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Abstract. In this paper, Lie symmetry and Painlevé Techniques are applied to the SIRD (Susceptible, Infected,

Recovered and Dead) model. A demonstration of the integrability of the model is provided to present an explicit

solution. The study revealed a complex chaotic behaviour at a specific value of constant constraints. However,

the system fails to pass the Painlevé test while constraints reach values equivalent to the corresponding complex

chaotic behaviour. The two-dimensional Lie symmetry algebra and the commutator table of the infinitesimal

generators are obtained. Lie symmetry analysis serves to linearize the nonlinear system and find the corresponding

exact solution.
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1. INTRODUCTION

In this paper, we modified the classical SIR model of Kermack and McKendrick [5] by as-

suming that an individual can be born infected. We assumed that after the recovery process,

the disease person becomes resistant and the number of individuals died from the disease are

counted. The model divides the total population into three different classes: The susceptible

class, S, are those who can get infected with the disease; the infective class, I, are those who
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can spread the disease after getting infected; the removed class, R, are those individuals who

recovered from the disease, resistant or sequestered while waiting for recovery; and the death

class, D, are those who die from the disease. Most of the infantile viruses, essentially measles,

have a removed and death class [14]. The model flow diagram which represented the disease is

given by

S→ I→ R→ D.

The model is governed by the following nonlinear system of first order ordinary differential

equations [8]

Ṡ = −βSI + γI−µ1S+ν1S(1)

İ = βSI− (α + γ)I−µ2I +ν2I(2)

Ṙ = αI−µ3R+ν3R(3)

Ḋ = µ1S+µ2I +µ3R(4)

the dot represents differentiation with respect to time, t, the vulnerable (or susceptible) popu-

lation is denoted by S(t), I(t) represents the infected population by the disease, the population

group cured by the disease are represented by R(t), D(t) denotes dead population due to in-

fectious disease, µ1 represents the natural death rate of vulnerable group of population, a dead

rate due to infectious disease is represented by µ2, the rate at which a rescue (or recovered)

individual may die is denoted by µ3, the natural birth rate is represented by ν1, an individual

may born infected at rate ν2, the proportionate birth rate of the recovered individual is denoted

by ν3, the rate in which a recovered individual becomes immune is denoted by α , the infection

rate is represented by γ , while β denotes the rate of infected individual becoming susceptible,

after efficient treatment.

The discussion in the present paper is organised as follows. In Section 2, we reduced the

four-dimensional system (1)-(4) into a single ordinary differential equation of second-order.

The painlevé-analysis was performed for the solutions of nonlinear second order differential

equation in Section 3. The Painlevé property is carried out in In Section 4, and we found that

the values of parameters of the system (1)-(4) has no movable critical singular points. In Section
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5, we performed a Lie symmetry method of the reduced equations. The explicit and numerical

solutions were established in Section 6.

2. THE REDUCED FORM OF THE NONLINEAR SYSTEM (1)-(4)

In this Section we reduce the four-dimensional system (1)-(4) to a one-dimension second

order ordinary differential equation. Since equations (1) and (2) does not dependent on R and

D, therefore, we can find the number of individual who are recovered, R once we know the

infected individual I, hereafter we can excluded R in any consequent analysis of the system.

From (2) we have

(5) S =
1
β

İ
I
+

α + γ +µ2−ν2

β
.

The derivative of (5) gives

(6) Ṡ =
1
β

(
IÏ− İ2

I2

)
.

The substitution of (5) and (6) into (1) gives

IÏ− İ2 =−β İI2−β (α + γ +µ2−ν2) I3 + γβ I3−µ1İI

− µ1 (α + γ +µ2−ν2) I2 +ν1İI +ν1 (α + γ +µ2−ν2) I2.(7)

We have after some arrangement

(8) IÏ− İ2 +β İI2 =−β (α +2γ +µ2−ν2) I3 +(ν1−µ1)İI +(ν1−µ1)(α + γ +ν2−µ2)I2.

We may attain the following simplification by means of the given change of variable:

(9) I =
u
β
.

