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Abstract. We want to develop our model [2]. So, this study discusses the influence of awareness programs and

treatment on drinking behavior of the drinker’s classes through mathematical models. There are five categories of

population in this model, namely: potential drinkers, moderate drinkers, heavy drinkers, heavy drinkers with liver

complications, recovered and quitters of drinking. The model is analyzed using stability theory of nonlinear differ-

ential equations. Based on analysis result, the model has two equilibrium points: drinking-free equilibrium point

and drinking present equilibrium point. These equilibrium points are locally and globally asymptotically stable

under certain conditions. We also study the sensitivity analysis of the model parameters to know the parameters

that have a high impact on the reproduction number R0. Moreover, the controls used are awareness programs and

treatment. The purpose theses optimal controls as to minimize the heavy drinkers with and without complications

as well as the control costs. Pontryagin’s principle is then implemented to solve optimal control problems. Finally,

numerical simulations are carried out to determine the effectiveness of the controls used.
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1. INTRODUCTION

Phenomenon of addiction to drinking alcohol is a problem that has received the attention

of several researchers and scholars in many fields including psychology, sociology, psychiatry,

mathematics etc, in an attempt to highlight the reasons behind this phenomenon and identify

effective methods of prevention and treatment to this problem. Alcoholism is the misuse and

excessive use of alcohol, which may cause physical, social, and moral damage to all strata of

society (poor, rich, undemanding, young men, women.... ). According to the World Health

Organization’s 2016 report, there are 3 million deaths a year, which accounts for 6% of all

deaths due to drinking alcohol. Long-term alcohol consumption can lead to a number of phys-

ical symptoms including cirrhosis of the liver, pancreatitis, alcoholic liver disease, and many

cancers. Also, can impact other areas of our life such as relationship problems with family or

friends, legal trouble, financial issues and poor performance at work or in school [20].

Drink more alcohol intake may lead to fatty liver problems and then to hepatic failure, type

2 diabetes and cirrhosis. Alcohol is involved in about half of all deaths due to liver disease in

the United States of America each year. Alcoholic liver cirrhosis passes from fatty liver stage to

alcoholic hepatitis and then to alcoholic cirrhosis. According to the American Liver Foundation,

between 10 and 20 percent of people who drink alcohol will have cirrhosis [21]. The largest

increases were related to alcoholic cirrhosis among people aged 25 to 34 years old [18].

Table (1) shown deaths caused by liver cirrhosis disease, age-standardized death rates (15+),

per 100,000 population in 2016 [21].



ALCOHOL DRINKING MODEL WITH LIVER COMPLICATION 3

Table(1): Liver cirrhosis, age-standardized death rates (15+) per 100,000 population in 2016

Country Male Female

Afghanistan 28.2 19.6

Albania 15.8 6.2

Algeria 19 6.3

Brazil 26.7 6.4

Egypt 200.4 6.6

Cameroon 76.4 6.7

Germany 18.9 6.8

Russian Federation 40.3 6.9

Azerbaijan 53.8 6.10

Morocco 16.2 6.11

United States of America 19.7 6.13

United Arab Emirates 13.6 6.14

Turkey 14.2 6.15

Some of the measures adopted to reduce the harmful use of alcohol worldwide are inclusion

of alcohol-related targets in major global policy and strategic frameworks such as the 2030

Agenda for Sustainable Development, increased health consciousness in populations, decreased

youth alcohol consumption as observed in a wide range of countries, recognition of the role of

alcohol control policies in reducing health and gender inequalities, and accumulating evidence

of effectiveness and cost effectiveness of a number of alcohol control measures[20].

Several mathematicians did a lot of work in order to understand the dynamics and analysis

of drinking and reduce its harm on the drinker and society as well as minimizing the number of

addicted drinkers. For example, S. H. Ma et al [15] modeled alcoholism as a contagious disease

and used an optimal control to study their mathematical model with awareness programs and

time delay. S. Sharma et al [17] developed a mathematical model of alcohol abuse and discussed

the existence and stability of drinking-free, endemic equilibria and sensitivity analysis of R0.

They demonstrated that backward bifurcation can occur when R0 = 1. X. Y. Wang et al [19]
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proposed and analyzed a non-linear alcoholism model and used optimal control for the purpose

of hindering interaction between susceptible individuals and infected individuals. B. Benedict

[3] used a SIR-type model with a contact rate between susceptibles and alcoholism, he getted

alcoholism reproductive number and discussed the existence and stability of two equilibria.

H. F. Huo et al [10] proposed a new social epidemic model to depict alcoholism with media

coverage which was proven to be an effective way in pushing people to quit drinking. I. k.

Adu et al [1] used a non-linear SHT R mathematical model to study the dynamics of drinking

epidemic. They divided their population into four classes: non-drinkers (S), heavy drinkers

(H), drinkers receiving treatment (T ) and recovered drinkers (R). They discussed the existence

and stability of drinking-free and endemic equilibrium. Other mathematical models have also

been widely used to study this phenomenon (For example, [5,11,12...]). Besides these works,

we want to develop our model [2]talking about ”A Discrete Mathematical Modeling of the

Influence of Alcohol Treatment Centers on the Drinking Dynamics Using Optimal Control” by

change some compartments by to new compartments as C represents liver complications.

