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Abstract: As one of the most important Post-Translational Modification (PTM), phosphorylation is responsible for 

cellular signaling pathways and activation of enzymes. With current computational power and algorithm, it is possi-

ble to process big data, especially biomedical data, to find a complicated pattern with reasonable computation time. 

Computational approach for phosphorylation site prediction is more time-efficient and need fewer resources com-

pared to traditional. However, the accuracy of current computational methods for phosphorylation site prediction 

still needs to be improved. This paper aims to create a computational method for phosphorylation site prediction 

with better classification performance compared to previous studies. The data used in this research to train the 

XGBoost models are extracted features from 2 different databases from the previous studies. The test result show 

that our model gave the highest accuracy on 4 out of 6 datasets. To extend our research, the XGBoost model was 

retrained which focused on 100 most important features from previous experiment. However, the result does not 

imply that it has a better result compared to our first models. As the result showing that our models gave better accu-

racy compared to the previous studies in most of the datasets, we can conclude that XGBoost model is better in 

predicting phosphorylation sites compared to other methods. 



2 

MAHESWORO, CENGGORO, BUDIARTO, LUMBANRAJA, PARDAMEAN 

Keywords: phosphorylation; post-translational modification; prediction; XGBoost; gradient tree boosting; protein 

sequence; proteomics. 

2010 AMS Subject Classification: 92C40.    

 

1 INTRODUCTION 

Phosphorylation of a molecule is the addition of a phosphoryl group (PO3-) to an organic mol-

ecule. While the removal of a phosphoryl group from a molecule is called dephosphorylation. 

Phosphorylation in protein is a crucial phenomenon since the characteristic of the proteins can be 

altered after they are formed, for example, activate or deactivate enzyme, metabolite sugar, and 

store or release energy [1]–[4]. This protein phosphorylation occurs in three amino acids, Serine, 

Threonine, and Tyrosine, and are carried out by enzymes, such as kinases, phosphotransferases 

[5]. 

Formerly, identifying phosphorylation sites methods are commonly using an experimental ap-

proach such as mass spectrometry (MS/MS) [6].  With the computational power available today, 

it is more plausible and convenience to do computational approach for phosphorylation site pre-

diction than in the past. Besides, the experimental approach requires specific and expensive 

equipment, advance skill and technique, and intensive labor.  Therefore, a computational ap-

proach for Phosphorylation site prediction is now becoming more popular. In 2011, Trost and 

Kusalik summarized numerous computational approach of phosphorylation site prediction [7].  

This paper is further research on our previous research [8]. We introduce a new approach to 

predict phosphorylation site by utilizing machine learning algorithms under the Gradient Boost-

ing framework using XGBoost library [9]. The aim of this research is to achieve better classifica-

tion performances with fewer steps compared to our previous methods. 

 

2 RELATED WORKS 

This study is the continuation of Lumbanraja et al study in 2018 [8] and their study in 2019 

[10]. In 2018, Lumbanraja et al proposed a new phosphorylation site prediction method for non-

kinase-specific, which gave better accuracy compared to the state-of-the-art methods. The meth-

od used feature extraction to enrich their datasets, besides fixed-length polypeptide sequences. 

The features, along with the fixed-length polypeptide sequences are then ranked according to its 
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significance using random forest [11] and Gini Impurity Index (GII). Support Vector Machine 

was implemented to classify the phosphorylation site. 

In 2019, Lumbanraja et al continued their study in phosphorylation site prediction [10]. In this 

research, a deep neural network was implemented as the classification method. By conducting 

this, the feature extraction and feature selection step were not implemented. Although the per-

formance of this method was below their first method, the performance of the deep neural net-

work was better compared to the methods that come before Lumbaranraja et al [8]. 