The substitution of (9) to (8) gives

(10) uü− u̇2 + u̇u2 = au̇u− (b+ γ)u3 +abu2

with

ν1−µ1 = a(11)

α + γ +µ2−ν2 = b.(12)
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3. PAINLEVÉ ANALYSIS

The method of Painlevé Analysis was found by a Russian mathematician, Kowalevski [6].

She was very determined to know about the integrability conditions of the Euler equations which

was in great importance throughout the historical time of La Belle Époque [16]. The technique

of Painlevé Analysis have been contributed significantly in solving nonlinear differential equa-

tions. Concerning the methodology, We referred the interested reader to the book written by

Tabor in [18] and later on explain by Ramani et al. in [17]. The quintessence of investigating

an ordinary differential equation as well as a system of nonlinear ordinary differential equations

from the view point of singularity analysis is the Willpower of the existence of isolated mov-

able singularities whereby one may obtained a Laurent series expansion containing arbitrary

coefficients which will be the same with the order of the corresponding differential equations

[7]. However, the initial conditions of the system are the main aspect as far as the location

of the singularity is concern. Nevertheless, a more complex equation (or system of equations)

involving multifaceted arrangement retained more than one polelike singularity. Conversely,

when it comes to the system of differential equations with many singularities, one need to as-

sure the existence of a Laurent expansion containing an essential amount of arbitrary constant.

Nevertheless, a counter example to this can be find in [7] Whereby the behaviour of the first

form of singularity preserves a Laurent series expansion containing a precise amount of arbi-

trary parameters while the second does not preserve, nonetheless contain an uneven solution

[13] of the category discussed by Ince [4]. Though, the general solution of the nonlinear system

is remarkably explicit.

Ablowitz [1], developed a standard algorithm in order to analyse a differential equation from

the view point of Painlevé. Even if there are some illustrations of specific significance of the

Painlevé method in analysing a system of nonlinear first order differential equations which are

common in mathematical modelling of epidemics, such that the tactical method approach pro-

moted in [2] is considered. In this section, we will primarily, summarise the typical algorithm
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due to Ablowitz [1]. Furthermore, different approach will be provided. We will start by consid-

ering the following autonomous system of first-order ordinary differential equations

(13) Φi(x, ẋ,σ) = 0, i = 1,n

with n dependent variables represented by x, the independent variable is denoted by t while σ is

the conservative of constraints which constantly appears to increase a system commonly used

in mathematical modelling of natural phenomena. The assumption made here is that the first

derivative of the n functions Φi are linear and the later are polynomials functions in the depen-

dent variables x. We have to bear in mind that those assumptions are not entirely necessary,

nevertheless they do simplify the complexity of the model and explain the reality.

3.1. The Painlevé Test. In [15], Ove proved that if a differential equation admits solutions

which are single value in a neighborhood of non characteristic movable singularity manifolds,

then this equation is integrable and therefore possesses the Painlevé property. The author also

claimed that the method described by Weiss and Carnevale [19] proposes a necessary condition

of integrability, also known as the Painlevé test. However, while computing the Painlevé test,

one seeks solution of a given rational differential equation in the form of a Laurent series (also

known as the Painlevé expansion) [15].

The execution of Painlevé test suggests that solution of the following differential equation

(14) F(x,u,ux1,ux2, ...) = 0

with independent variable x = (x0,x1,x2, ...,xn−1) has the form below

(15) u(x) = φ
−m(x)

∞

∑
j=0

u j(x)φ j(x)

where the functions φ , u j(u0 6= 0) are analytic of x around the region of φ(x) = 0.

After substituting equation (15) into (14), if one obtains the correct number of arbitrary func-

tions which are required by the Cauchy-Kovalevskaya expression, then the corresponding dif-

ferential equation (14) passes the Painlevé test. The Cauchy-Kovalevskaya expression is rep-

resented by the expansion coefficients in (15), whereby φ is counted as one of the arbitrary
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functions. The exponents in the Painlevé expansion, where the arbitrary functions are to appear,

are known as the resonances. If a given differential equation possesses a Painlevé test, then the

construction of Bäcklund transformations to linear equations or other known integrable equa-

tions becomes possible. In this regards, the sufficient condition of integrability and the Painlevé

property of the given equation is evident.