So, we will study the dynamics and analysis of a mathematical alcohol model PMHCQ which

contains the following additions:

• Compartment C represents the number of the heavy drinkers with liver complications

associated with prolonged and excessive alcohol consumption (alcoholic hepatitis, fibrosis and

cirrhosis).

•The death rate induced by the heavy drinkers δ1.

•The death rate induced by the heavy drinkers with liver complications δ2. The drinker’s

classes of this model are divided into five compartments: Potential drinkers (P), Moderate

drinkers (M), Heavy drinkers (H), Heavy drinkers with liver complications (C) and the recov-

ered and quitters of drinking(Q). We propose a mathematical model that describes the dynamics

of the drinker’s classes. By using Routh- Hurwitz criteria and constructing Lyapunov functions,

the local and the global stability of drinking-free equilibrium and drinking present equilibrium

are obtained. We also study the sensitivity analysis of the model parameters to know the param-

eters that have a high impact on the reproduction number R0. Also, we seek to find the optimal

strategies to minimize the number of drinkers with and without complications and maximize the
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number of the recovered and quitters of drinking (Q). In order to achieve this purpose, we use

optimal control strategies associated with three types of controls: the first represents awareness

programs for potential drinkers, the second is the effort of treatment for heavy drinkers and the

third represents treatment for the heavy drinkers with liver complications.

The paper is organized as follows: In Section 2, we present our PMHCQ mathematical model

that describes the dynamics of the drinker’s classes. In Section 3, we discuss basic properties

and positivity of solutions. In Section 4 and 5, we analyse the local and global stability and

the problem of parameters sensitivity. Some numerical simulations are discussed in section

6. In section 7, we present the optimal control problem for the proposed model where we

give some results concerning the existence of the optimal controls and we characterize these

optimal controls using Pontryagin’s maximum principle. Also, numerical simulations are given

in section 8. Finally, we conclude the paper in Section 9.

2. A MATHEMATICAL MODEL

We propose a continuous-time model PMHCQ to describe the population dynamics and ana-

lyze the interactions between the drinker’s classes. The population is divided into five compart-

ments: potential drinkers P(t), moderate drinkers M(t), heavy drinkers H(t), heavy drinkers

with liver complications C(t) and the recovered and quitters of drinking Q(t).

The graphical representation of the proposed model is shown in FIGURE 1.

FIGURE 1. Schematic diagram of the five drinking classes in the model
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We consider the following system of five non-linear differential equations:

(1)



dP(t)
dt = b−β 1

P(t)M(t)
N −µP(t)

dM(t)
dt = β 1

P(t)M(t)
N −(β2+µ)M(t)

dH(t)
dt = β 2M(t)− (µ +α1+α2 +δ1)H(t)

dC(t)
dt = α1H(t)−(µ + γ +δ2)C(t)

dQ(t)
dt = α2H(t)+ γC(t)−µQ(t)

The potential drinkers P(t) represents individuals whose age is over adolescence and adult-

hood and are susceptible of drinking alcohol. The number of individuals of this compartment

is increased by the recruitment rate denoted by b and decreased by an effective contact with

the moderate drinkers at β1 rate and natural death µ . Due to effective contact with moderate

drinkers in some social occasions like weddings, celebrating graduation ceremonies, week-end

parties and end of the year celebration, potential drinkers can acquire drinking behavior and

can become moderate drinkers. In other words, it is assumed that the acquisition of a drinking

behavior is analogous to acquiring disease infection.

Moderate drinkers M:

(2)
dM(t)

dt
= β1

P(t)M(t)
N

− (µ +β2)M(t)

The compartment M is composed of moderate drinkers who are able to control their intake of

alcohol during some events and occasions or they drink in a way that is unapparent to their social

environment. This category of drinkers do not face any problems or negative consequences.

Friends or family do not complain about their consumption of alcohol. A moderate drinker does

not think about drinking very often or often feel a need to drink. Alcohol does not dominate

their thoughts and they do not need to set limits when they drink. They are not prone to extreme

mood swings, fighting or being violent. This compartment is increased by potential drinkers

who turn to be moderate drinkers at rate β1. It is decreased when moderate drinkers become

heavy drinkers at a rate β2 and also by natural death at rate µ.
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Heavy drinkers H:

(3)
dH(t)

dt
= β2M(t)− (µ +δ1 +α1 +α2)H(t)

The compartment H contains heavy drinkers who are addicted to alcohol. An alcoholic person

faces a great difficulty to control or set limits for their consumption. The majority of alcoholics

begin as potential drinkers and then turn to moderate drinkers. Alcohol seems to exert a control

on the alcoholic’s life. Their job, their family, social circle and health are all endangered.

