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Abstract. The New Corona Virus epidemic is the most serious epidemic that the international community had

known in 2019 and this is manifested by the deaths it claimed and in a short time. Its risk is much greater than

(MERS) disease that emerged in the Republic of Korea and it is spreading largely more than SARS disease which

appeared in Saudi Arabia and the Middle East. This deadly disease caught the public’s attention and caused terror

in many societies around the world. We are building a dynamic model based on the detailed data of mortality from

the World Health Organization (WHO) and the actual spread of the epidemic. By using Routh-Hurwitz criteria and

constructing Lyapunov functions, the local and the global stability of the disease-free equilibrium and the disease

equilibrium are obtained. We also study the sensitivity analysis of model parameters to know the parameters that

have a high impact on the reproduction number R0. Finally, numerical simulations are performed to verify the

theoretical analysis using Matlab.
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INTRODUCTION

The New Corona Virus 2019 was considered at the time of its emergence in late 2019 a dan-

gerous disease to the international community and this is manifested by the deaths it claimed

in a short time in China and the whole world. On 31st December 2019, the World Health Or-

ganization (WHO) was informed of cases of idiopathic pulmonary infections in Wuhan, Hubei

Province, China. Then, on January 7th, the Chinese authorities identified the cause of these

cases with a new virus, the newly created Corona virus (2019-nCoV). Since the first cases of

the virus were declared up to now, globally, 87137 of infected individuals have been confirmed

including 79968 cases in China. The death toll reached 2873 deaths globally according to

Coronavirus disease 2019 (COVID-19) Situation Report – 41 [1].

Investigations are still ongoing to assess the source of the disease, the mode or modes of trans-

mission and the extent of infection. Currently, available evidence of the emerging Corona virus

and past experiences with other Corna viruses (Middle East Respiratory Syndrome (MERS) and

SARS virus) and other respiratory symptoms viruses (such as bird flu) indicate the possibility

of the new virus transmission from an animal source[2,3,4].

The organization (WHO) adds that Corona viruses are a group of viruses that are known to

cause diseases ranging from common cold to more severe diseases, such as Middle East Res-

piratory Syndrome (MERS) and severe acute respiratory syndrome (SARS). The Corona virus

(nCoV) is a new strain of the virus that has not been previously discovered in humans. Detailed

investigations have concluded that the SARS-CoV virus transmitted from civet cats to humans

and that the Middle East respiratory syndrome (MERS-CoV) virus has passed from camels to

humans. There are several known types of Corona viruses that circulate among animals with-

out infecting humans so far. Common signs of infection include: respiratory symptoms, fever,

cough, shortness of breath, and breathing difficulties. In more severe cases, infection may cause

pneumonia, severe acute respiratory syndrome, kidney failure and even death [8] .

Creating a mathematical model for the corona virus (COVID-19) is of great importance as

it helps to explain the extent of the disease taking into consideration that it is an invisible and

infectious virus. Based on this mathematical model, we can judge whether approved measures

such as quarantine are sufficient to limit the spread of the virus. The spread of the Corona
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virus started in China the most populous country in the world with a population of 1.4 billion

according to recent statistics. The density of population in this country surely will make the

cases of infection and deaths greater compared to other countries. Our research takes into

account the sensitivity of these previous characteristics of this country and for that reason we

chose it as a case study.

Many studies and research of mathematical models can be used to analyze the spread of infec-

tious diseases or the social behavior of people [5,6,9,10,14,16,19,24,25]. As regard to Corona

virus, several different mathematical models have been formulated and studied to help in reduc-

ing the number of people who have an infectious desease[2,3,9,10]. M.Tahir et al [2] developed

a non-linear mathematical model of MERS-CoV and studied the global stability analysis and

also they introduced Lyapunov function. Zhi-Qiang Xia et al [18] constructed two dynamical

models to simulate the propagation processes and found out that the basic reproduction number

R0 reaches up to 4.422. They showed that the reasons of the quick spread of the disease are

the lack of self-protection and control measures. A. Naheed et al’s study [19] of a population

model based on the epidemic of (SARS) examined the effect of the diffusion on the spread of

the disease and analysed the stability of the numerical solutions.