In the following subsection, Ablowitz’s algorithm will be used to find the leading-order be-

haviour of the nonlinear system (1)-(4) and the reduced equation (10). We will start by substi-

tuting xi = σiτ
pi, i = 1,n, with τ = t− t0 and t0 the assumed location of the movable singularity,

into the system (13) and compare the resulting power.

3.2. Painlevé Analysis of the nonlinear system (1)-(4). We commence the Painlevé analysis

of nonlinear system (1)-(4) in the customary manner by substituting

S = k1τ
q1, I = k2τ

q2 R = k3τ
q3 and D = k4τ

q4

into (1)-(4) and obtain the following

k1q1τ
q1−1 = −βk1k2τ

q1+q2 + γk2τ
q2 +(ν1−µ1)k1τ

q1 ,

k2q2τ
q2−1 = βk1k2τ

q1+q2− (ν2−µ2−α− γ)k2τ
q2,(16)

k3q3τ
q3−1 = αk2τ

q2− (ν3−µ3)k3τ
q3,

k4q4τ
q4−1 = µ1k1τ

q1 +µ2k2τ
q2 +µ3k3τ

q3.

At

q1 = q3 = q4 =−1 and q2 =−2,

the leading order behaviour is as follows

(17) S =− 2
β

τ
−1, I =

2
βγ

τ
−2, R =−2α

βγ
τ
−1 and D =−2µ2

βγ
τ
−1.
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The determination of the resonances is find by setting [9]

S = − 2
β

τ
−1 +n1τ

p−1

I =
2

βγ
τ
−2 +n2τ

p−2

R = −2α

βγ
τ
−1 +n3τ

p−1(18)

D = −2µ2

βγ
τ
−1 +n4τ

p−1

In such a way that arbitrary constants of integration are obtained. However, n1,n2,n3,n4 are

found by using the dominant terms obtained in (17):

(19)



p−1 −γ 0 0

2
γ

p−2 0 0

0 α −(p−1) 0

0 µ2 0 p−1





n1

n2

n3

n4


=



0

0

0

0


3.3. Painlevé Analysis of the reduced equation (10).

Theorem 1. labeltheo The system (1)-(4) passes the Painlevé test under parameter values a =

γ +b and ν1−µ1 = ν2−µ2 +α +2γ .

Proof of Theorem 3.1. In order to obtain the formal Laurent series expansion, we substitute

equation

(20) u =
∞

∑
i=0

σiτ
i−1

into equation (10) which gives the following equation:

σiσ j(i−1)(i−2)τ i+ j−4− (i−1)(i−1)σiσ jτ
i+ j−4 +(i−1)σiσ jσkτ i+ j+k−4

= a(i−1)σiσ jτ
i+ j−3− (b+ γ)σiσ jσkτ i+ j+k−3 +abσiσ jτ

i+ j−2.
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for i = j = k = 0,1,2, ... At τ−4 we require

2σ
2
0 −σ

2
0 −σ

3
0 = 0.

Therefore

σ0 = 1.

We move to the next power, τ−3, and find

2σ0σ1−σ0σ1−σ
2
0 σ1 =−aσ

2
0 − (b+ γ)σ3

0 .

Since σ0 = 1, this gives an arbitrary σ1 only if

(21) a = γ +b.

From (11) and (21) we have:

(22) ν1−µ1 = ν2−µ2 +α +2γ.

�

Theorem 2. If a = γ + b and ν1 − µ1 = ν2 − µ2 + α + 2γ . Then the system of first order

differential equations (1)-(4) is a Painlevé-type and does not possess chaotic behaviour.

Theorem 3. Equation (10) is equivalent to the equation

(23) yy′′− y′2 + y′y2 + y′y+
b+ γ

a
y3 +

b
a

y2 = 0.

with y and t the new dependent and independent variables respectively such that

(24) u = ay and t =
x
a

Theorem 4. • Equation (23) under parameters values a 6= b possesses chaotic behavior

and does not pass the Painlevé test.