Despite these negative consequences, the alcoholic is unable to quit drinking. The alcoholics

may begin to disclaim that they have a problem; this disclaim can make it even more difficult

for the person to get help. Alcohol addiction is considered to be a disease; it changes chemicals

in the addict’s brain and has made alcohol the most important thing in their life. At the time a

person is an alcoholic, they will usually need to get help at a rehab to overcome their addiction.

This compartment becomes larger as the number of heavy drinkers increases by the rate β2 and

decreases by the rates α1(α1 is a rate the heavy drinkers individuals becomes heavy drinkers

with liver complications) and the rate α2 (α2 is a rate the heavy drinkers individuals they became

recovered and quitters of drinking) and δ1( δ1 is the death rate induced by H) and also by natural

death at rate µ .

Heavy drinkers with liver complications C:

(4)
dC(t)

dt
= α1H(t)− (µ + γ +δ2)C(t)

This compartment represents the heavy drinkers with liver complications associated with

prolonged and excessive alcohol consumption (alcoholic hepatitis, fibrosis and cirrhosis). It is

increased by the rate α1 and decreased by the rates γ , δ2 and µ . Where δ2 is the death rate

induced by the liver complications of heavy drinking and γ is the number of individuals who

stopped drinking and were cured from these complications.

Recovered and quitters of drinking Q:
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(5)
dQ(t)

dt
= γC(t)+α2H(t)−µQ(t)

Q(t) refers to the individuals who recovered and quitters of drinking. It is increased by the

rates α2 and γ and decreased by the rate µ .

The total population size at time t is denoted by N(t) with N(t)=P(t)+M(t)+H(t)+C(t)+

Q(t).

3. BASIC PROPERTIES

3.1. Invariant Region. It is necessary to prove that all solutions of system (1) with positive

initial data will remain positive for all times t > 0. This will be established by the following

lemma.

Lemma 1. All feasible solution P(t),M(t),H(t),C(t) and Q(t) of system equation (1) are

bounded by the region

(6) Ω =

{
(P,M,H,C,Q) ∈ IR5

+ : P+M+H +C+Q≤ b
µ

}
.

Proof. From the system equation(1)

(7)
dN(t)

dt
=

dP(t)
dt

+
dM(t)

dt
+

dH(t)
dt

+
dC(t)

dt
+

dQ(t)
dt

dN(t)
dt = b−µN(t)−δ1H−δ2C

implie that
dN(t)

dt ≤ b−µN(t).

it follows that

(8) N(t)≤ b
µ
+N(0)e−µt

Where N(0) is the initial value of total number of people, thus, lim
t→+∞

supN(t)≤ b
µ
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then P(t)+M(t)+H(t)+C(t)+Q(t)≤ b
µ

Hence, for the analysis of model (1), we get the region which is given by the set:

Ω =
{
(P,M,H,C,Q) ∈ IR5

+ : P+M+H +C+Q≤ b
µ

}
.

wich is a positively invariant set for (1), so we only need to consider dynamics of system on

the set Ω non-negative of solutions. �

3.2. Positivity of the solutions of the model.

Theorem 2. If P(0) ≥ 0,M(0) ≥ 0,H(0) ≥ 0,C(0) ≥ 0 and Q(0) ≥ 0, then the solution of

system equations (1) P(t),M(t), H(t),C(t) and Q(t) are positive for all t > 0.

Proof. From the first equation of the system (1) we have:

(9)
dP(t)

dt
= b−

[
β1

M(t)
N

+µ

]
P(t),

We consider

(10) A(t) = β1
M(t)

N
+µ

It follows from the equation (9) that

(11)
dP(t)

dt
+A(t)P(t)> 0

We multiply inequality (11) by

(12) exp(

t̂

0

(A(s))ds).

we find

(13)
dP(t)

dt
∗ exp(

t̂

0

(A(s))ds)+A(t)P(t)∗ exp(

t̂

0

(A(s))ds)> 0,

Implies

(14)
d
dt
(P(t)exp(

t̂

0

(A(s))ds)> 0,

integrating (14) between 0 and t gives
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(15) P(t)> P(0)exp(

t̂

0

(−A(s))ds,

So, the solution P(t) is positive. Similarly, From the second equation of system (1), we have:

(16) M(t)>M(0)exp(

t̂

0

(−B(s))ds,

where

(17) B(t) = β1
P(t)
N
−(µ +β2)

Similarly, From the other equations of system (1), we have

(18) H(t)> H(0)exp(−(µ +δ1 +α1 +α2)t)> 0,

(19) C(t)>C(0)exp(−(µ +δ2 + γ)t)> 0,

and

(20) Q(t)> Q(0)exp(−µt)> 0,

Therfore, we can see that P(t) > 0, M(t) > 0, H(t) > 0, C(t) > 0 and Q(t > 0 ∀t ≥ 0, this

completes the proof.