We will propose a mathematical model that defines and describes the spread of the new

Corona virus (COVID-19). The discrete modeling is more realistic but since the data on

(COVID-19) is collected daily, we rely on a continuous model in particular because it is less

complicated to be processed. Majority cases of (COVID-19) virus spread from human-to-

human connection. The virus is transmitted by direct contact with an infected person. So,

the use of a boiler model for an infectious disease is very appropriate in this case. We will first

test the local stability of the model in both disease-free model and in endemic equilibrium, then

we will test the global stability of the model.

The paper is organized as follows: In section 1, the formulation of the model and some basic

properties are derived. In section 2, equilibria of the proposed model are obtained and their

stability is discussed. In section 3, the global stability of the equilibrium point is discussed. The

problem of sensitivity’s parameters is discussed in section 4. Some numerical simulations and

discussions are given in section 5. Lastly, we give the conclusion of the paper.
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1. A MATHEMATICAL MODEL AND BASIC PROPERTIES

1.1. A Mathematical Model. We propose a continuous model SEIHR to describe the inter-

action within a population where the disease COV ID−19 exists . The population is divided into

five compartments: Susceptible individuals exposed to have new Corona virus S(t), Asymp-

tomatic infected cases or cases with mild symptoms E(t), Infected people with symptoms and

carriers of the virus I(t), Hospitalized cases H(t), The recovered cases R(t). The total number

of the population at time t is given by N (t) = S(t)+E(t)+ I(t)+H(t)+R(t).

The graphical representation of the proposed model is shown in Figure (1).

FIGURE 1.

We consider the following system of five non-linear differential equations:

(1)



dS(t)
dt = Λ−β

SE
N −µS

dE(t)
dt = β

SE
N − (µ +α +θ)E

dI(t)
dt = αE− (µ +α +δ 1)I

dH(t)
dt = λ I− (µ + γ +δ 2)H

dR(t)
dt = γH +θE−µR

where S(0)≥ 0,E(0)≥ 0, I(0)≥ 0,H(0)≥ 0, and R(0)≥ 0 are the given initial states.

Where Λ represents new birth rate in susceptible human population, β represents the trans-

mission coefficient from susceptible individuals to asymptomatic infected cases or cases with

mild symptoms due to the movement and contact that occur among them.µ represents the nat-

ural death rate in all compartments. α represents the rate of transmission of asymptomatic
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infected cases or cases with mild symptoms to infected individuals with symptoms. λ is the

transmission coefficient of the infected people with symptoms to the hospitalized cases. γ is the

transmission coefficient of the hospitalized cases to the recovered cases. θ represents the rate

of transmission of asymptomatic infected cases or cases with mild symptoms to the recovered

cases due the strong immunity of these individuals. δ 1 and δ 2 respectively represent the death

rate of the infected individuals and the death rate of the hospitalized cases.

1.2. Basic Properties of the model.

1.2.1. Invariant Region. It is necessary to prove that all solutions of system (1) with positive

initial data will remain positive for all times t > 0. This will be established by the following

lemma.

Lemma 1. All feasible solutions S(t),E(t), I(t),H(t) and R(t) of system equation (1) are

bounded by the region

(2) Ω =

{
(S,E, I,H,R) ∈ IR5

+ : S+E + I +H +R≤ Λ

µ

}
.

Proof. From the system equation (1)

(3)
dN(t)

dt
= Λ−µN(t)−δ 1I−δ 2H

Implies that
dN(t)

dt
≤ Λ−µN(t)

It follows that

(4) N(t)≤ Λ

µ
+N(0)e−µt .

Where N(0) is the initial value of total number of people, thus

(5) lim
t→+∞

supN(t)≤ Λ

µ

then

S(t)+E(t)+ I(t)+H(t)+R(t)≤ Λ

µ
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Hence, for the analysis of model (1), we get the region which is given by the set:

Ω =

{
(S,E, I,H,R) ∈ IR5

+ : S+E + I +H +R≤ Λ

µ

}
which is a positively invariant set for (1). So, we only need to consider the dynamics of the

system (1) on the set Ω non-negative of solutions. �

1.2.2. Positivity of solutions of the model.

Theorem 2. If S(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, H(0) ≥ 0 and R(0) ≥ 0, then the solutions of

system equation (1) S(t), E(t), I(t), H(t) and R(t) are positive for all t > 0.