• Equation (23) passes Painlevé test under parameters values a = b and γ = 0 does not

possess chaotic behavior.
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4. LIE SYMMETRY ANALYSIS

A second order ordinary differential equation

(25) ut−F(t,u,u(1)) = 0

admits a one-parameter Lie group of transformations

t̄ ≈ t +aξ
0(t,u)

ū ≈ u+aη(t,u)(26)

with infinitesimal generator

(27) X = ξ
0(t,u)

∂

∂ t
+η(t,u)

∂

∂u

if

(28) ūt̄−F(t̄, ū, ū(1)) = 0

The group transformations t̄ and ū are obtained by solving the following Lie equations [3, 10]

dt̄
da

= ξ
0(t̄, ū)

dū
da

= η(t̄, ū)(29)

with initial conditions

(30) t̄ |a=0= t, ū |a=0= u.

The infinitesimal form of ūt̄ , ū(1) are found by the given formulas [3, 11]:

ūt̄ ≈ ut +aζ0(t,u,ut ,u(1))

ūx̄i ≈ uxi +aζi(t,u,ut ,u(1))(31)

The functions ζ0 and ζi are found by using the prolongation formulas below [12]

ζ0 = Dt(η)−utDt(ξ
0)

ζi = Di(η)−utDi(ξ
0)(32)
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In [9], Matadi claimed that the equation (25) possesses the symmetry (group generator)

(33) X = ξ
0(t,x,u)

∂

∂ t
+ξ

i(t,x,u)
∂

∂xi +η(t,x,u)
∂

∂u

iff

(34) X [N]N|N=0 = 0

with X [N] the n-th extension of G.

Since equation (23) under parameters values a = b and γ = 0 does not possess chaotic be-

havior and pass the Painlevé test, the infinitesimal symmetry of equation (23) has coefficient

functions of the form

ξ (x,y) = c1 + c2ex(35)

η(x,y) = −c2yex(36)

where c1 and c2 are arbitrary constants. Thus the Lie algebra of equation (23) is spanned by the

following two infinitesimal generator:

X1 = ∂x(37)

X2 = ex(∂x− y∂y).(38)

Computing the Lie bracket we obtain the given commutator table:

X1 X2

X1 0 X2

X2 0 0

TABLE 1. The commutator table of the infinitesimal generator

From the commutator table, we conclude that the reduction of (23) can be made by X2 only.

The Lagrange’s system associated to X2 is given by

(39)
dx
1

=
dy
−y

=
dy′

−2y′− y
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Solving equation (39) we obtain the new dependent variable, X , and independent variable, Y ,

namely:

(40) X = x+ logy, Y =
y′

y2 +
1
y

Therefore equation (23) becomes

(41)
dY
dX

+Y +1 = 0

the integration of equation (41) gives

(42) (Y +1)exp[X ] = A.

The substitution of (40) into (42) gives

(43)
y′

y
+ y+1 = Aexp[−x].

The integration of (43) gives

(44) y =
C exp[−x]

Dexp[Aexp[−x]]+B
.

Substituting (11) and (44) into (24) we have

(45) u(t) =
(µ1−ν1)C exp[−(µ1−ν1)t]

Dexp[Aexp[−(µ1−ν1)t]]+B
.

The number of infected population is obtain by subtituting (45) into (9)

(46) I(t) =
(µ1−ν1)C exp[−(µ1−ν1)t]

β [Dexp[Aexp[−(µ1−ν1)t]]+B]
.

The substitution of (46) into (5) gives

(47) S(t) =
1
β
(µ1−ν1)+

1
β
(µ1−ν1)exp[−(µ1−ν1)t]+

α +µ2−ν2

β
.
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5. THE GENERAL SOLUTIONS

In this Section we obtain the analytical solution of the system (1)-(4) by combining the first

two equations.