The first three equations in system (1) are independent of the variables C and Q. Hence, the

dynamics of equation system (1) is equivalent to the dynamics of equation system :

(21)


dP(t)

dt = b−β 1
PM
N −µP,

dM(t)
dt = β 1

PM
N −(β2+µ)M,

dH(t)
dt = β 2M− (µ +α1+α2 +δ1)H,
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4. EQUILIBRIA AND THEIR STABILITY ANALYSIS

4.1. Equilibrium Point: The standard method is used to analyzed the model (21). In this

model, there are two equilibrium points, drinking-free equilibrium point and drinking present

equilibrium point. The equilibrium point are found by setting the right hand side of equations

(1)− (3) egual to zero.

The drinking-free equilibrium E0
(

b
µ
,0,0

)
is achieved in the absence of drinking (M = H =

0).

The drinking present equilibrium E∗ (P∗,M∗,H∗) is achieved when drinkers exist (M 6= 0 and

H 6= 0). Where:

(22)



P∗= b
µR0

,

M∗=b(R0−1)
β1

,

H∗= bβ2(R0−1)
β1(µ+α1+α2+δ1)

,

R0 =
β1

µ+β2
,

R0 is the basic reproduction number that measures the average number of new drinkers gen-

erated by single drinker in a population of potential drinkers. The value of R0 will indicates

whether the epidemic could occur or not. The reproduction basic number can be determined by

using the next generation matrix method formulated in ( Driessche et al (2002)).

4.2. Local stability analysis. Now we proceed to study the stability behavior of equilibria E0

and E∗ .

4.2.1. The drinking-free equilibrium. In this section, we analyze the local stability of the

drinking-free equilibrium.

Theorem 3. The drinking-free equilibrium E0
(

b
µ
,0,0

)
of the system (21) is asymptotically

stable if R0 ≤ 1 and unstable if R0 > 1.



12 BOUCHAIB KHAJJI, ABDELFATAH KOUIDERE, OMAR BALATIF, MOSTAFA RACHIK

Proof. The jacobian matrix at E is given by

(23) J(E) =


−β1

M
N −µ −β1

P
N 0

β1
M
N β1

P
N −β2−µ 0

0 β2 −µ−α1−α2−δ1


The jacobian matrix for the drinking-free equilibrium is given by

(24) J(E0) =


−µ −β1 0

0 β1−β2−µ 0

0 β2 −µ−α1−α2−δ1


where P0 =

b
µ
= N.

The characteristic equation of this matrix is given by det(J(E0)− λ I3) = 0 where I3 is a

square identity matrix of order 3. Therefore, eigenvalues of the characteristic equation of J(E0)

are

(25)


λ1 =−µ

λ2 =−(β2 +µ−β1) =−(µ +β2)
(

1− β1
µ+β2

)
λ3 =−(µ +α1 +α2 +δ1)

(26) R0 =
β1

µ +β2
,

Therefore, all the eigenvalues of the characteristic equation are clearly real and negatives if

R0 ≤ 1. We conclude the drinking-free equilibrium is locally asymptotically stable if R0 ≤ 1

and unstable if R0 > 1.

4.2.2. Drinking present equilibrium. In this section, we analyze the local stability of the

drinking present equilibrium.

Theorem 4. The drinking present equilibrium E∗ is locally asymptotically stable if R0 > 1,

and unstable otherwise.
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Proof. We present E∗ (P∗,M∗,H∗) as drinking present equilibrium of system (21) and P∗ 6=

0,M∗ 6= 0 , H∗ 6= 0 The Jacobian matrix is

(27) J(E∗) =


−β1

M∗
N −µ −β1

P∗
N 0

β1
M∗
N β1

P∗
N −β2−µ 0

0 β2 −µ−α1−α2−δ1

 .

where

(28)


P∗= b

µR0
,

M∗=b(R0−1)
β1

,

H∗= bβ2(R0−1)
β1(µ+α1+α2+δ1)

,

We see that the characteristic equation P(λ ) of J(E∗) has an eigenvalue λ1 =−(µ +α1 +α2 +

δ1) whose real part is negative. So, in order to determine the stability of the drinking present

equilibrium of model (21), we discuss the roots of the following equation P(ϕ) :

(29) P(ϕ) = ϕ2 +a1ϕ +a2

where

(30)

 a1 = β1
M∗
N +µ > 0,

a2 = β 2
1

P∗
N

M∗
N > 0,

By routh- Hurwitz Criterrion, the system(21) is locally asymptotically stable if a1 > 0 and

a2 > 0.

Thus, the drinking present equilibrium E∗ of system(21) is locally asymptotically stable.

4.3. Global Stability.

4.3.1. Global stabilty of the drinking-free equilibruim. To show that the system (21) is glob-

ally asymptotically stable, we use the Lyapunov function theory for both the drinking-free

equilibrium and the drinking present equilibrium. First, we present the global stability of the

drinking-free equilibrium E0 when R0 ≤ 1
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Theorem 5. The drinking-free equilibruim E0is globally asymptotically stable if R0 ≤ 1, and

unstable otherwise.