Proof. From the first equation of the system (1), we have

(6)
dS(t)

dt
= Λ−A(t)S(t)

where

(7) A(t) = β
E(t)

N
+µ

We multiply equation (6) by exp(
t∫

0

A(s)ds), we find

(8)
dS(t)

dt
∗ exp(

t∫
0

A(s)ds) = [Λ−A(t)S(t)]∗ exp(
t∫

0

A(s)ds)

Implies that

(9)
dS(t)

dt
∗ exp(

t∫
0

A(s)ds)+A(t)S(t)∗ exp(
t∫

0

A(s)ds) = Λ∗ exp(
t∫

0

A(s)ds)

Therefore

(10)
d
dt

S(t)∗ exp(
t∫

0

A(s)ds)

= Λ∗ exp(
t∫

0

A(s)ds).

Taking integral with respect to s from 0 to t, we get

(11) S(t)∗ exp(
t∫

0

A(s)ds)−S(0) = Λ∗
t∫

0

exp(
w∫

0

A(s)ds)

dw.
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Multiplying the equation (11) by exp(−
t∫

0

A(s)ds), we get

(12) S(t)−S(0)∗ exp(−
t∫

0

A(s)ds) = Λ∗ exp(−
t∫

0

A(s)ds)∗
t∫

0

exp(
w∫

0

A(s)ds)

dw

Then,

(13) S(t) = S(0)∗ exp(−
t∫

0

A(s)ds)+Λ∗ exp(−
t∫

0

A(s)ds)∗
t∫

0

exp(
w∫

0

A(s)ds)

dw≥ 0.

So, the solution P(t) is positive.

Similarly, from the others equations of system (1), we have

(14) E(t)≥ E(0)exp(−
t∫

0

(
β

S(s)
N
− (µ +α +θ)

)
ds)≥ 0

(15) I(t)≥ I(0)exp [−(µ +λ +δ 1)t]≥ 0

(16) H(t)≥ H(0)exp [−(µ + γ +δ 2)t]≥ 0

(17) R(t)≥ R(0)exp [−(µ +θ)t]≥ 0

Therefore, we can see that the solutions S(t), E(t), I(t),H(t) and R(t) of the system (1) are

positive for all t ≥ 0. This completes the proof. �

The first three equations in system (1) are independents of the variables H and R. Hence, the

dynamics of equation system (1) is equivalent to the dynamics of equation system:

(18)


dS(t)

dt = Λ−β
SE
N −µS

dE(t)
dt = β

SE
N − (µ +α +θ)E

dI(t)
dt = αE− (µ +λ +δ 1)I
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2. STABILITY ANALYSIS AND SENSITIVITY OF THE MODEL

2.1. Equilibrium Points: In this model, there are two equilibrium points, that is, COVID-19

disease-free equilibrium point and COVID-19 disease present equilibrium point. The equilib-

rium points are found by setting the right hand side of the system (18) equal to zero.

The COVID-19 disease-free equilibrium E0
eq

(
Λ

µ
,0,0

)
is achieved in the absence of virus

(E = I = 0).

The COVID-19 disease present equilibrium E∗eq (S
∗,E∗, I∗) is achieved when the disease ex-

ists (E 6= 0 and I 6= 0).

Where:

(19) S∗ =
N
β
(µ +α +θ),

(20) E∗ =
µN
β

(R0−1),

(21) I∗ =
µNα

β (µ +λ +δ 1)
(R0−1),

(22) R0 =
Λβ

µN(µ +α +θ)
.

R0 is the basic reproduction number that measures the average number of the new infected

individuals generated by a single infected individual in a population of susceptible individuals.

The value of R0 will indicate whether the epidemic could occur or not. The reproduction basic

number can be determined by using the next generation matrix method formulated in [7].

2.2. Local stability analysis. Now we proceed to study the stability behavior of equilibria

E0
eq and E∗eq.

2.2.1. The disease-free equilibrium. In this section, we analyze the local stability of the

COVID-19 disease-free equilibrium.