2.1 Gradient Tree Boosting and XGBoost 

Gradient Boosting Machine [12] is a machine learning algorithm which uses an ensemble of 

weak learners. The algorithm is popularly used with decision trees as the weak learners. As the 

name suggests, a gradient boosting machine utilizes gradient descent to optimize an ensemble 

model with boosting paradigm. In other words, the algorithm builds a weak learner in iterative 

fashion, which the learner reduces the error gradient of the previous ensemble model. Thus, giv-

en a differentiable loss function 𝑳(𝒚, �̂�) the new weak learner is fitted to the previous error ∆y 

computed with the following formula: 

 ∆y = −
𝜕𝐿(𝑦,�̂�𝑡−1)

𝜕�̂�𝑡−1
    (1) 

where y is the ground truth and �̂�𝒕 is the prediction of the 𝒕𝒕𝒉 ensemble model. Afterwards, the 

prediction of the next ensemble model is calculated as follows: 

 �̂�𝑡 = �̂�𝑡−1 + 𝛼𝑓𝑡(𝑥)   (2) 

where 𝒇𝒕(𝒙) is the 𝑡𝑡ℎ  weak learner prediction given 𝒙 as input data.  For a better generalization, 

the new prediction is smoothed by multiplying it with a learning rate 𝜶. The value of 𝜶 can be 

between 0 and 1 to control the effect of the new weak learner to the previous prediction. This 

process is repeated for each iteration until the error is sufficiently low.  Figure 1 illustrates the 

process of GBM that uses a decision tree as the weak learners, popularly known as Gradient 

Boosted Trees (GBT). In the figure, a decision tree is added to the ensemble for each iteration to 

decrease the error of the ensemble. 

Among the implementation of GBM, XGBoost is currently the most popular for use in many 

applications. It successfully records the state-of-the-art performance in many machine learning 

challenges [9]. It is a family of GBT that uses various regularization techniques such as L1, L2, 

and tree pruning. Most of the regularization techniques were originally designed to optimize the 

speed of the algorithm. However, they are happened to also contribute to its superior perfor-
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mance among other popular machine learning algorithms for classification. It is noticeably pow-

erful to model structured data, which is proven by the fact that it is currently the state-of-the-art 

in numerous datasets with a structured format. This research is conducted by using the XGBoost 

library, an open-source package that is used as a scalable machine learning system for tree boost-

ing [9]. 

 

 

Fig. 1. Illustration of Gradient Tree Boosting algorithm 

Another appealing feature of XGBoost is its straightforward implementation of feature im-

portance. Because it is essentially an ensemble of decision trees, standard feature importance 

method for a decision tree can be employed. For instance, the feature importance can be calcu-

lated by summing the decrease in node impurity for each decision tree in the ensemble. The node 

impurity can be measured with various metrics such as entropy or Gini Impurity Index. In prac-

tice, this feature importance is used afterward to select features for developing a more powerful 

model that learns only from the most important features.  

 

3 MATERIALS AND METHOD 

3.1 Dataset 

The datasets used in this study are the same polypeptide sequences datasets that were used in 

Lumbanraja studies [8]. The sequences are composed of 9 amino acids where the amino acids in 
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the middle are the possible location of phosphorylation, Serine (S), Threonine (T), or Tyrosine 

(Y). While the first to fourth and sixth to ninth amino acids are the amino acids adjacent to the 

phosphorylatable residues in the protein amino acids sequences. The sequences are generated 

from Phospho.ELM (P.ELM) database version 9 [13] and PhosPhAt (PPA) database [14]. 

The sequences are labelled as "positive" and "negative" sequences. Positive sequences are the 

sequences that are known as phosphorylated. Then, these positive and negative sequences with 

80% to 100% similarities are removed from the datasets to decrease redundancy using “skipre-

dundant” [15]. The parameters used for reducing redundancy are:   

• Acceptable percentage of similarity: 0% - 20% 

• Value for gap opening penalty: 10 

• Gap extension penalty: 0.5 

The sequences are then classified according to its database source and phosphorylatable resi-

due. Table 1 shows the size of each dataset. As seen in Table 1, Most phosphorylation sites occur 

in Serine and Threonine residue. On the other hand, Tyrosine is the least phosphorylatable resi-

due. 