Proof. Consider the following Lyapunov function

(31) V (P,M,H,C,Q) = M,

The derivative of V (P,M,H,C,Q) with respect to t gives

(32)

dV
dt = dM

dt

=
[

β1P
N − (µ +β2)

]
M

= (µ +β2)
[

β1P
(µ+β2)N

−1
]

M

≤ (R0−1)M.

where R0 =
β1

µ+β2
,

So, dV
dt ≤ 0 if R0 ≤ 1.

Furthermore dV
dt = 0 if and only if M = 0, Hence, by Lasalle’s invariance principle [14], E0

is globally asymptotically stable.

4.3.2. Global stabilty of the drinking present equilibrium. The final result of the global sta-

bility of E∗ in this section is as follows:

Theorem 6. The drinking present equilibrium point E∗ is globally asymptotically stable if R0 >

1.

Proof. Consider the Lyapunov function V :

V : Γ → IR

V (P,M) = c1

[
P−P∗ ln(

P
P∗

)

]
+ c2

[
M−M∗ ln(

M
M∗

)

]
.(33)

Where c1 and c2 are positive constant to be chosen latter and Γ = {(P,M) ∈ Γ/P > 0,M > 0}

Then, the time derivative of the Lyapunov function is given by

(34)
dV (P,M)

dt
=−bc1

[P−P∗]2

PP∗
+

β1

N
(c2− c1) [P−P∗] [M−M∗] .
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For c1 = c2 = 1, we have

(35)
dV (P,M)

dt
=−b

[P−P∗]2

PP∗
≤ 0,

Also, we obtain

(36)
dV (P,M)

dt
= 0⇔ P = P∗

Hence, by LaSalle’s invariance principle ( LaSalle et al (1976)) the drinking present equilib-

rium point E∗ is globally asymptotically stable on Γ.

5. SENSITIVITY ANALYSIS OF ℜ0

Sensitivity analysis is commonly used to determine the model robustness to parameter values,

that is, to help us know the parameters that have a high impact on the reproduction number ℜ0.

Using the approach in Chitnis et al (Chitnis et al (2008)) we calculate the normalized forward

sensitivity indices of ℜ0. Let

(37) ϒ
ℜ0
m =

m
ℜ0
∗ ∂ℜ0

∂m
.

denote the sensitivity index of ℜ0 with respect to the parameter m. We get

(38)



ℜ0 =
β1

µ+β2
,

ϒ
ℜ0
β1

= 1,

ϒ
ℜ0
β2

=− β2
µ+β2

,

ϒ
ℜ0
µ =− µ

µ+β2
,

From the above discussion we observe that the basic reproduction number ℜ0 is most sensitive

to changes in β1. If β1 will increase ℜ0 will also increase with same proportion and if β1 will

decrease in same proportion, µ and β2 have an inversely proportional relationship with ℜ0. So,

an increase in any of them will bring about a decrease in ℜ0, however, the size of the decrease

will be proportionally smaller. Recall that µ is the natural death rate of the population. It is clear

that increase in either of these rates is neither ethical nor practical. Given ℜ0’s sensitivity to β1,
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it seems sensible to focus efforts on the reduction of β1. In other words, this sensitivity analysis

tells us that prevention is better than cure. Efforts to increase prevention are more effective in

controlling the spread of habitual drinkers than efforts to increase the numbers of individuals

accessing treatment.

In table(2), we present the sensitivity indices of all model parameters ℜ0. The parameters are

arranged from the most sensitive to the least sensitive.

Table(2)

Parameter Description Sensitivity index

β1 The effective contact rate +1

µ The natural death rate −0,32

β2 coefficient of transmission the M at H −0,68

)

Hence, with sensitivity analysis, one can get insight on the appropriate intervention strategies

to prevent and control the spread of drinking behavior of the population on drinkers classes that

described by model (1).

6. NUMERICAL SIMULATIONS

In this section, we illustrate some numerical solutions of model (1) for different values of the

parameters. The resolution of the system (1) was created using the Gauss-Seidel-like implicit

finite-difference method developed by Gumel (Gumel et al (2001)), presented in (Karrakchou

et al (2006)) and denoted GSS1 method. We use the following different initial values such

that P+M +H +C+Q = 1000. We present some numerical simulations in order to illustrate

our theoretical results, we consider system (1) with the following parameter values b = 65,

N = 1000 , δ1 = 0.002, µ = 0.065, β1 = 0.02, β2 = 0.14, α1 = 0.02, α2 = 0.001, δ2 =

0.002, γ = 0.001, h = 0.2, t f = 500. We begin by a graphic representation of the drinking-free

equilibrium E0and we use the same parameters and different initial values, ℜ0 = 0.097 and

ℜ0 < 1. We have the drinking-free equilibrium E0 = (1000;0;0;0;0). In this case, according

to theorem (5), the drinking-free equilibrium E0 of the system (1) is globally asymptotically

stable on Γ: (See Figure2).
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We present some numerical simulations in order to illustrate our theoretical results, we

consider system (1) with the following parameter values b = 65, N = 1000 , δ1 = 0.002,

µ = 0.065, β1 = 0.75, β2 = 0.14, α1 = 0.02, α2 = 0.001, δ2 = 0.002, γ = 0.001, h = 0.2,

t f = 500.