Theorem 3. The COVID-19 disease-free equilibrium E0
eq

(
Λ

µ
,0,0

)
of the system (18) is asymp-

totically stable if R0 < 1 and unstable if R0 > 1.
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Proof. The Jacobian matrix at Eeq is given by

(23) J(Eeq) =


−β

E
N −µ −β

S
N 0

β
E
N β

S
N − (µ +α +θ) 0

0 α −(µ +λ +δ 1)


The Jacobian matrix for the disease-free equilibrium is given by

(24) J(E0
eq) =


−µ −(µ +α) 0

0 β
Λ

µN − (µ +α +θ) 0

0 α −(µ +λ +δ 1)


The characteristic equation of this matrix is given by det (J(E0

eq)−λ I3) = 0, where I3 is a

square identity matrix of order 3.

Therefore, we see that the characteristic equation ϕ(ζ ) of J(E0
eq) are:

(25) ϕ(ζ ) =−(µ +ζ )

[
(β

Λ

µN
− (µ +α +θ)−ζ )(−(µ +λ +δ 1)−ζ )

]
Where, eigenvalues of the characteristic equation of J(E0

eq) are:

ζ 1 = −µ(26)

ζ 2 = (µ +α +θ)(R0−1)

ζ 3 = −(µ +λ +δ 1)

And

(27) R0 =
Λβ

µN(µ +α +θ)
.

Therefore, all the eigenvalues of the characteristic equation J(E0
eq) are clearly real and nega-

tive if R0 < 1. �

We conclude that the desease-free equilibrium is locally asymptotically stable if R0 < 1 and

unstable if R0 > 1.
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2.2.2. Disease present equilibrium. In this section, we analyze the local stability of the dis-

ease present equilibrium. We consider dS(t)
dt = 0, dE(t)

dt = 0 and dI(t)
dt = 0 .

We have

S∗ =
N
β
(µ +α +θ)(28)

=
Λ

µR0
(29)

From the second equation in the system (18), we have

(30) E∗ =
µN
β

(R0−1),

Also, the third equation in the system (18) gives

(31) I∗ =
µNα

β (µ +λ +δ 1)
(R0−1),

Let the following theorem analysis the local stability of the disease present equilibrium.

Theorem 4. The COVID-19 disease present equilibrium E∗eq is locally asymptotically stable if

R0 > 1,and unstable if R0 ≤ 1.

Proof. We present E∗eq (S
∗,E∗, I∗) as the COVID-19 disease present equilibrium of system (18)

and S∗ 6= 0,E∗ 6= 0 , I∗ 6= 0. �

The Jacobian matrix at E∗eq is given by

(32) J(E∗eq) =


−µR0 −(µ +α +θ) 0

µ(R0−1) 0 0

0 α −(µ +λ +δ 1)


We see that the characteristic equation ϕ(ζ ) of J(E∗eq) is:

(33) ϕ(ζ ) = ζ
3 +a1ζ

2 +a2ζ +a3

where

a1 = µR0 +µ +λ +δ 1 > 0 ;(34)

a2 = µ(R0−1)(µ +α +θ)+µR0(µ +λ +δ 1)> 0,(35)

a3 = µ(R0−1)(µ +α +θ)(µ +λ +δ 1)(36)
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By routh- Hurwitz Criterion, the system (18) is locally asymptotically stable if a1 > 0 , a2 > 0

a3 > 0 and a1a2 > a3.

Thus, the present equilibrium E∗eq of system (18) is locally asymptotically stable if R0 > 1.

3. GLOBAL STABILITY

3.1. Global stabilty of the COVID-19 disease-free equilibrium. To show that the sys-

tem (18) is globally asymptotically stable, we use the Lyapunov function theory for both the

COVID-19 disease free equilibrium and the COVID-19 disease present equilibrium. First, we

present the global stability of the COVID-19 disease-free equilibrium E0
eq.

Theorem 5. The COVID–19 disease free equilibruim E0
eq is globally asymptotically stable Ω If

R0 ≤ 1 and unstable otherwise.

