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Abstract: Nonlinear dynamics connect the neurons that form the brain, and thus, the complex information is produced 

and transported. The function of the neurons and the problem of understanding the dynamics of the brain has been the 

research area of mathematical neuroscience. In this study, the modelling and simulation of the propagation of the 

electric field based Action Potential (AP) on the Two Dimensional (2-D) field of axon network, whose matrix consists 

of 128 × 128 electrically coupled neurons were done using nonlinear Spatial FitzHugh Nagumo (SFN) equations. 

SFN equations are a particular class of Partial Differential Equation’s (PDE’s) exhibiting travelling wave behaviour 

occurred in neuron systems. The motivation of this paper is to evaluate the SFN equation, which is a special kind of 

the time-dependent nonlinear reaction-diffusion problem governing neuron dynamics numerically in 2-D space 

addressed by investigating the Polynomial-based Differential Quadrature Method (PDQM) having Chebyshev-Gauss-

Lobatto quadrature points. The solution occurs as elliptical spiral waves induced by electrical stimulation. Thus, the 

neuronal system behaviour and the interaction with the specific type of Boundary Conditions (BC’s) are predicted. 

The space derivatives are discretised through PDQM.  In this way, the problem is reduced into a system of first-order 
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non-linear differential equations. Hereafter the time derivatives of the SFN equation are solved through the Finite 

Difference Method (FDM). The various dynamical behaviour that governs the travelling wave pattern regarding the 

Initial Condition’s (IC’s), BC’s and way of stimulation of the neuron model examined in details. Numerical results 

indicated that the proposed PDQM provide reliable, fast, and efficient solutions. 

Keywords: numerical analysis; polynomial differential quadrature method; neuron modelling; travelling wave; time-

dependent nonlinear reaction-diffusion equation; brain dynamics; FitzHugh-Nagumo equation. 

2010 AMS Subject Classification: 65Z05, 65P99, 92B20. 

 

1. INTRODUCTION 

SFN equation is a type of nonlinear reaction-diffusion equation, which takes place in scientific 

models covering fluid mechanics, plasma physics, computational neuroscience, chemical 

kinematics etc. [1-4]. The reaction-diffusion mechanism expresses itself as a form of a travelling 

wave propagating in a medium. Travelling waves, which associated with having a constant velocity 

along with its propagation process move in a particular direction by maintaining a specific pattern. 

The impulses occurred in the multidimensional nerve fibre arrays are described as travelling wave 

propagation in mathematical neurophysiology [5]. It is essential to determine the stability for 

perturbations in the IC’s for solutions of the full PDE [6]. 

The travelling wave solutions defined as 𝑣(𝑥, 𝑡) = 𝑉(𝑧), where 𝑧 = 𝑥 − 𝑐𝑡. The spatial and time 

domains correspond to the "𝑥"  and "𝑡"  notations, respectively. The velocity of the wave is 

expressed as "𝑐". The exact analytical solution of SFN-type equation is sought-after. Therefore it 

is necessitated to be used numerical methods to approximate exact solutions. Information 

transmission is realised through AP mechanism following a consistent trajectory in the nerve cell 

membrane. The proteins which take place in the membrane are responsible for the AP allowing 

specific ions to pass through various conformations of voltage-gated ion channels. The polarised 

membrane collects the depolarizing stimulus from dendrites, and the AP advances along the axon 

reconciled by the ion-channels spreading along with it.  

In the depolarisation phase, 𝑁𝑎+channels, which allow the 𝑁𝑎+ Ions to enter the neuron, are 
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opened at the resting membrane when exposed to a stimulant. The increase in the positive ions 

within the cell depolarises the membrane potential and provides it to reach the threshold potential. 

Therefore, more 𝑁𝑎+ channels are opened, and the voltage in the membrane is reversed rapidly 

and reaches its most positive value.  

At the peak of the AP, many of the voltage-gated 𝑁𝑎+ channels begin to close and several positive 

𝐾+ Channels open at the same time allowing positive charges to separate from the membrane. 

This action, called a “re-polarisation” phase, causes the membrane potential to return to resting 

state. Then the membrane re-polarises beyond the resting state as a result of more open 𝐾+ 

Channels. The return to steady-state continues as the 𝐾+Channels close. This phase is known as 

the refractory period or hyper-polarisation phase. The electrical signal is transformed into a 

chemical signal at the synapse [7].  

Hodgkin and Huxley investigated the neural excitability through voltage-clamp experiments and 

characterised the properties of ionic conductances and membrane potential, which originate AP. 

Stepwise depolarisation of the membrane was realised in these experiments through the help of 

the electrodes. The inward and outward current was triggered, respectively. In this way, the net 

current could be dichotomised into fast inward component transported by 𝑁𝑎+ ions, and slow 

outward component carried by 𝐾+ Ions. These two kinds of currents are caused by independent 

permeability mechanisms for 𝑁𝑎+ and 𝐾+, which contain the voltage-induced conductors of a 

particular object in the membrane [8]. The most important achievement of this theory was that the 

experimental voltage-clamp data consistently coincided with a quantitative model for excitability 

of a nerve pulse. The shape and propagation of the AP, threshold, and refractory period can be 

generated from the Hodgkin-Huxley (HH) model. However, there exists a complexity because the 

values of the conductances are dependent on the empirical functions of voltage and time. HH 

model relates the ion channels to the currents and APs. Due to the outnumbered differential 

equations describing the model, the computational burden of the simulation is very high. HH 

dynamics are reduced to 1-D or 2-D systems, which are practical for mathematical analysis 

utilising phase-portraits and reveal the neuronal behaviour. However, these systems are parameter-
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sensitive. The parameters should be measured for various neurons and be used statistical tools to 

capture optimal conditions. The reliability of the model is low because it is not sustainable to 

estimate parameters for a specific neuron having a conductivity-based model. It is not possible to 

produce a general model to mimic all neurobiological features of a neuron. Therefore, various 

models are commonly derived to simulate neuronal networks and to rationalise the experimental 

data. These models are SFN, Hindmarsh-Rose, Morris-Leccar, Rajagopal, respectively [9]. 

Waves of electrical and neuromuscular excitability were sought in various physiological subjects 

such as temporally periodic and spatially distributed contractions of atria and ventricles [10], and 

waves of diffusion in the cerebral cortex and retina [11, 12]. Travelling waves regarding reaction-

diffusion kinetics are observed and analysed for two-and three-spatial dimensions [13-20].   

To understand spiral wave dynamics, it is essential to investigate the excitability of the nerve cells, 

cardiac tissue etc. Computer simulations, which are capable of solving partial differential equations 

related to physiological reaction-diffusion kinetics, serve an excellent service to comprehend this 

issue and to exploit with the results acquired through experiments. Therefore it necessitates 

developing efficient and reliable numerical methods to solve this kind of reaction-diffusion 

equations.  

The research presented in the literature is based on the building of fast and accurate numerical 

schemes to simulate models for wave propagation, spiral wave occurrence, and to clarify the 

process of initiation, reflection and disintegration of a spiral wave, and to predict how the spiral 

wave behaves with BC’s [21-24]. The theoretically based analysis for travelling wave solutions of 

a nerve conduction equation was analysed regarding periodic solutions, propagation speeds and 

stability, which validates conjecture made before for other nerve conduction equations [25]. A 

novel approach for solving the generalised SFN equation with time-dependent parameters was 

implemented [26].  

Exact travelling wave solutions were found comprising periodic function solutions, soliton-like 

solutions, and trigonometric function solutions, respectively. A 2 − 𝐷  fractional SFN 

monodomain model on an irregular domain, which consists of a coupled Riesz space fractional 
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nonlinear reaction-diffusion model was investigated by developing a novel spatially second-order 

accurate semi-implicit alternating direction method. The stability and convergence of this method 

were proved, and numerical examples were solved to aid theoretical analysis. Such model 

demonstrates a robust modelling approach for understanding various aspects of 

electrophysiological behaviour in biological tissue [27]. The existence and exponential stability of 

travelling wave solutions of some integro-differential equations emerging from neuronal networks 

were concerned via fixed point theorems, and the exponential stability of waves was investigated 

through linearization technique [28]. Two cases comprising various types of uniform steady-state 

distributions for the initiation of propagating front solution was investigated to analyse the 

conditions for a propagating wave in the Nagumo-type discrete reaction-diffusion model [29].  