Thorfore, we begin by a graphic representation of the drinking present equilibrium E∗and we

use the same parameters and different initial values, ℜ0 = 5.32. We have the drinking present

equilibrium E∗ = (273.3;230.4;230.4;366;7.34). In this case, according to theorem (6), the
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drinking present equilibrium E∗ of the system (1) is globally asymptotically stable on Γ: (See

Figure3).
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7. THE OPTIMAL CONTROL PROBLEM

Most countries of the world suffer from the phenomenon of alcohol addiction, which leads to

health and economic damage and as consequence it impacts negatively the classification of these

countries by some international organizations. For these reasons, we suggest some strategies

that will contribute to minimize the number of heavy drinkers H(t) and the heavy drinkers with

liver complications C(t), maximize the number of the recovered and quitters of drinking Q(t)

during the time interval [t0; t f ] and also minimize the cost spent in an awareness program and

treatment. In the model (1), we include three controls u1(t),u2(t) and u3(t) for t ∈ [t0; t f ]. The

controls u1 represents the awareness programs effort (education, media programs...) applied on

the potential drinkers to protect them from drinking. The second control u2 measures the effort

of treatment applied on the heavy drinkers. We note that the control function εu2 represents the

fraction of the heavy drinkers who will be treated and return to be moderate drinkers and the

fraction (1− ε)u2 represents the heavy drinkers who will be treated and quit drinking. Finally,

u3 measures the effort of treatment given to the heavy drinkers with liver complications. So, the

controlled mathematical system is given by the following system of differential equations.

(39)



dP(t)
dt = b−β 1

P(t)M(t)
N −µP(t)−u1(t)P(t)

dM(t)
dt = β 1

P(t)M(t)
N −β 2M(t)−µM(t)+ εu2(t)H(t)

dH(t)
dt = β 2M(t)− (µ +δ 1+α1+α2)H(t)−u2(t)H(t)

dC(t)
dt = α1H(t)−(δ2 +µ + γ)C(t)−u3(t)C(t)

dQ(t)
dt = α2H(t)+ γC(t)−µQ(t)+u1(t)P(t)+(1− ε)u2(t)H(t)+u3(t)C(t)

where P(0)≥ 0, M(0)≥ 0, H(0)≥ 0, C(0)≥ 0 and Q(0)≥ 0 are the given initial states.

Then, the problem is to minimize the objective functional

J(u1,u2,u3)= H t f +Ct f−Qt f

+

t f̂

t0

(
H(t)+C(t)−Q(t)+

A1

2
u2

1(t)+
A2

2
u2

2(t)+
A3

2
u2

3(t)
)

dt.(40)

Where the parameters A1, A2 and A3 are the strictly positive cost coefficients. They are selected

to weigh the relative importance of u1,u2 and u3 at time t and t f is the final time. In other words,
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we seek the optimal controls u1, u2 and u3 such that

J(u∗1,u
∗
2,u
∗
3) = min

(u1,u2,u3)∈U3
ad

J(u1,u2,u3).

Where Uad is the set of admissible controls defined by

(41) Uad =
{

ui(t) : 0≤ ui(t)≤ 1, for i = 1,2,3 and t ∈ [t0, t f ]
}

7.1. Existence of optimal controls. The existence of the optimal controls can be obtained

using a result by Fleming and Rishel (Fleming et al (1975)),.

Theorem 7. Consider the control problem with system (40). There exists the optimal control

(u∗1,u
∗
2,u
∗
3) such that

(42) J(u∗1,u
∗
2,u
∗
3) = min

(u1,u2,u3)∈U3
ad

J(u1,u2,u3)

If the following conditions are met:

(1) The set of controls and corresponding state variables are nonempty.

(2) The control set is convex and closed.

(3) The right-hand side of the state system is bounded by a linear function in the state and

control variables.

(4)The integrand of the objective functional is convex.

(5) The integrand of the objective functional is bounded below by c1(
A1u2

1
2 +

A1u2
2

2 +
A1u2

3
2 )

ϕ

2 −

c2, where c1 > 1, c2 > 1 and ϕ > 1.

Proof. Proof To prove the existence of the optimal control, we use the result in ((Boyce et al

(2009)), Balatif et al (2020))).

7.2. Characterization of optimal controls. We apply the Pontryagin’s Maximum Principle (

Pontryagin et al (1962)). The key idea is introducing the adjoint function to attach the system of

differential equations to the objective functional resulting in the formation of a function called

the Hamiltonian. This principle converts the problem of finding the control to optimize the

objective functional subject to the state differential equations with initial condition to find the

control to optimize Hamiltonian pointwise (with respect to the control).
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Now we have the Hamiltonian Ĥ in time t, defined by

(43) Ĥ(t) = H(t)+C(t)−Q(t)+
A1

2
u2

1(t)+
A2

2
u2

2(t)+
A3

2
u2

3(t)+
5

∑
k=1

λk fk.

where fk is the right side of the system of differencial equations (40) of the kth state variable.