Ṡ+ İ = (ν1−µ1)S+(ν2−µ2−α)I

= (ν1−µ1)(S+ I).(48)

Let

N = S+ I.(49)

Equation (48) becomes

Ṅ = (ν1−µ1)N.(50)

The solution of (50) is

N(t) = N(0)exp[(ν1−µ1)t].(51)

From (49) and (51) we have

S = N(0)exp[(ν1−µ1)t]− I.(52)

Equation (4.5.1b) becomes

İ = −β I2 +β IN(0)exp[(ν1−µ1)t]− (α + γ +µ2−ν2)I

İ
I2 = −β +

β

I
N(0)exp[(ν1−µ1)t]−

(α + γ +µ2−ν2)

I
.(53)

With the use of the transformation

u =
1
I

(54)

equation (53) becomes:

u̇ = β −βN(0)exp[(ν1−µ1)t]u+(α + γ +µ2−ν2)u.(55)

Since

ν1−µ1 = a
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and

α + γ +µ2−ν2 = b,

equation (55) gives

(56) u̇+(βN(0)exp[at]−b)u = β

which has the integrating factor

exp
[∫

(βN(0)exp[at]−b)dt
]
.

The solution of (56) is

u = Aexp
[
−
∫
(βN(0)exp[at]−b)dt

]
+ exp

[
−
∫
(βN(0)exp[at]−b)dt

]∫
β exp

[∫
(βN(0)exp[at]−b)dt

]
dt.

From (54) we have

(57) I(t) =
exp[

∫
(βN(0)exp[at]−b)dt]

A+
∫

βexp[
∫
(βN(0)exp[at]−b)dt]

and from (52), we have

(58) S(t) = N(0)exp[(ν1−µ1)t]−
exp[

∫
(βN(0)exp[at]−b)dt]

A+
∫

βexp[
∫
(βN(0)exp[at]−b)dt]

.

From (4.5.1c) we obtain

Ṙ− (ν3−µ3)R = αI.(59)

Equation (59) has the integrating factor exp [(ν3−µ3)t]. Therefore

(60) R(t) = exp[(ν3−µ3)t]
[
B+

∫
α exp[−(ν3−µ3)t]exp[

∫
(βN(0)exp[at]−b)dt]

A+
∫

β exp[
∫
(βN(0)exp[at]−bdt]

dt
]

and from (4) we obtain the death component of the population to be

D(t) = µ1N(0)exp[(ν1−µ1)t]

+ (µ2−µ1)
exp[

∫
(βN(0)exp[at]−b)dt]

A+
∫

βexp[
∫
(βN(0)exp[at]−b)dt]

+ µ3 exp[(ν3−µ3)t]
[
B+

∫
α exp[−(ν3−µ3)t]exp[

∫
(βN(0)exp[at]−b)dt]

A+
∫

β exp[
∫
(βN(0)exp[at]−bdt]

dt
]
.
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6. DISCUSSION

In this section we give a numerical result based on the Susceptibles and Infected component

of the population. The parameters are chosen as ν1 = 0.0003, ν2 = 0.0001, ν3 = 0.0003, µ1 =

0.0002, µ2 = 0.0003, µ3 = 0.0002, α = 0.01, β = 0.04, γ = 0.04. Figure 1 suggests that the

solution is globally asymptotically stable.

FIGURE 1. Plotting the Susceptibles, Infected and Recovered components with

the use of Python

7. CONCLUSION

In order to understand physical model, the analysis of a nonlinear differential play an essential

role. Ove [15] stated that the by finding a closed form solution of a nonlinear differential, one

can arrive at a complete understanding of the phenomena which are modeled. In this paper, four

dimensional system of the SIRD epidemial model is reduced into a one dimensional second

order differential equation. The Painlevé-analysis was performed for solutions of nonlinear
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second order differential equation. When pameters attain the values corresponding to complex

chaotic behavior, equation (23) possesses chaotic behavior if a 6= b, consequently it does not

pass the Painlevé test. The result revealed that under parameters values a= b and γ = 0, equation

(23) possesses chaotic behavior and does pass the Painlevé test. The techniques of Symmetry

Analysis is performed to reduce equation and obtain the combinations of parameters which lead

to the possibility of the linearisation of the system and provide the corresponding solutions.
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