In this paper, the PDQM method was selected to solve the problem above. DQM is a numerical 

approach for solving initial and boundary value problems. This method has been developed as an 

alternative solution procedure for finite difference and finite element techniques. The DQM, which 

is inspired by the conventional integral quadrature method, converges to the partial derivative of a 

function regarding a coordinate located at any point by a linear weighted sum of all functional 

values lied on a mesh (grid) line. 

Determination of weighting coefficients is the essential step in the DQM application [30]. The 

methods presented in the literature to evaluate the weighting coefficients comprise algebraic 

formulation whose coordinates of grid points are selected as the roots of the Legendre Polynomials, 

explicit formulations acquired through Lagrange Interpolated polynomials, and analysis of a high 

order polynomial approximation and linear vector space [31]. The accuracy and minimal 

computational effort of the DQM has been proved thoroughly with a many application in applied 

mathematics, physics and engineering especially in computational biology, fluid mechanics, 

structural mechanics, aeroelasticity etc [32].   

A broad spectrum of problems containing deflection, buckling, and the natural frequency of 

flexible beams and plates, including various clamped, free and supported types were investigated 

through DQM [33-36]. Based on these numerical solutions, it can be concluded that the DQM 
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yields excellent accuracy as compared to the analytical solutions even if a small number of grid 

points is utilised. The accuracy of the DQM method was also tested by applying it to the buckling 

analysis of the thin and isotropic plates whose shapes are rectangular, circular, square, skew, 

trapezoidal, annular, and sectorial subjected to different BC’s. The generalised DQM was 

introduced to overcome the possible singularity problem of the original one in acquiring the 

weighting coefficients and solving for natural frequencies of some structures under various BC’s. 

Generalised DQ-based vibration analysis of beams and plates was investigated to eliminate the 

adverse effects of the 𝛿 −technique, which discretises the derivative BC’s at a point of distance 

𝛿  away from the boundary. It can be deduced that the presented approach suits well for any 

combination of supported and clamped BC’s [37]. DQ solution of the higher-order differential 

equation, which comprise the implementation of the multiple BC’s has been accurately applied to 

the problem of the free vibration of plates [38].   

Theoretical calculations such as the relationship among the DQM and the conventional 

discretisation techniques, error analysis, and the effect of grid point distributions on stability and 

accuracy have been conducted with the explicit calculation of weight coefficients and their 

application in various fields [39, 40]. The DQM was extended for the evaluation of 2-D PDE’s to 

cover problems with arbitrary geometry and was verified with the results of thermal and torsional 

problems [41]. Irregular elements of the DQM were applied to the steady-state heat conduction 

problem using mapping-based transformation technique, which converts the natural transition 

condition of two adjacent elements and Neumann BC’s designated on the variable physical element 

into parent space [42]. A locally one-dimensional time integration scheme for the diffusion 

equation in 2-D space was defined based on the extended trapezoidal formula to suppress unwanted 

vibrations in the solution [43]. Time-dependent diffusion problem was investigated with a hybrid 

numerical scheme whose time derivative was discretised by utilising DQM, and spatial partial 

derivatives were discretised by using a dual reciprocity boundary element method [44]. In [45], a 

paired pseudospectral DQM was proposed to solve a class of hyperbolic multidimensional 

telegram equation. The theoretical analysis and numerical tests indicated that this method exhibits 
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spectral-sensitive convergence in the spatial area and has stability in the time domain. 

In this paper, PDQM is applied to SFN, which is a particular case of a time-dependent nonlinear 

reaction-diffusion problem that occurred in neuron array, in 2-D space to discretise the space 

variables. The time derivatives of the equation system are discretised through FDM for sustaining 

broader stability region. Time-dependent BC’s are discussed. Stability criteria are also controlled 

via various values of time increment Δt and some grid points N in a space region. It was focused 

on the SFN model because this model serves an elegant qualitative description of the HH model, 

providing a better understanding of the qualitative dynamical behaviour of the neuron. HH model 

has four main dynamics, which represents fast and slow kinetics. While membrane potential and 

𝑁𝑎+ activation channel changes quickly, 𝐾+ activation channel and 𝑁𝑎+ Inactivation channel 

varies slowly. In the SFN model, slow variables are fixed, and fast variables are considered. These 

variables are suitable for investigating the excitability, bursting and wave propagation. The 

propagation pulse is derived from cable theory expressing the inward and outward (radial) currents, 

which are caused by voltage-gated ion channels, for any arbitrary point along the axon. The BC’s 

was applied periodically at the edge of the element and along the continuum boundary. Two 

different stimulus method was utilised to initiate various spiral wave solutions in the simulation. 

The detailed analysis and discussions were done. The primary motivation of this paper is to 

contribute predictive neural modelling problem encountered in the computational neuroscience. 

 

2. THEORETICAL BACKGROUND 

2.1. Spatial FitzHugh-Nagumo Equation 

The SFN equations have been sought genuinely to model electrical activity in neuron cells as a 

simplification of the HH model. The SFN model given in Eq.1 describes the impulse transportation 

phenomena as a reaction-diffusion kinetic along with the neuron cells, which takes into account 

the effects of memory bounded through the presence of the internal structure [46].      

𝜕𝑣(𝑥,𝑦,𝑡)

𝜕𝑡
= 𝐺𝑥 ∗

𝜕2𝑣(𝑥,𝑦,𝑡)

𝜕𝑥2 + 𝐺𝑦 ∗
𝜕2𝑣(𝑥,𝑦,𝑡)

𝜕𝑦2 − 𝑐1 ∗ 𝑓(𝑣(𝑥, 𝑦, 𝑡)) − 𝑐2 ∗ 𝑟(𝑥, 𝑦, 𝑡) ∗ 𝑣(𝑥, 𝑦, 𝑡) +

𝐼(𝑥, 𝑦, 𝑡)  
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𝜕𝑟(𝑥,𝑦,𝑡)

𝜕𝑡
= 𝑏 ∗ 𝑣(𝑥, 𝑦, 𝑡) − 𝛾 ∗ 𝑟(𝑥, 𝑦, 𝑡)      (𝑥, 𝑦)  ∈ Ω, [N,M]   𝑡 ∈ [0, 𝑇]        (1) 

where 𝑓(𝑣(𝑥, 𝑦, 𝑡)) = 𝑣(𝑥, 𝑦, 𝑡) ∗ (𝑎 − 𝑣(𝑥, 𝑦, 𝑡)) ∗ (1 − 𝑣(𝑥, 𝑦, 𝑡)) ; 𝑎, 𝑏  and 𝛾  are positive 

constants. 𝑎  is the excitation threshold, 𝑏 , 𝑐1 , 𝑐2 , and 𝛾  are the parameters related to the 

resting state and dynamics of the system, respectively. 𝐺𝑥 and 𝐺𝑦 are the parameters related to 

the diffusion coefficient, respectively. 𝐼(𝑥, 𝑦, 𝑡) is the driving stimulus of the external current.   

Eq.1 subject to mixed Dirichlet and Neumann BC’s, respectively and various spatial and timing 

pattern of the applied external stimulus is solved by using a PDQM-FDM hybrid numerical scheme. 