Theorem 8. Given an optimal control (u∗1,u
∗
2,u
∗
3) ∈U3

ad , and solutions P∗, M∗ , H∗, C∗ and

Q∗of corresponding state system (37), there exists adjoint functions, λ1, λ2 , λ3, λ4 and λ5

satisfying

(44)



λ̇1 =−∂ Ĥ
∂P = (λ1−λ2)β1

M(t)
N +(λ1−λ5)u1(t)+µλ1.

λ̇2 = − ∂ Ĥ
∂M = (λ1−λ2)β1

P(t)
N +β2 (λ2−λ3)+ µλ2.

λ̇3 =−∂ Ĥ
∂H =−1+{λ3− (1− ε)λ5− ελ2}u2(t)−α1λ4−α2λ5 +(µ +β2)λ3.

λ̇4 =−∂ Ĥ
∂C =−1+λ4(µ + γ +δ2)+(λ3−λ5)u3(t).

λ̇5 =−∂ Ĥ
∂Q = 1+µλ5.

with the transversality conditions at time t f

(45) λ1(t f ) = λ2(t f ) = 0, λ3(t f ) = 1, λ4(t f ) = 1 and λ5(t f ) =−1.

Futhermore, for t ∈ [t0; t f ]the optimal controls u∗1(t) ,u∗2(t)and u∗3(t) are given by:

u∗1(t) = min
(

1,max
(

0,
1

A1
(λ1−λ5)P(t)

))
.(46)

u∗2(t) = min
(

1,max
(

0,
1

A2
{λ3− ελ2− (1− ε)λ5}H(t)

))
.(47)

u∗3(t) = min
(

1,max
(

0,
1

A3
(λ4−λ5)C(t)

))
.(48)
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Proof. Proof The Hamiltonian Ĥ at time t is given by

Ĥ(t) = H(t)+C(t)−Q(t)+
A1

2
u2

1(t)+
A2

2
u2

2(t)+
A3

2
u2

3(t)

+λ1

{
b−β 1

P(t)M(t)
N

−µP(t)−u1(t)P(t)
}

+λ2

{
β1

P(t)M(t)
N

−β 2M(t)−µM(t)+ εu2(t)H(t)
}

+λ3 {β2M(t)− (µ +δ 1+α1+α2)H(t)−u2(t)H(t)}

+λ4 {α1H(t)−(δ2 +µ + γ)C(t)−u3(t)C(t)}

+λ5 {α2H(t)+ γC(t)−µQ(t)+u1(t)P(t)+(1− ε)u2(t)H(t)+u3(t)C(t)} .

For t ∈ [t0; t f ], the adjoint equations and transversality conditions can be obtained by using

Pontryagin’s Maximum Principle given in [16] such that

(49)



λ̇1 =−∂ Ĥ
∂P , λ1(t f ) = 0,

λ̇2 =− ∂ Ĥ
∂M , λ2(t f ) = 0,

λ̇3 =−∂ Ĥ
∂H , λ2(t f ) = 1,

λ̇4 =−∂ Ĥ
∂C , λ4(t f ) = 1,

λ̇5 =−∂ Ĥ
∂Q , λ5(t f ) =−1,

For t ∈ [t0; t f ], the optimal controls u∗1(t) ,u∗2(t) and u∗3(t) can be solved from the optimality

condition,

(50)
∂ Ĥ
∂u1

= 0,
∂ Ĥ
∂u2

= 0 and
∂ Ĥ
∂u3

= 0.

that is

∂ Ĥ
∂u1

= A1u1(t)+(λ5−λ1)P(t) = 0,

∂ Ĥ
∂u2

= A2u2(t)+{−λ3 + ελ2 +(1− ε)λ5}H(t) = 0,

∂ Ĥ
∂u3

= A3u3(t)+(λ5−λ4)C(t) = 0,
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So, we have

u1(t) =
P(t)
A1

(λ1−λ5) ,(51)

u2(t) =
H(t)
A2
{λ3− ελ2− (1− ε)λ5} ,(52)

u3(t) =
C(t)
A3

(λ4−λ5) ,(53)

By the bounds in Uad of the controls, it is easy to obtain u∗1(t),u
∗
2(t) and u∗3(t) in the form of

(46−47−48).

8. NUMERICAL SIMULATION

In this section, we shall solve numerically the optimal control problem for our PMHCQ

model. Here, we obtain the optimality system from the state and adjoint equations. The pro-

posed optimal control strategy is obtained by solving the optimal system which consists of five

differencial equations and boundary conditions. The optimality system can be solved by using

an iterative method. Using an initial guess for the control variables, u1(t) ,u2(t) and u3(t), the

state variables P,M,H,C and Q are solved forward and the adjoint variables λi for i= 1,2,3,4,5

are solved backwards at times step k = t0 and k = t f . If the new values of the state and adjoint

variables differ from the previous values, the new values are used to update u1k, u2k and u3k,

and the process is repeated until the system converges.

