one range of h1 to another. It is also shown that the following the optimal

harvesting, one is capable of achieving a high yield and maintaining the both population away

from extension; which is what is desired.
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