Subject to Dirichlet BC’s 

𝑣(0, 𝑦, 𝑡) = 0, 𝑣(𝑁, 𝑦, 𝑡) = 𝑔1(𝑡)  ,  𝑣(𝑥, 0, 𝑡) = 0, 𝑣(𝑥,𝑀, 𝑡) = 𝑔2(𝑡)    ,   𝑡 ∈ [0, 𝑇] 

where  𝑔1(𝑡) =
1

2
+

1

2
tanh (

1

2√2
(𝑁 −

2𝑎−1

√2
𝑡))         𝑔2(𝑡) =

1

2
+

1

2
tanh (

1

2√2
(𝑀 −

2𝑎−1

√2
𝑡))     

Subject to Neumann BC’s  

𝜕𝑣(0,𝑦,𝑡)

𝜕𝑥
= 0,    

𝜕𝑣(𝑁,𝑦,𝑡)

𝜕𝑥
= 𝑔3(𝑡),                   𝑡 ≥ 0 

𝜕𝑣(𝑥,0,𝑡)

𝜕𝑦
= 0,    

𝜕𝑣(𝑥,𝑀,𝑡)

𝜕𝑦
= 𝑔4(𝑡),                   𝑡 ≥ 0 

where  𝑔3(𝑡) =
1

2
+

1

2
tanh (

1

2√2
(𝑁 −

2𝑎−1

√2
𝑡))     𝑔4(𝑡) =

1

2
+

1

2
tanh (

1

2√2
(𝑀 −

2𝑎−1

√2
𝑡))  

Subject to the IC    

𝑣(𝑥, 𝑦, 0) = ℎ̂(𝑥, 𝑦), 0 ≤ 𝑥 ≤ 𝑁, 0 ≤ 𝑦 ≤ 𝑀 

where ℎ̂(𝑥, 𝑦) = [
1

2
+

1

2
tanh (

𝑥

2√2
) ,

1

2
+

1

2
tanh (

𝑦

2√2
)]       

where (𝑥, 𝑦) represents the spatial coordinates, and 𝑡 indicates the time.    

The variables 𝑣(𝑥, 𝑦, 𝑡)  moreover, 𝑟(𝑥, 𝑦, 𝑡)  are the membrane voltage and the recovery 

variables at position 𝑥 , 𝑦 and time 𝑡, respectively. 𝑥 𝑎𝑛𝑑 𝑦 correspond to the position of the 

neurons in 2 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝑎𝑟𝑟𝑎𝑦 . 𝑣(𝑥, 𝑦, 𝑡)  describes the voltage spreading along the 

cylindrical membrane as a function of distance 𝑥, 𝑦  and time 𝑡 . The BC’s and IC must be 

determined. The model is capable of catching the spiral waves in 2-D as well as other phenomena 

in 3 − 𝐷. The system of equation in Eq.1 is utilised for the qualitative study of a nerve axon pulses, 

as well as for the description of general excitable media. Generated travelling waves represent a 
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diffusion term as the second derivative in spatial coordinates. In this way, the stimulated AP along 

the axon is simulated in the cortical neural network in the form of the propagation of electrical 

potential waves. 

The main difficulty to find the exact analytical solution of the SFN model is the nonlinear function 

𝑓(𝑣(𝑥, 𝑦, 𝑡)). The existence and uniqueness of a travelling wavefront solution have been proved 

and, the stability of the travelling wave solution for a general class of initial data including nerve 

axon impulse creation and propagation and other patterns in dissipative systems has been described 

[47].   

Whenever solving the PDE given in Eq.1, there might be encountered various errors, such as 

truncation, roundoff, stability errors [48]. The SFN equation system has a unique attractor with 

two modes of turning back to a resting state. Under a small amplitude excitation, the system 

represents a short recursion in phase space before reaching equilibrium. When a large amplitude 

excitation is performed, the method follows a longer path in phase space before retaining to balance.   

2.2. Polynomial-based Differential Quadrature Method 

DQM is based on linear vector space analysis and function approach. In PDQM, the solution of 

the ordinary differential equation is approached with a high degree of a polynomial through which 

the weight coefficients of the polynomial are determined. The polynomial can be stated with the 

specified weight coefficients, and a solution polynomial, which is closer to the solution of the ODE 

is obtained. The weight coefficients for PDQM were first calculated by Bellman and Casti [40]. 

The grid points in this formula are selected from the roots of the translated Legendre polynomial. 

However, as the number of grid points growths, the number of an equation in the algebraic equation 

system increases. Therefore, the coefficient matrix will not be able to give a precise result. 

Accordingly, it is challenging to determine the weight coefficients when the number of grid points 

is high. The Lagrange interpolation polynomial was taken by Quan and Chang to evaluate the 

weight coefficients for the first and second-order derivatives. Shu and Richards have proved that 

all approaches calculate weight coefficients in PDQM can be formed from the choice of base 

vectors in the linear vector space [49, 50]. The weight coefficients calculated in these various 
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methods ultimately yield the same values. This idea has been introduced by utilising the linear 

vector space properties. Shu has developed an algebraic recurrence formula for evaluating the 

weight coefficients of first and high-order derivatives. There are no restrictions on the selection of 

grid points in this formula. 

Let us assume that 𝑓(𝑥) is a function and 𝑥𝑖 is the grid points, which separates the area under 

𝑓(𝑥). According to this assumption, the first-order derivative of the 𝑓(𝑥) function w.r.t 𝑥 at 𝑥𝑖 

point approximates to the sum of the weighted linear function values at all values in the definition 

zone [𝑥𝐴 = 𝑥1, 𝑥2, … , 𝑥𝑀 = 𝑥𝐵]  given in Eq.2   

𝑑 𝑓(𝑥𝑖)

𝑑𝑥
= ∑ (𝐴𝑖𝑗 ∗ 𝑓(𝑥𝑗))

𝑀
𝑗=1 ,    𝑖 = 1,2, . . . , 𝑀                     (2)  

where 𝐴𝑖𝑗 is the weight coefficients and 𝑀 is total grid point number.  

𝐴𝑖𝑗 weight coefficients take different values w.r.t 𝑥𝑖 points. The main concern of the DQM is to 

define 𝐴𝑖𝑗  weight coefficients. Several approaches have been developed to determine these 

weight coefficients.  

Let us assume that 𝑓(𝑥) is a function, and 𝑟𝑘(𝑥) is a base polynomial. Weight coefficients 𝐴𝑖𝑗 

are evaluated using the equations presented in Eq.3, which can be deduced from Eq.2.   

𝑓(𝑥) = ∑ (𝑐𝑘 ∗ 𝑟𝑘(𝑥))𝑀
𝑘=1   , 

𝑑 𝑓(𝑥)

𝑑𝑥
= ∑ (𝑐𝑘 ∗

𝑑 𝑟𝑘(𝑥)

𝑑𝑥
)𝑀

𝑘=1   ➔  
𝑑 𝑟𝑘(𝑥𝑖)

𝑑𝑥
= ∑ (𝐴𝑖𝑗 ∗ 𝑟𝑘(𝑥𝑗))

𝑀
𝑗=1      

                                (3) 

where 𝑐𝑘 are constant.   

In this paper, we will focus on Shu’s approach in the selection of base polynomial to determine the 

weight coefficients.  

The general approach of Shu was derived from Bellman’s criteria. This approach includes all 

procedures, including Quan and Chang approach. The emergence of this approach stems from two 

main problems. The first is that Belmann’s two methods used in the calculation of weight 

coefficients. The other is that these two approaches give the same result. If these two approaches 

can provide the same result, other criteria should be obtained to evaluate the weight coefficients. 

These approaches can be structured by linear vector space analysis and a change of base 

polynomial by utilising the polynomial method. The solution of the ODE can be approximated 
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with a high-order polynomial. Let us assume that the order of the approximation polynomial as 

𝑁 − 1.  This approximation polynomial constitutes a linear vector space 𝑉⃗ 𝑀  comprising vector 

sum and scalar multiplication operators and can be expressed in various forms.  

A base polynomial is defined as in Eq.4 [30]. 

𝑟𝑘(𝑥) =
𝑀(𝑥)

(𝑥−𝑥𝑘)∗𝑀(1)(𝑥𝑘)
,    𝑘 = 1,2, … ,𝑀                          (4) 

where 𝑀(𝑥) = (𝑥 − 𝑥1) ∗ (𝑥 − 𝑥2) ∗ … ∗ (𝑥 − 𝑥𝑀) ,   𝑀(1)(𝑥𝑖) = ∏ (𝑥𝑖 − 𝑥𝑘)
𝑀
𝑘=1,𝑘≠𝑖   

For simplicity, 𝑀(𝑥) can be set as; 𝑀(𝑥) = 𝑁(𝑥, 𝑥𝑘) ∗ (𝑥 − 𝑥𝑘), 𝑘 = 1, 2, … ,𝑀 

with 𝑁(𝑥𝑖 , 𝑥𝑗) = 𝑀(1)(𝑥𝑖) ∗ 𝛿𝑖𝑗 , where 𝛿𝑖𝑗 is the Kronecker operator.    