Table 1.  Dataset size of Phosphorylation site in P.ELM and PPA dataset 

Dataset P.ELM PPA 

Serine Positive 1554 307 

Negative  1543 307 

Threonine Positive  707 68 

Negative  453 68 

Tyrosine Positive  267 51 

Negative  226 51 

 

3.2 Method 

The workflow of this research follows diagram flow in Figure 1. In this research, various fea-

tures were extracted from the fixed sequence of amino acids using PROFEAT (2016) [16], PSI-

BLAST [17], and protr [18], as it was conducted in the previous research8. Sixteen aspects were 

extracted from the amino acids sequence which is then separated into 2256 features.  Which are: 

Amino Acid Composition (AAC), Dipeptide Composition (DPC), Moran Autocorrelation De-

scriptors (MORAN), Composition, Transition, Distribution (CTD), Quasi-Sequence-Order De-

scriptors (QSO), Amphiphilic Pseudo-Amino Acid Composition(APAAC), Total Amino Acid 



6 

MAHESWORO, CENGGORO, BUDIARTO, LUMBANRAJA, PARDAMEAN 

Properties (AAP), BLOSUM and PAM Matrices for the 20 Amino Acid (BLOSUM),  Amino 

Acid Properties Based Scales Descriptor (Protein Fingerprint) (ProtFP), Scales-based Descriptor 

derived by Principal Components Analysis (SCALES), Scales-based Descriptor derived by Mul-

tidimensional Scaling (MDDSCALES), Conjoint Triad Descriptors (CTriad). 

 

Fig. 2. Workflow for phosphorylated site classification in this research 

 

Each dataset is then separated into three groups of data, training dataset, validation dataset and 

testing dataset with the composition of 70%, 20% and 10% respectively. The training data is 

used to train the gradient tree boosting algorithm to predict the phosphorylation location based 

on the extracted features. To find the best hyperparameter for the model, we used the Grid 

Search method. Grid search is the process of setting hyperparameters to determine the optimal 

value for a given model. The hyperparameter values used for Grid Search are listed in Table 2. 



7 

PHOSPHORYLATION SITE PREDICTION USING GRADIENT TREE BOOSTING 

The validation dataset is used to validate the performance of the models when the authors 

tuned the algorithm. 10-folds cross-validation is used to validate the models and to minimize 

bias. Then the testing dataset is used to provide the result of the models. 

Table 2.  Hyperparameter selection for Grid Search 

Parameter Value 

max_depth 3 4 5 6 

learning_rate 0.005 0.01 0.05 NA 

subsample 0.5 0.7 1 NA 

n_estimators 500 1000 1500 NA 

 

The 100 of the most important features of the trained model is then used to train the second 

model. The purpose of these steps is to have a comparison model where they read all the data 

and focused only on important features. 

3.3 Evaluation and Comparison 

To measure and compare our method to the previous methods, we use the same evaluation 

techniques that were used in Lumbanraja studies [8]. There are five evaluation parameters. The 

first one is the method accuracy. Method accuracy can be calculated by dividing the sum of the 

true positive and true negative with the sum of the total N. The second and third parameters are 

sensitivity and specificity. Sensitivity is the capability to predict correctly those that are phos-

phorylatable (true positive rate), whereas specificity is the ability of the method to correctly iden-

tify those which are not phosphorylatable (true negative rate).  

The last two parameters are F1 score and Matthews correlation coefficient. F1 score mostly 

used and gained its popularity in the machine learning research area. This parameter can be cal-

culated by dividing the number of true positive with the sum of the number of true positive, the 

number of false positive and the number of false negative. Matthews correlation coefficient or 

commonly known as MCC is firstly introduce by Matthews in 1975 for comparing the secondary 

structure of proteins [19]. This parameter later become widely used in biomedical community 

especially in protein research [20]–[24]. Since this parameter is the most relevant to our data and 

research area, the discussion and analysis of this paper is more referring to MCC rather than F1 

score. The evaluation techniques used in this research are formulated below: 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
    (3) 
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 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (4) 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
    (5) 

 𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
    (6) 

 𝑀𝐶𝐶 =  
(𝑇𝑃×𝑇𝑁)−(𝐹𝑃×𝐹𝑁)

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
    (7) 

 

4 RESULTS 

Result of our first experiments, which use all features to be inputted in the XGBoost algo-

rithm, and comparison to the previous study, Lumbanraja et al 2018 [8] as Method 1 and Lum-

banraja et al 2019 [10] as Method 2, are listed on Table 3, 4 and 5. The results of each dataset 

with the highest accuracy and MCC are listed in bold. 