Proof. Let the following Lyapunov function:

V : Γ → IR

V (S,E) =
1
2
[(S−S0)+E]2 +

N
β
(2µ +α +θ)E(37)

where

Γ = {(S,E) ∈ Γ/S > 0,E > 0}

Then, the time derivative of the Lyapunov function is given by:

(38)
dV (S,E)

dt
= [Λ−µS− (µ +α +θ)E] [(S−S0)+E]+

(
N
β
(2µ +α +θ)

)
dE
dt

Using Λ = µS0 to rewrite this, we get

dV (S,E)
dt

= −µ(S−S0)
2 − (µ +α +θ)E2− (2µ +α +θ) (S−S0)E +

(
N
β
(2µ +α +θ)

)
dE
dt

= −µ(S−S0)
2 − (µ +α +θ)E2 +

N
β
(2µ +α +θ)(µ +α +θ)(R0−1)E

Thus, dV (S,E)
dt ≤ 0 for R0 ≤ 1.

Note that dV
dt = 0 if and only if S = S0 and E = 0. Hence, by Lasalle’s invariance principle

[17], E0
eq is globally asymptotically stable in Ω. �
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3.2. Global stability of the COVID-19 disease present equilibrium. The final result of the

global stability of E∗eqin this section is as follows:

Theorem 6. The disease of COVID-19 disease present equilibrium point E∗eq is globally asymp-

totically stable if R0 > 1.

Proof. Let the Lyapunov function V :

V : Γ → IR

V (S,E) = S−S∗ ln(
S
S∗

)+E−E∗ ln(
E
E∗

)(39)

Where

Γ = {(S,E) ∈ Γ/S > 0,E > 0}

Then, the time derivative of the Lyapunov function is

(40)
dV (S,E)

dt
=−Λ(S−S∗)

[
S−S∗

SS∗
− β

N
(E−E∗)

]
+

β

N
(E−E∗)(S−S∗)

Then

(41)
dV (S,E)

dt
=−Λ

[S−S∗]2

SS∗
≤ 0

Also, we obtain

(42)
dV (P,M)

dt
= 0⇔ S = S∗.

Hence, by LaSalle’s invariance principle [17] the COVID-19 disease present equilibrium

point E∗eq is globally asymptotically stable on Γ. �

4. SENSITIVITY ANALYSIS OF R0

Sensitivity analysis is commonly used to determine the model robustness to parameter values,

that is, to help us know the parameters that have a high impact on the reproduction number

R0(because there are usually errors in data collection and assumed parameter values).

Using the approach in Chitnis et al [5], we calculate the normalized forward sensitivity indices

of R0. Let
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(43) ϒ
R0
n =

∂R0

∂n
∗ n

R0
,

Denote the sensitivity index of R0 with respect to the parameter n, we get

(44) R0 =
Λβ

µN(µ +α +θ)
,

(45) ϒ
R0
β

= 1,

(46) ϒ
R0
α =− α

µ +α +θ
,

(47) ϒ
R0
θ

=− θ

µ +α +θ
,

(48) ϒ
R0
µ =− µ

µ +α +θ
−1,

From the above discussion we observe that the basic reproduction number R0 is most sen-

sitive to changes in β . If β increases R0 will also increase with the same proportion and if β

decreases in the same proportion, µ,α and θ will have an inversely proportional relationship

with R0. So, an increase in any one of them will bring about a decrease in R0. However, the

size of the decrease will be proportionally smaller. Recall that µ is the natural death rate of the

population. Given R0’s sensitivity to β , it seems sensible to focus efforts on the reduction of

β . In other words, this sensitivity analysis tells us that prevention is better than cure. Efforts to

increase prevention are more effective in controlling the spread of habitual COVID-19 disease

than efforts to increase the numbers of individuals accessing quarantine.

Parameter Description Sensitivity index

β The effective contact rate +1

α Coefficient of transmission from E to I −0.2326

θ Coefficient of transmission from E to R −0.0116

µ The natural death rate −1.7558
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5. NUMERICAL SIMULATIONS :

In this section, we illustrate some numerical solutions of model (1) for different values of the

parameters. The resolution of the system (1) was created using the Gauss-Seidel-like implicit

finite-difference method developed by Gumel et al [9] presented in [15] and denoted GSS1

method. We use the following different initial values such that S+E + I +H +R = 1000.