The weight coefficients 𝐴𝑖𝑗 are computed by following algebraic formulations given in Eq.5 

𝐴𝑖𝑗 =
1

𝑥𝑗−𝑥𝑖
∏

𝑥𝑖−𝑥𝑘

𝑥𝑗−𝑥𝑘
,     𝑓𝑜𝑟 𝑗 ≠ 𝑖𝑀

𝑘=1,𝑘≠𝑖,𝑗   

𝐴𝑖𝑖 = ∑
1

𝑥𝑖−𝑥𝑘

𝑀
𝑘=1,𝑘≠𝑖                                      (5) 

The operators for the discretisation of higher-order derivatives through Shu’s recurrence 

formulation [30] is given in Eq.6  

𝑓𝑥
(𝑚−1)(𝑥𝑖) = ∑ (𝐴𝑖𝑗

(𝑚−1)
∗ 𝑓(𝑥𝑗))

𝑀
𝑗=1   

 𝑓𝑥
(𝑚)(𝑥𝑖) = ∑ (𝐴𝑖𝑗

(𝑚)
∗ 𝑓(𝑥𝑗))

𝑀
𝑗=1      𝑖 = 1,2, … ,𝑀  ; m=2,3,…,M-1           (6) 

where 𝑓𝑥
(𝑚−1)(𝑥𝑖) , 𝑓𝑥

(𝑚)(𝑥𝑖)  demonstrate  (𝑚 − 1)𝑡ℎ  and (𝑚)𝑡ℎ  order derivatives of 𝑓(𝑥) 

w.r.t 𝑥  at 𝑥𝑖. 𝐴𝑖𝑗
(𝑚−1)

  and 𝐴𝑖𝑗
(𝑚)

  are the weight coefficients related to 𝑓𝑥
(𝑚−1)(𝑥𝑖)  and  

𝑓𝑥
(𝑚)(𝑥𝑖).  

The explicit formulations for 𝐴𝑖𝑗
(𝑚)

 are derived from two sets of base polynomials given in Eq.7 

𝐴𝑖𝑗
(𝑚−1)

=
𝑁(𝑚−1)(𝑥𝑖,𝑥𝑗)

𝑀(1)(𝑥𝑗)
   ,     𝐴𝑖𝑗

(𝑚)
=

𝑁(𝑚)(𝑥𝑖,𝑥𝑗)

𝑀(1)(𝑥𝑗)
                      (7) 

The recurrence formulation is obtained as in Eq.8 

𝐴𝑖𝑗
(𝑚)

= 𝑚 ∗ (𝐴𝑖𝑗 ∗ 𝐴𝑖𝑖
(𝑚−1)

−
𝐴𝑖𝑗

(𝑚−1)

𝑥𝑖−𝑥𝑗
)        for 𝑖, 𝑗 = 1,2, … ,𝑀 ;𝑚 = 2,3, … ,𝑀 − 1         

                               (8) 
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where 𝐴𝑖𝑗 is the weight coefficient of the first-order derivative. The formulation 𝐴𝑖𝑖
(𝑚)

 can be 

stated as in Eq.9 

𝐴𝑖𝑖
(𝑚)

=
𝑀(𝑚+1)(𝑥𝑖)

(𝑚+1)∗𝑀(1)(𝑥𝑖)
    for 𝑖, 𝑗 = 1,2, … ,𝑀 ;𝑚 = 2,3, … ,𝑀 − 1                 (9) 

The Matlab formula of the procedure defined above is represented in APPENDIX-I.  

  

3. NUMERICAL APPROACH 

3.1. Description of the numerical scheme 

Before solving the SFN equation numerically, one must derive a fundamental condition that causes 

a pulse wave behaviour related to the parameters of the equation. The form of the solution is sought 

as  

𝑣 = 𝑣(𝑧) = 𝑣(𝑥 − 𝑐𝑡) and 𝑟 = 𝑟(𝑧) = 𝑟(𝑥 − 𝑐𝑡) 

Then the solution forms are replaced into the SFN equations given in Eq.1 to obtain Eq.10 

−𝑐 ∗ 𝑣′ = 𝐷 ∗ 𝑣′′ + 𝑣 ∗ (𝑣 − 𝑎) ∗ (1 − 𝑣) − 𝑟   

−𝑐 ∗ 𝑟′ = 𝑏 ∗ 𝑣 − 𝛾 ∗ 𝑟                         (10) 

Let 𝑦 = 𝑣′ and 𝑦′ = 𝑣′′. Eq. 10 can be expressed as in Eq.11 

𝐷 ∗ 𝑦′ = −𝑐 ∗ 𝑦 − 𝑣 ∗ (𝑣 − 𝑎) ∗ (1 − 𝑣) + 𝑟  

𝑣′ = 𝑦  

𝑟′ =
𝛾

𝑐
∗ 𝑟 −

𝑏

𝑐
∗ 𝑣                                    (11) 

The critical points [𝐷 ∗ 𝑦′ = 0, 𝑣′ = 0, 𝑟′ = 0]  can be defined as in Eq.12  

(0, 𝑣𝑘,
𝑏

𝛾
∗ 𝑣𝑘) , 𝑘 = 1, 2, 3                      (12) 

where 𝛾 > 0 and 𝑣𝑘 are the roots of  

𝑣𝑘 ∗ [
𝑏

𝛾
− (𝑣𝑘 − 𝑎) ∗ (1 − 𝑣𝑘)] = 0 

The system represented in Eq.11 has two complex roots exhibiting a pulse solution with BC’s of 

𝑣(±∞) = 0. It is necessitated to have a homoclinic orbit around a critical point [𝑣, 𝑣′] = [0,0] in 

phase space. It can be obtained from Eq.12 as      

𝑣𝑘 − (𝑎 + 1) ∗ 𝑣𝑘 + (𝑎 +
𝑏

𝛾
) = 0  whose complex roots are;  



13 

PDQ-BASED NUMERICAL METHOD TO SIMULATE NERVE PULSE PROPAGATION 

(𝑎 + 1)2 − 4 ∗ (𝑎 +
𝑏

𝛾
) < 0 

If the following condition is satisfied, a pulse wave solution can be obtained    

(1 − 𝑎)2 < 4 ∗ (
𝑏

𝛾
) 

The 2-D domain is partitioned into 𝑥𝑖 , 𝑦𝑗 grid point  𝑖 = 1,2, … ,𝑁,    𝑗 = 1,2, … ,𝑀. Then Eq.1 

becomes as in Eq.13    

𝜕𝑣(𝑥𝑖,𝑦𝑗,𝑡)

𝜕𝑡
= −𝑐1 ∗ (𝑣(𝑥𝑖 , 𝑦𝑗 , 𝑡) ∗ (𝑎 − 𝑣(𝑥𝑖 , 𝑦𝑗 , 𝑡)) ∗ (1 − 𝑣(𝑥𝑖, 𝑦𝑗 , 𝑡))) − 𝑐2 ∗ 𝑟(𝑥𝑖 , 𝑦𝑗 , 𝑡) ∗

𝑣(𝑥𝑖 , 𝑦𝑗 , 𝑡) + 𝐼(𝑥𝑖 , 𝑦𝑗 , 𝑡) + 𝐺𝑥 ∗
𝜕2𝑣(𝑥𝑖,𝑦𝑗,𝑡)

𝜕𝑥2 + 𝐺𝑦 ∗
𝜕2𝑣(𝑥𝑖,𝑦𝑗,𝑡)

𝜕𝑦2          

𝜕𝑟(𝑥𝑖,𝑦𝑗,𝑡)

𝜕𝑡
= 𝑏 ∗ 𝑣(𝑥𝑖 , 𝑦𝑗 , 𝑡) − 𝑔 ∗ 𝑟(𝑥𝑖, 𝑦𝑗, 𝑡)                          (13) 

The BC’s set as a periodic boundary, which means that the edges of the input array are considered 

adjacent points. To solve the coupled system equation in time domain represented in Eq.1, we 

proposed a forward FDM, which was optimised to adaptively sought the most effective time steps 

for approximating a solution within a relative error tolerance (10−5) and absolute error tolerance 

(10−7). Wave propagation along a 2 − 𝐷,𝑁𝑥𝑀 neuron array, whose number is 𝑁 = 𝑀 in one 

dimension, can now be simulated. IC’s set as 2𝑁2 matrix with the first row demonstrating the 

𝑁2 initial voltages and the second row the 𝑁2 values of the primary recovery variables. The 

solver assemble as its output a 𝑡𝑥1 time vector, and a 𝑡𝑥2𝑁2 matrix. By using this configuration, 

the evolution of the voltage and recovery variables of the neuron array can be tracked as time 

progresses.   