Table 3.  Experiment result on Serine dataset 

Parameter P.ELM PPA 

Method 

1 

Method 

2 

XGBoost Method 

1 

Method 

2 

XGBoost 

Accuracy 0.9646 0.9146 0.9661 0.8766 0.8109 0.8211 

AUC 0.9646 0.9185 0.9660 0.8766 0.8104 0.8270 

Sensitivity 0.9715 0.9305 0.9689 0.8290 0.8247 0.7612 

Specificity 0.9577 0.9065 0.9630 0.8611 0.7678 0.8929 

F1 0.9650 0.9197 0.9674  0.8786  0.8111 0.8226 

MCC 0.9298 0.8385 0.9321 0.7562 0.6211 0.6532 

 

Table 4.  Experiment result on Threonine dataset 

Parameter P.ELM PPA 

Method 

1 

Method 

2 

XGBoost Method 

1 

Method 

2 

XGBoost 

Accuracy 0.9222 0.8733 0.9267 0.9118 0.8242 0.8214 

AUC 0.9222 0.8708 0.9250 0.9118 0.8288 0.8333 

Sensitivity 0.9264 0.8768 0.9343 0.8823 0.8034 1.0000 

Specificity 0.9157 0.8648 0.9158 0.9412 0.8542 0.6667 

F1 0.9354 0.8939 0.9377 0.9091 0.8076 0.8387 

MCC 0.8387 0.7362 0.8488 0.825 0.6597 0.6939 
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Table 5.  Experiment result on Tyrosine dataset 

Parameter P.ELM PPA 

Method 

1 

Method 

2 

XGBoost Method 

1 

Method 

2 

XGBoost 

Accuracy 0.8019 0.7564 0.8586 0.5784 0.6409 0.6667 

AUC 0.7984 0.7602 0.8613 0.5784 0.6565 0.6944 

Sensitivity 0.8381 0.7272 0.8077 0.5295 0.6536 0.5000 

Specificity 0.7588 0.7933 0.9149 0.6274 0.6595 0.8888 

F1 0.8205  0.7609 0.8571  0.5567 0.6339 0.6316 

MCC 0.6043 0.5186 0.7235 0.1576 0.3120 0.4082 

 

The results shows that XGBoost gave the best accuracy and MCC on all amino acids, Serine, 

Threonine and Tyrosine in P.ELM dataset. Despite only have little lead in Serine and Threonine, 

XGBoost gave 5% better accuracy in Tyrosine P.ELM datasets, compared to previous methods. 

On the PPA dataset, XGBoost shows similar results compared to method 2. It shows a slight lead 

in performance on Tyrosine and Serine. However, Method 1 still has a huge lead on Serine and 

Threonine PPA dataset, with the accuracy of 87.66% and 91.18%. 

Analyzing the result of the XGBoost alone, the accuracy and MCC each amino acid in P.ELM 

dataset are positvely correlated with the number of the amino acids sequence. On the other hand, 

the accuracy and MCC each amino acid in PPA dataset also show a correlation with the number 

of the protein sequence. Table 6 show the accuracy, MCC and the number of amino acid se-

quence for each corresponding amino acid. Based on Table 6 data, the correlation between accu-

racy and the number of amino acid sequence is 0.76, while the correlation between MCC and the 

number of amino acid sequence is 0.77. Both correlations can be classified as strong correlation. 

Table 6.  Accuracy, MCC and number of amino acid sequence 

Dataset Accuracy MCC Number of Amino 

Acid Sequence  

P.ELM Serine 0.9661 0.9321 3097 

P.ELM Threonine 0.9267 0.8488 1160 

P.ELM Tyrosine 0.8586 0.7235 493 

PPA Serine 0.8211 0.6532 614 

PPA Threonine 0.8214 0.6939 136 

PPA Tyrosine 0.6667 0.4082 102 
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The result of our first experiment also gave us 100 most important features for each amino ac-

id on each dataset. These features were then used to train our second model which focused on 

those features. The result of our second experiment is shown in Table 7, 8, and 9.  