We present some numerical simulations in order to illustrate our theoretical results, we con-

sider system (1) with the following parameter values b = 65, N = 1000 , δ = 0.002, θ = 0.02,

µ = 0.065, β1 = 0.75, β2 = 0.14, α1 = 0.001, α2 = 0.001, α3 = 0.001, γ1 = 0.001, γ2 = 0.002

and the initial values P0 = 600, M0 = 200, HO = 100, C0 = 60 and QO = 40. The proposed

control strategies in this work help to achieve several objectives:

First Strategy: Considering preventing the potential drinkers through awareness and ed-

ucational programs.

To realize this strategy, we apply only the control u1 i.e. the implementation of awareness, and

educational programs on potential drinkers to make them know the risks of this phenomenon

on health and society.
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Figure 4(a) shows that the number of moderate drinkers decreased from 407.3 (without

control)to127.8(withcontrol) at the end of the proposed control.l. It indicates the effectiveness

of optimal control in controlling the growth of moderate drinker’s population.

Figure 4(b) shows that optimal control affects the number of the heavy drinker’s population.

Before the control is executed, the number of heavy drinkers increases gradually until 580.7

at the end of the proposed control. However, when the control is applied, the number of the

heavy drinkers population increases gradually until 266.76 at the end of the proposed control.

These changes indicates the effectiveness of optimal control in controlling the growth of heavy

drinker’s population.

Figure 4(c) shows that optimal control affects the number of heavy drinker’s population

with liver complications. Before being controlled, the number of heavy drinkers with liver

complications continuously increases until 113.46 at the end of the proposed control. Whereas,

when the control is applied, the number of population of heavy drinkers with liver complications

increases and it is will at maximum value 72.38 at the end of the proposed control. It indicates

the effectiveness of optimal control in controlling the growth of population of heavy drinkers

with liver complications population.

Second Strategy: Considering treatment of heavy drinkers H.

To achieve this strategy, we only use the control u2 i.e. treatment of heavy drinkers. In Figure

5(a), it is observed that there is a significant decrease in the number of the heavy drinkers with

control compared to a situation when there is no control where the decrease is from 580.69 to

185.76 at the end of the proposed control strategy. Figure 5(b) shows that the number of heavy

drinkers with liver complications decreased from 113.46 (without control)to53.96(withcontrol)
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at the end of the proposed control. To improve this result, we applied three controls.

Third strategy: which considers Prevention and treatment of drinkers individuals.

To meet this strategy, we use the controls u1 and u2 i.e. awareness programs for the potential

drinkers and treatment for heavy drinkers. Figure 6(a) shows that the number of the moderate

drinkers decreases from the value 407.33 ( without controls) to 202.56 ( with controls) at the

end of the proposed control. Figure 6(b) shows that the number of the heavy drinkers decreases

from 580.69 (without controls) to 79.25 (with controls) at the end of the proposed control. Also,

figure 6(c) shows that the number of the heavy drinkers with liver complications decreases from

113.46 (without controls) to 36.83 (with controls) at the end of the proposed control. Also,

Figure 6(d) depicts clearly an increase in the number of the recovered and quitters of drinking

from 17.04 (without controls) to 877.61 (with controls). As a result, the strategy set before has

been achieved.
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Forth strategy: Considering prevention and treatment of heavy drinkers with and with-

out liver complications using medicaments.

To meet this strategy, we use the controls u1, u2 and u3 i.e. awareness programs for the

potential drinkers, treatment for heavy drinkers and treatment for heavy drinkers with liver

complication. Figure 7(a) shows that the number of the moderate drinkers decreases from

407.33 ( without controls) to 202.56 ( with controls) at the end of the proposed control. Figure

7(b) shows that the number of the heavy drinkers decreases from 580.69 (without controls)

to 79.25 (with controls) at the end of the proposed control. Also, figure 7(c) shows that the

number of the heavy drinkers with liver complication decreases from 113.46 (without controls)

to 31.80 (with controls) at the end of the proposed control. Also, Figure 7(d) depicts clearly an

increase in the number of the recovered and quitters of drinking from 17.04 (without controls)

to 882.74 (with controls). As a result, the strategy set before has been achieved.
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9. CONCLUSION

In this work, we formulated a mathematical model that describes the dynamics of drinking.

By using Routh-Hurwitz criteria and constructing Lyapunov functions, the local and the global

stability of drinking-free equilibrium and drinking present equilibrium are obtained. We also

studied the sensitivity analysis of model parameters to know the parameters that have a high

impact on the reproduction number R0. In addition, we proposed an optimal strategy for an

awareness program and treatment that help potential drinkers to know the risks of this phe-

nomenon and its consequences on health and society. Pontryagin’s maximum principle is used

to characterize the optimal controls and the optimality system is solved by an iterative method.

The numerical simulation was carried out using Matlab. We proposed an algorithm based on the

forward and backward difference approximation and we show that the optimal strategy becomes

more effective when we combined three optimal controls.
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