The time derivatives of the SFN equation is approximated via the forward FDM. The second-order 

partial derivatives concerning 𝑥 and 𝑦 directions are subjected to the second-order PDQM.  

The complete numerical scheme is represented in the light of this information as in Eq.14  

𝑣(𝑥𝑖,𝑦𝑗,𝑡+∆𝑡)−𝑣(𝑥𝑖,𝑦𝑗,𝑡)

∆𝑡
= −𝑐1 ∗ (𝑣(𝑥𝑖, 𝑦𝑗 , 𝑡) ∗ (𝑎 − 𝑣(𝑥𝑖, 𝑦𝑗 , 𝑡)) ∗ (1 − 𝑣(𝑥𝑖 , 𝑦𝑗 , 𝑡))) − 𝑐2 ∗

𝑟(𝑥𝑖, 𝑦𝑗, 𝑡) ∗ 𝑣(𝑥𝑖, 𝑦𝑗 , 𝑡) + 𝐼(𝑥𝑖 , 𝑦𝑗 , 𝑡) + 𝐺𝑥 ∗ ∑ 𝜔𝑖𝑘
(2)

∗𝑁
𝑘=1 𝑣(𝑥𝑘 , 𝑦𝑗 , 𝑡) + 𝐺𝑦 ∗

∑ 𝜔𝑗𝑘
(2)

∗𝑀
𝑘=1 𝑣(𝑥𝑖, 𝑦𝑘, 𝑡)         

𝑟(𝑥𝑖,𝑦𝑗,𝑡+∆𝑡)−𝑟(𝑥𝑖,𝑦𝑗,𝑡)

∆𝑡
= 𝑏 ∗ 𝑣(𝑥𝑖, 𝑦𝑗 , 𝑡) − 𝑔 ∗ 𝑟(𝑥𝑖, 𝑦𝑗 , 𝑡)                      (14) 
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3.2. The relationship between differential quadrature method and the finite difference 

method 

Let us assume that there exists a 𝑀 grid point in the definition space. Utilising PDQM, one can 

write the first-order derivative of the function 𝑓(𝑥) at the grid point 𝑥𝑖 as a linear sum of the 

function values of the multiplication of the functions at the other grid points with the weight 

coefficients given in Eq.15.  

𝑑 𝑓(𝑥𝑖)

𝑑𝑥
= ∑ (𝑤𝑖𝑗 ∗ 𝑓(𝑥𝑗))

𝑀
𝑗=1 ,    𝑖 = 1,2, . . . , 𝑀                         (15) 

Since the finite difference scheme depends on the Taylor series expansion, the weight coefficients 

can be evaluated through Taylor series expansion as in Eq.16.     

𝑓(𝑥𝑗) = 𝑓(𝑥𝑖) + (𝑥𝑗 − 𝑥𝑖) ∗
𝑑 𝑓(𝑥𝑖)

𝑑𝑥
+ ⋯+ 

(𝑥𝑗−𝑥𝑖)
𝑘

𝑘!
∗

𝑑𝑘 𝑓(𝑥𝑖)

𝑑𝑥𝑘 + ⋯+
(𝑥𝑗−𝑥𝑖)

(𝑀−1)

(𝑀−1)!
∗

𝑑(𝑀−1) 𝑓(𝑥𝑖)

𝑑𝑥(𝑀−1) +

𝐸𝑀                            (16) 

where  𝐸𝑀 =
(𝑥𝑗−𝑥𝑖)

(𝑀)

(𝑀)!
∗

𝑑(𝑀) 𝑓(𝜉)

𝑑𝑥(𝑀) , 𝜉 ∈ [𝑥𝑖, 𝑥𝑗] is the truncation error.     

If we replace Eq.15 into Eq.16, Eq.17 is obtained as  

𝑑 𝑓(𝑥𝑖)

𝑑𝑥
= 𝑓(𝑥𝑖) ∗ ∑ (𝑤𝑖𝑗)

𝑀
𝑗=1 +

𝑑 𝑓(𝑥𝑖)

𝑑𝑥
∗ ∑ (𝑤𝑖𝑗 ∗ (𝑥𝑗 − 𝑥𝑖))

𝑀
𝑗=1 + ⋯+

𝑑𝑘 𝑓(𝑥𝑖)

𝑑𝑥𝑘 ∗ ∑ (𝑤𝑖𝑗 ∗𝑀
𝑗=1

(𝑥𝑗−𝑥𝑖)
𝑘

𝑘!
) + ⋯+

𝑑(𝑀−1) 𝑓(𝑥𝑖)

𝑑𝑥(𝑀−1) ∗ ∑ (𝑤𝑖𝑗 ∗
(𝑥𝑗−𝑥𝑖)

(𝑀−1)

(𝑀−1)!
)𝑀

𝑗=1              (17) 

where 

∑ (𝑤𝑖𝑗)
𝑀
𝑗=1 = 0,    ∑ (𝑤𝑖𝑗 ∗ (𝑥𝑗 − 𝑥𝑖))

𝑀
𝑗=1 = 1,   ∑ (𝑤𝑖𝑗 ∗

(𝑥𝑗−𝑥𝑖)
𝑘

𝑘!
)𝑀

𝑗=1 = 0  𝑘 = 2,3, … ,𝑀 − 1  

Bellman’s first approach, the polynomial 𝑥𝑘 , 𝑘 = 0,1, … ,𝑀 − 1 dictates that 

∑(𝐴𝑖𝑗) = 0

𝑀

𝑗=1

 

∑(𝐴𝑖𝑗 ∗ 𝑥𝑗) = 1

𝑀

𝑗=1

 

∑ (𝐴𝑖𝑗 ∗ 𝑥𝑗
𝑘) = 𝑘 ∗ 𝑥𝑖

𝑘−1𝑀
𝑗=1 ,   𝑖 = 1,2, … ,𝑀 ,  𝑘 = 2,3, … ,𝑀 − 1 

In this way, weight coefficients of the high order finite difference scheme can be calculated for the 
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first-order derivative. The higher order derivatives are also evaluated with the PDQM mentioned 

above as in Eq.18 

𝑑𝑚 𝑓(𝑥𝑖)

𝑑𝑥𝑚
= 𝑓(𝑥𝑖) ∗ ∑ (𝐴𝑖𝑗

𝑚) + ⋯+
𝑑𝑘 𝑓(𝑥𝑖)

𝑑𝑥𝑘
∗ ∑ (𝐴𝑖𝑗

𝑚 ∗
(𝑥𝑗−𝑥𝑖)

𝑘

𝑘!
)𝑀

𝑗=1 + ⋯+
𝑑(𝑚) 𝑓(𝑥𝑖)

𝑑𝑥(𝑚) ∗𝑀
𝑗=1

∑ (𝐴𝑖𝑗
𝑚 ∗

(𝑥𝑗−𝑥𝑖)
(𝑚)

(𝑚)!
)𝑀

𝑗=1          𝑖 = 1,2, … ,𝑀 ;𝑚 = 2,3, … ,𝑀 − 1              (18)  

where  

∑(𝐴𝑖𝑗)
𝑚

𝑀

𝑗=1

= 0, ∑(𝐴𝑖𝑗
𝑚 ∗ (𝑥𝑗 − 𝑥𝑖)

𝑚
) = 𝑚!

𝑀

𝑗=1

,∑(𝐴𝑖𝑗
𝑚 ∗

(𝑥𝑗 − 𝑥𝑖)
𝑘

𝑘!
)

𝑀

𝑗=1

= 0                        

𝑘 = 1,2, … ,𝑀 − 1,    𝑘 ≠ 𝑚  

Accordingly, it can be deduced that PDQM can obtain the weight coefficients in the high-order 

finite difference scheme. In other words, it can be seen that PDQM is equivalent to the high-order 

finite difference scheme. The weight coefficients obtained from one of the sets of base vectors are 

equal to the weight coefficients obtained from another set of base vectors. Therefore, equation 

systems that determine the weight coefficients will be identical. The proof that the equations 

derived from PDQM and finite difference scheme are equal is given in APPENDIX-II. These 

methods can be applied to both internal points and boundary points. Also, regular or irregular grid 

points do not prevent the application of the technique.  