Table 7.  Second experiment result on Serine dataset 

Parameter P.ELM PPA 

All features 100 features All features 100 features 

Accuracy 0.9661 0.9581 0.8211 0.7967 

AUC 0.9660 0.9584 0.8270 0.8002 

Sensitivity 0.9689 0.9503 0.7612 0.7612 

Specificity 0.9630 0.9664 0.8929 0.8393 

F1 0.9674 0.9592 0.8226 0.8031 

MCC 0.9321 0.9162 0.6532 0.5982 

 

Table 8.  Second experiment result on Threonine dataset 

Parameter P.ELM PPA 

All features 100 features All features 100 features 

Accuracy 0.9267 0.9310 0.8214 0.8571 

AUC 0.9250 0.9294 0.8333 0.8667 

Sensitivity 0.9343 0.9366 1.0000 1.0000 

Specificity 0.9158 0.9222 0.6667 0.7333 

F1 0.9377 0.9433 0.8387 0.8667 

MCC 0.8488 0.8555 0.6939 0.7488 

 

Table 9.  Second experiment result on Tyrosine dataset 

Parameter P.ELM PPA 

All features 100 features All features 100 features 

Accuracy 0.8586 0.8687 0.6667 0.6667 

AUC 0.8613 0.8719 0.6944 0.6806 

Sensitivity 0.8077 0.8077 0.5000 0.5833 

Specificity 0.9149 0.9362 0.8888 0.7778 

F1 0.8571 0.8660 0.6316 0.6667 

MCC 0.7235 0.7460 0.4082 0.3611 
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In P.ELM dataset, the second model gave a slightly better performance on Threonine and Ty-

rosine dataset compared to the first model. While the first model still has little lead on Serine, the 

biggest dataset. In the PPA dataset, the second model only lead on Threonine dataset. In Tyro-

sine dataset, the second model has the same accuracy, 66.67%, with the first model. However, 

the first model has better MCC on that particular dataset. 

 

5 DISCUSSION 

The comparison in Table 3 shows that our method gave better results on four out of six da-

tasets. All the experiment on the P.ELM dataset gave a better result. However, the first model of 

XGBoost does not give a better result on Serine and Threonine in PPA dataset.  

Despite losing on 2 datasets in the PPA database, the first model shows a good lead on Tyro-

sine dataset, the smallest dataset in this study with only 102 polypeptide sequences. Small dataset 

often became the main problem in prediction algorithm development. But, the XGBoost model 

gave reasonable accuracy, where other previous models could not. On standalone XGBoost anal-

ysis, the accuracy and MCC of the model showing a positive correlation with the size of the da-

taset.  

On the second experiment, XGBoost model which focused on 100 most important features 

were compared to XGBoost model which focused on all features. The results show that the mod-

el that focused on 100 most important features were only slightly better on 3 out of 6 datasets, 

and slightly lower on the rest of it. The size of the dataset does not appear to give influence on 

the accuracy differences.  

Moreover, XGBoost of 100 feature selection gave better result compared to XGBoost of all 

features only on three out of six datasets. This outcome may suggest that XGBoost that focused 

on important features does not give a better result. In the second experiment, the training time of 

the models were faster compared to the first experiment. This faster processing time is due to the 

less variables that need to be calculated by the processing unit. Beside the results, the method 

that we used is also less complicated compared to our previous method [8], [10]. 

 

6 CONCLUSION 

In this paper, we introduce a new approach by using XGBoost to classify non-kinase-specific 

phosphorylation site.  Based on the results of 6 different amino acid residue datasets from 
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P.ELM and PPA database, XGBoost model shows better classification results in a small dataset, 

a slight lead in large datasets, and lower accuracy on medium-sized dataset compared to the pre-

vious methods. 

On small dataset, XGBoost perform better compared to the previous method. Small dataset of-

ten became the main problem in machine learning. The performance of the XGBoost model in 

this study shows a positive correlation with the size of the training dataset. However, the model 

still manages to deliver reasonable result from small dataset.   

The results on second experiment which focused on 100 most important do not imply better 

accuracy. However, the processing time of the second experiment is a lot faster compared to the 

first experiment due to fewer variables that need to be calculated.  
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