We use and present some numerical simulations of the system (1) to illustrate our results.By

choosing Λ = 100,β = 0.025,α = 0.022,λ = 0.024,γ = 0.015,µ = 0.065,δ 1 = 0.001,δ 2 =

0.004,

θ = 0.001, t f = 600 and different initial values for each variable of state, we have the COVID-

19 disease free equilibrium E0 = (1.5× 103,0,0) and R0 = 0.437 ≺ 1. In this case, according

to theorem (5), the COVID-19 disease free equilibrium E0 of the system (1) is globally asymp-

totically stable on Ω. (See Figure 2).

(a) (b)

(c) (d)
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(e)

FIGURE 2.

We start by a graphic representation of the COVID-19 disease-free equilibrium E0 and we

use the same parameters and different initial values given in table1. R0 = 0.437 and R0 < 1.

From these figures, using the different values of initial variables S0, E0, I0, H0 and R0, we

obtained the following remarks:

The number of potential individuals increases and approaches the number S0 = 1536 (see

Figure 2 (a)). Also, the number of the asymptomatic infected cases or cases with mild symptoms

decreases and converges to zero (see Figure 2 (b)). The number of the infected people with

symptoms and carriers of the virus increases at first, after that it decreases and approaches zero

(see Figure 2 (c)). The number of the hospitalized cases decreases and approaches zero (see

Figure 2 (d)).The number of the recovered cases decreases and approaches zero (see Figure 2

(e)). Therefore, the solution curves to the equilibrium E0
eq(S0,0,0,0,0) when R0 < 1. Hence,

model (1) is globally asymptotically stable.

Also, for Λ = 102,β = 0.25,α = 0.022,λ = 0.024,γ = 0.015,µ = 0.065,δ 1 = 0.001,δ 2 =

0.004, t f = 600. We have the COVID-19 disease equilibrium E∗eq = (3.52× 102,8.76×

102,2.14× 102) and R0 = 4.37 � 1. In this case, according to theorem (6), the COVID-19

disease equilibrium E∗eq of the system (1) is globally asymptotically stable on Ω. (See Figure 3).

Also, we begin with a graphic representation of the COVID-19 disease present equilibrium

E∗eqand we use the same parameters and different initial values given in table 2, R0 = 4.3706

and R0 > 1.

From these figures, using the different values of initial variables S0,E0, I0,H0, and R0, we

obtained the following remarks:
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(a) (b)

(c) (d)

(e)

FIGURE 3.

The number of potential individuals increases at first, then it decreases slightly and ap-

proaches the value S∗ = 352 (see Figure 3 (a)).Concerning the number of the asymptomatic

infected cases or cases with mild symptoms, it decreases rapidly at first, then it increases slightly

and converges the value E∗ = 876 (s2ee Figure 3 (b)). The number of the infected people with

symptoms and carriers of the virus increases and converges the value I∗ = 219 (see Figure 3

(c)). Also, the number of the hospitalized cases decreases and converges the value H∗ = 62 (see
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Figure 3 (d)). The number of the recovered cases decreases and converges the value R∗ = 28

(see Figure 3 (e)). Therefore, the solution curves to the equilibrium E∗eq(S
∗,E∗, I∗,H∗,R∗) when

R0 > 1. Hence, the model (1) is globally asymptotically stable.

6. CONCLUSION

In this work, we formulated and presented a continuous mathematical model SEIHR of

COVID-19 disease that describes the dynamics of citizens who were infected by this desease.

We have found R0 =
Λβ

µN(µ+α+θ) , as basic reproduction number of the system (1), which helps

us to determine the dynamical of the system. We also studied the sensitivity analysis of model

parameters to know the parameters that have a high impact on the reproduction number R0. We

used the stability analysis theory for nonlinear systems to analyze the mathematical COVID-

19 disease model and to study both the local and global stability of COVID-19 disease. Lo-

cal asymptotic stability for the COVID-19 disease-free equilibrium E0
eq can be obtained if the

threshold quantity R0 ≤ 1. On the other hand, if R0 > 1, then the COVID-19 disease present

equilibrium E∗eq is locally asymptotically stable. A Lyapunov function was used to show that

E0
eq is globally asymptotically stable if R0 ≤ 1. Also, a Lyapunov function was used to show

that E∗eq is globally asymptotically stable if R0 > 1.
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