3.3. Implementation Methodology of Boundary Conditions 

The implementation of BC’s is crucial to obtain accurate solutions. The PDQ algebraic equations 

are stated in a matrix form as in Eq.19   

[𝐴]{𝑣} = {𝑏}                        (19) 

where {𝑣} = {𝑣; 𝑟} is a vector of unknown 2(𝑁 ∗ 𝑀) functional values at all discretised points 

of the domain, [𝐴]  is 2(𝑁 ∗ 𝑀) × 2(𝑁 ∗ 𝑀)  coefficient matrix including the weighting 

coefficients 𝜔𝑖𝑘
(2)

 , 𝜔𝑗𝑘
(2)

 , and {𝑏} 𝑖𝑠  the 2(𝑁 ∗ 𝑀) × 1 -sized right-hand side vector comprising 

first-order time derivatives of the function 𝑣.  

The Dirichlet type BC’s are inserted directly because the known values contribute to the right-hand 

side vector {𝑏}. When the BC’s, which covers the normal derivatives of the unknown function 𝑣 

exists, the derivatives are also approximated through PDQM.  
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Dirichlet Type BC’s:  

Dirichlet type BC should be applied at the interior points since the solution at the boundary grid 

points is known. The Eq.13 can be reshaped as in Eq.20.  

𝑣(𝑥𝑖,𝑦𝑗,𝑡+∆𝑡)−𝑣(𝑥𝑖,𝑦𝑗,𝑡)

∆𝑡
= −𝑐1 ∗ (𝑣(𝑥𝑖, 𝑦𝑗 , 𝑡) ∗ (𝑎 − 𝑣(𝑥𝑖, 𝑦𝑗 , 𝑡)) ∗ (1 − 𝑣(𝑥𝑖 , 𝑦𝑗 , 𝑡))) − 𝑐2 ∗

𝑟(𝑥𝑖, 𝑦𝑗, 𝑡) ∗ 𝑣(𝑥𝑖, 𝑦𝑗 , 𝑡) + 𝐼(𝑥𝑖 , 𝑦𝑗 , 𝑡) + 𝐺𝑥 ∗ ∑ 𝜔𝑖𝑘
(2)

∗𝑁−1
𝑘=2 𝑣(𝑥𝑘, 𝑦𝑗 , 𝑡) + 𝐺𝑦 ∗

∑ 𝜔𝑗𝑘
(2)

∗𝑁−1
𝑘=2 𝑣(𝑥𝑖 , 𝑦𝑘, 𝑡) + 𝐷𝑖𝑗                       (20) 

where 2 ≤ 𝑖 ≤ 𝑁 − 1, 2 ≤ 𝑗 ≤ 𝑀 − 1 

𝐷𝑖𝑗 = 𝜔𝑖1
(2)

𝑣(𝑥1, 𝑦𝑗 , 𝑡) + 𝜔𝑖𝑁
(2)

𝑣(𝑥𝑁 , 𝑦𝑗 , 𝑡) + 𝜔𝑗1
(2)

𝑣(𝑥𝑖, 𝑦1, 𝑡) + 𝜔𝑗𝑀
(2)

𝑣(𝑥𝑖, 𝑦𝑀 , 𝑡) 

Eq.20 can be evaluated by using iterative methods for discrete-time derivative values of 𝑣 after 

the time derivative is discretised.  

Neumann Type BC’s:  

The normal derivative of the 𝑣(𝑥, 𝑦, 𝑡) can be obtained as 

𝜕𝑣(𝑥, 𝑦, 𝑡)

𝜕𝑛
=

𝜕𝑣(𝑥, 𝑦, 𝑡)

𝜕𝑥
∗ 𝑛𝑥⃗⃗⃗⃗ +

𝜕𝑣(𝑥, 𝑦, 𝑡)

𝜕𝑦
∗ 𝑛𝑦⃗⃗ ⃗⃗  

For the Neumann conditions, the normal derivatives on the boundary are also discretised by PDQM 

as in Eq.21 

𝜕𝑣(𝑥𝑖,𝑦𝑗,𝑡)

𝜕𝑥
= ∑ 𝜔𝑖𝑘

(1)
∗𝑁

𝑘=1 𝑣(𝑥𝑘, 𝑦𝑗 , 𝑡)     𝑖 = 1,2, … , 𝑁 

𝜕𝑣(𝑥𝑖,𝑦𝑗,𝑡)

𝜕𝑦
= ∑ 𝜔𝑗𝑘

(1)
∗𝑀

𝑘=1 𝑣(𝑥𝑖, 𝑦𝑘, 𝑡)     𝑗 = 1,2, … ,𝑀                  (21) 

Assuming 
𝜕𝑣(𝑥𝑁,𝑦𝑗,𝑡)

𝜕𝑥
= 𝑐𝑗   (𝑗 = 1,2, … ,𝑀 ) and 

𝜕𝑣(𝑥𝑁,𝑦𝑗,𝑡)

𝜕𝑦
= 0  are given on one part of the 

boundary; it can be written as in Eq.22     

𝜕𝑣(𝑥𝑁,𝑦𝑗,𝑡)

𝜕𝑥
= ∑ 𝜔𝑁𝑘

(1)
∗𝑁

𝑘=1 𝑣(𝑥𝑘, 𝑦𝑗 , 𝑡) = 𝜔𝑁𝑁
(1)

∗ 𝑣(𝑥𝑁 , 𝑦𝑗 , 𝑡) + ∑ 𝜔𝑁𝑘
(1)

∗𝑁−1
𝑘=1 𝑣(𝑥𝑘, 𝑦𝑗 , 𝑡) = 𝑐𝑗    (22)                                            

𝑣(𝑥𝑁 , 𝑦𝑗 , 𝑡) is obtained as a value on the boundary as in Eq.23 

𝑣(𝑥𝑁 , 𝑦𝑗 , 𝑡) =
1

𝜔𝑁𝑁
(1) (𝑐𝑗 − ∑ 𝜔𝑁𝑘

(1)
∗𝑁−1

𝑘=1 𝑣(𝑥𝑘, 𝑦𝑗 , 𝑡))          𝑗 = 1,2, … ,𝑀             (23) 

These 𝑀 equations for the unknowns 𝑣(𝑥𝑁 , 𝑦𝑗 , 𝑡), 𝑗 = 1,2, … ,𝑀 are replaced to the Eq.19 which 

is written for 𝑖 ≠ 𝑁, 𝑗 = 1,2, … ,𝑀  for the case of Neumann type of BC’s 
𝜕𝑣(𝑥𝑁,𝑦𝑗,𝑡)

𝜕𝑥
= 𝑐𝑗  on 
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𝑥 = 𝑥𝑁 , (𝑖 = 𝑁).         

The mixed type BC’s combined with the Dirichlet and Neumann BC’s are applied similarly.    

 

4. MAIN RESULTS 

Simulations are conducted via Matlab code, which describes a monodomain reaction-diffusion 

model in 2-D. SFN equations are constructed to simulate the spiral wave-shaped neuron AP. The 

progression of the two normalised state variables, membrane voltage 𝑣(𝑥, 𝑦, 𝑡)  moreover, 

recovery 𝑟(𝑥, 𝑦, 𝑡) , is computed across a 128 × 128  spatial domain and across time. Two 

different pacing methods were selected to initiate the spiral waves   

1) two-point stimulation where a point stimulus is delivered in the centre of the domain 

followed by another point stimulus on the partially refractory wake of the first wave of 

excitation. 

2) cross-field stimulation where a stimulus is applied to the left domain boundary causing a 

plane wave. As this wave travels across the domain, a second stimulus is applied to the 

bottom boundary of the domain.       

As the simulations run the activation state of the individual units comprising the domain is mapped 

to colour and plotted in a figure window. A count of time steps is displayed at the top of the plot. 

Model equations are solved using PDQM for spatial derivatives and FDM for time derivatives. A 

movie file in .AVI format is produced after simulation conducted in Matlab. One simulation takes 

about 120 seconds on an Intel Core i7-6700HQ CPU 2.60 GHz. 64-bit Laptop.  

Model parameters are represented in Table 1.  

Table 1: Membrane parameters of the SFN neuron model.  

𝑎 = 0.13 

𝑏 = 0.013 

𝑐1 = 0.26 

𝑐2 = 0.1 

𝛾 = 0.013 

𝐺𝑥 = 𝐺𝑦 = 1 (𝑖𝑠𝑜𝑡𝑟𝑜𝑝𝑖𝑐 𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛) 

The diffusive terms "𝐺𝑥 𝑎𝑛𝑑 𝐺𝑦" control the passive spread of current. The ionic currents are 
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defined by 𝑏, 𝛾, 𝑐1 and 𝑐2 terms, respectively. The activation function is governed by the cubic 

term 𝑓(𝑣(𝑥, 𝑦, 𝑡)). There exist three fixed points at 𝑣 = 0, 𝑣 = 𝑎 and 𝑣 = 1. The points 𝑣 = 0 

and 𝑣 = 1 are stable and responsible for the resting and excited states. The excitation threshold, 

which makes the Eq.1 unstable at point 𝑣 = 𝑎  , is represented by 𝑎 . A point in the domain 

evolves to 𝑣 = 0  unless the fluctuations dominate the excitation threshold. The refractory 

variable 𝑟 pulls the system to the resting state and prohibits the re-excitation for a certain recovery 

period. When the parameters are selected suitably, local state vibrates around resting, excitation 

and refractory zones [51]. 

4.1. Action potential propagation without diffusion 

First of all, the AP without diffusion is investigated by using the parameters given in Table 1. The 

stimulus pattern to initiate the AP is given in Fig.1 

 

Figure 1: The stimulus pattern for starting AP (The width of the impulse stimulus is 0.5). 

These instants are chosen so that the full profile of AP can be captured. The AP waveforms and 

phase portrait of the excitation and recovery variables were given in Fig.2a and Fig.2b., 

respectively.   
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(a) 

 

(b) 

 

Figure 2: a) Traveling SFN waves in one dimension or AP profiles in time domain 𝑣(𝑡), 𝑟(𝑡), b) 

corresponding phase portraits.  

The waveform of 𝑣(𝑡) exhibits a negative trend during the refractory state of the wave. While 

𝑣(𝑡) approaches to zero, 𝑟(𝑡) is elevated.   

4.2. Action potential propagation with diffusion 

2 − D domain is chosen as a square shape, whose number of columns (x − direction) and some 



20 

CAGLAR UYULAN 

rows in (y − direction)  are 128 with a grid (mesh) size 1. The total number of time steps in a 

full simulation (duration) is 25000, with a 0.15-time step in each iteration. The code of the 

stimulation protocols is given in APPENDIX-III for two-point and cross-field stimulation.  

Case 1: Spiral waves initiated by two-point stimulation 

In this case, two different types of stimulus 𝐼1 = 2 ∗ threshold  and 𝐼2 = 5 ∗ threshold  is 

applied to a different location and different time. First 𝐼1 wave is initiated at the position given in 

Fig.3a; then it propagates through the domain (Fig. 3b, Fig.3c). Then, 𝐼2 is induced, resulting in 

elliptical wavefront due to the anisotropy of the array (Fig.3d, Fig.3e). As a result, a pair of self-

sustaining counter-rotating spirals are created (Fig.3f, Fig.3g). As time advances, the two tails of 

the spiral collide and, this process gives rise to another cyclic spiral wave (Fig.3h, Fig.3i, Fig.3j). 

The frames regarding this periodic shape are given in Fig3k, Fig3l, Fig.3m, respectively 

(a)                    (b)                      (c) 

 

 

         (d)          (e)           (f) 
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           (i)                      (g)                 (h)                                                                

 

 

 (j)          (k)                (l) 

 

 

(m) 

 

Figure 3: Video frames are presenting the initiation of spiral wave activity in two-dimensional 

neuron array of FitzHugh-Nagumo excitable cells subjected to two-point stimulation.  
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Case 2: Spiral waves initiated by cross-field stimulation 

In this case, a conditioning stimulus (𝐼1 = 2 ∗ threshold) applied to the whole column of cells on 

the left border of the array, initiated a planar wave which advances with a uniform velocity toward 

the right (Fig.4a). Then, a test stimulus (𝐼2 = 5 ∗ threshold) is activated perpendicularly to 𝐼1 

moreover, a second planar wave, which propagates upward, where it coincided with the refractory 

end of 𝐼1 (Fig.4b, Fig.4c). 𝐼2 wave enters to the curl phase toward the right (Fig.4d, Fig.4e). In 

Fig.4f and Fig.4g, the subsequent changes of the 𝐼2 wave is represented as it rotates clockwise. A 

self-sustaining activity, which generates a transient discontinuity in the propagating wave, can be 

induced in a 2-D excitable domain (Fig.4h, Fig.4i, Fig.4j). The timing of the stimulus 𝐼2 cause 

the position of both the break pattern and the centre of rotation of the spiral wave.     

 

(a)                   (b)           (c) 

            

 

(d)               (e)                  (f)    

 

 

 



23 

PDQ-BASED NUMERICAL METHOD TO SIMULATE NERVE PULSE PROPAGATION 

(g)     (h) 

 

        

                (i)                        (j) 

 

Figure 4: Video frames are presenting the initiation of spiral wave activity in two-dimensional 

neuron array of FitzHugh-Nagumo excitable cells subjected to cross-field stimulation.  

The branching nature of AP is explored in the simulation. Thus, it can be predicted when the two 

APs travelling in opposite directions coincided. It can also be deduced that the refractory zones 

block two colliding pulses from passing through each other. The FHN model simulation shows 

that the pulses eliminate each other upon collision. Spiral waves, which are self-sustained waves 

of excitation, rotate around an obstacle and repeats its activating sequence with a determined 

frequency. Spiral waves might break up into smaller waves [52-54]. 

Case 3: Spiral waves initiated by mixed BC’s for two-point stimulation case 

In this case, the stimulation process is the same as Case 1, but the BC’s are set mixed as given 

below.   

Dirichlet BC’s 
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𝑣(0, 𝑦, 𝑡) = 0,    𝑣(𝑁, 𝑦, 𝑡) =
1

2
+

1

2
tanh (

1

2√2
(𝑁 −

2𝑎−1

√2
𝑡))   

𝑣(𝑥, 0, 𝑡) = 0, 𝑣(𝑥,𝑀, 𝑡) =
1

2
+

1

2
tanh (

1

2√2
(𝑀 −

2𝑎−1

√2
𝑡))    ,   𝑡 ∈ [0, 𝑇]    

Neumann BC’s  

𝜕𝑣(0,𝑦,𝑡)

𝜕𝑥
= 0,    

𝜕𝑣(𝑁,𝑦,𝑡)

𝜕𝑥
=

1

2
+

1

2
tanh (

1

2√2
(𝑁 −

2𝑎−1

√2
𝑡))                  , 𝑡 ≥ 0 

𝜕𝑣(𝑥,0,𝑡)

𝜕𝑦
= 0,    

𝜕𝑣(𝑥,𝑀,𝑡)

𝜕𝑦
=

1

2
+

1

2
tanh (

1

2√2
(𝑀 −

2𝑎−1

√2
𝑡))                  , 𝑡 ≥ 0 

Subject to the IC 

𝑣(𝑥, 𝑦, 0) = ℎ̂(𝑥, 𝑦)                               ,    0 ≤ 𝑥 ≤ 𝑁, 0 ≤ 𝑦 ≤ 𝑀 

where ℎ̂(𝑥, 𝑦) = [
1

2
+

1

2
tanh (

𝑥

2√2
) ,

1

2
+

1

2
tanh (

𝑦

2√2
)]        

where (𝑥, 𝑦) represents the spatial coordinates, 𝑡 indicates the time.  

The evolution of wave propagation is represented in Fig.5.  

 

 



25 

PDQ-BASED NUMERICAL METHOD TO SIMULATE NERVE PULSE PROPAGATION 
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Figure 5: Video frames are presenting the initiation of spiral wave activity in two-dimensional 

neuron array of FitzHugh-Nagumo excitable cells subjected to two-point stimulation with mixed 

BC’s.  

 

5. CONCLUSION 

In this paper, the numerical solutions of the excitable neuron array are derived from the SFN 

equations, which reveals the dynamical behaviour of the neuron excitability and spiral wave 

activity. The fast and slow variables of the HH model is reduced for simplicity as an SFN model. 

Travelling wave pulse solutions are presented using PDQM for two-point and cross-field 

stimulation in the system having Neumann-type BCs, and Dirichlet-Neumann-type mixed BC’s, 

respectively. It is possible to reproduce/mimic the dynamic systems of the electrophysiological 

description of neuronal activity by numerical simulation. The simulation methodology 

demonstrates a predictive model of AP propagation, whose properties comprise branching and 
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collision. The effects of diffusion on the travelling speed and wavefront width can also be captured 

via presented simulation. It is also possible to research the dynamics coupled with an electrode 

stimulus.  

The main contribution of this paper is that a novel hybrid PDQM and FDM-based numerical 

approach was adapted to solve the nonlinear SFN equation. This method can be implemented to 

find solutions for other nonlinear PDE’s which emerges in engineering, mathematical physics. The 

simulation results are found to be in good agreement with the literature.  

In the future works, a detailed parametric analysis will be investigated to capture the chaotic neuron 

dynamics emerged from SFN equation and next step is to simulate a rich set of neural firing 

behaviour through a 3-D model by using the tools of quantitative and geometric/graphical 

dynamical system analysis (stability, chaos and bifurcation etc.). 
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APPENDIX-I 

function [A,B,C,D,X]=DQSS(N,p,q) 

% [p q] Domain  

for i=1:N  

X(i)=(0.5*(1-cos((i-1)*pi/(N-1)))); % CGL Grid Points  

end  

%for i=1:N 

%X(i)=(i-1)/(N-1); 

%end 

X=normalize_var(X,p,q); *** 

Y=ones(N); 

for i=1:length(X)  % length(xx)=N 
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Y(i)=1; 

for k=1:N 

if(k~=i) 

Y(i)=Y(i)*(X(i)-X(k));   

end 

end 

end 

% Weighted Coefficient [Aij] Shu's Approach NxN matrix (1)   

A=zeros(N);  

for i=1:N 

for j=1:N 

if(j~=i) 

A(i,j)=Y(i)/((X(i)-X(j))*Y(j));  

A(i,i)=A(i,i)-A(i,j); % First Order Weighted Coefficients 

end 

end 

end 

% Weighted Coefficient [Bij] Shu's Approach NxN matrix (2)  

B=zeros(N); 

l=2; 

for i=1:N 

for j=1:N 

if(j~=i) 

B(i,j)=l*(A(i,j)*A(i,i)-A(i,j)/(X(i)-X(j)));   

B(i,i)=B(i,i)-B(i,j); % Second Order Weighted Coefficients 

end 

end 
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end 

% B=A*A;  

% Weighted Coefficient [Cij] (3) Shu's Approach NxN matrix  (3)  

C=zeros(N);  

m=3; 

for i=1:N 

for j=1:N 

if(j~=i) 

C(i,j)= m*(A(i,j)*B(i,i)-B(i,j)/(X(i)-X(j)));  

C(i,i)=C(i,i)-C(i,j); % Third order Weighted Coefficients 

end 

end 

end 

% C=A*B;  

% Weighted Coefficient [Dij](4) Shu's Approach NxN matrix (4)  

D=zeros(N);  

n=4; 

for i=1:N 

for j=1:N 

if(j~=i) 

D(i,j)= n*(A(i,j)*C(i,i)-C(i,j)/(X(i)-X(j)));  

D(i,i)=D(i,i)-D(i,j); % Fourth Order Weighted Coefficients 

end 

end 

end 

%D=A*C;   

end 
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***function normalized = normalize_var(array, x, y) 

% Normalize to [0, 1]: 

m = min(array); 

range = max(array) - m; 

array = (array - m) / range; 

% Then scale to [x,y]: 

range2 = y - x; 

normalized = (array*range2) + x; 

end 

 

APPENDIX-II 

 𝑖, 𝑗 = 1,2, … ,𝑀 and 𝑚 = 2,3,… ,𝑀 − 1  

(𝐴𝑖𝑗)
𝑚

= 𝑚(𝑤𝑖𝑗 ∗ 𝐴𝑖𝑖
𝑚−1 −

(𝐴𝑖𝑗)
𝑚−1

𝑥𝑖−𝑥𝑗
)    

For 𝑚 = 1  

∑ (𝐴𝑖𝑗)
𝑚

= ∑ (𝑤𝑖𝑗)
𝑚𝑀

𝑗=1 = 0𝑀
𝑗=1      

For 2 ≤ 𝑚 ≤ 𝑀 − 1  

∑ ((𝐴𝑖𝑗)
𝑚−1

∗ (𝑥𝑗 − 𝑥𝑖)
𝑘
)𝑀

𝑗=1 = {
(𝑚 − 1)! ,   𝑘 = 𝑚 − 1

              0,         𝑘 ≠ 𝑚 − 1                
     

For 1 ≤ 𝑘 ≤ 𝑀 − 1      

∑ ((𝐴𝑖𝑗)
𝑚

∗ (𝑥𝑗 − 𝑥𝑖)
𝑘
) =𝑀

𝑗=1 ∑ ([𝑚 ∗ 𝑤𝑖𝑗 ∗ (𝐴𝑖𝑖)
𝑚−1 − 𝑚 ∗ 

(𝐴𝑖𝑗)
𝑚−1

𝑥𝑖−𝑥𝑗
] ∗ (𝑥𝑗 − 𝑥𝑖)

𝑘
)𝑀

𝑗=1 = 𝑚 ∗

(𝐴𝑖𝑖)
𝑚−1 ∗ ∑ (𝑤𝑖𝑗 ∗ (𝑥𝑗 − 𝑥𝑖)

𝑘
) + 𝑚 ∗ ∑ ((𝐴𝑖𝑗)

𝑚−1
∗ (𝑥𝑗 − 𝑥𝑖)

𝑘−1
)𝑀

𝑗=1
𝑀
𝑗=1 =  

𝑚 ∗ ∑ ((𝐴𝑖𝑗)
𝑚−1

∗ (𝑥𝑗 − 𝑥𝑖)
𝑘−1

)𝑀
𝑗=1             

∑ ((𝐴𝑖𝑗)
𝑚

∗ (𝑥𝑗 − 𝑥𝑖)
𝑘
) = {

𝑚!  ,     𝑘 = 𝑚
0,      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑀
𝑗=1      

APPENDIX-III 

deltat=1e-3; 

tend=25000*deltat; 
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t=0:deltat:tend; 

N=128; % Number of grid points in x-dimension   

M=128; % Number of grid points in y-dimension 

% Set initial stimulation current and pattern 

threshold=10; 

I_stim_1=2*threshold; 

I_stim_2=5*threshold; 

i_stim=zeros(N,M); 

if StimulationProtocol==1 

i_stim(N/2:N/2+5,M/2:M/2+5)=I_stim_1; 

else 

i_stim(:,1)=I_stim_1; 

end   

n1e=20*deltat; % Step at which to end 1st stimulus 

switch StimulationProtocol 

case 1 % Two-point stimulation 

n2b=3800*deltat; % Step at which to begin 2nd stimulus 

n2e=3900*deltat; % Step at which to end 2nd stimulus 

case 2 % Cross-field stimulation 

n2b=5400*deltat; % Step at which to begin 2nd stimulus 

n2e=5420*deltat; % Step at which to end 2nd stimulus 

end 

while ~done % Time loop  

if n == n1e % End 1st stimulus 

i_stim=zeros(N,M); 

end 

if n == n2b % Begin 2nd stimulus 
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switch StimulationProtocol 

case 1 

i_stim(N/2:N/2+5,M/2:M/2+5)=I_stim_2; 

case 2 

i_stim(end,:)=I_stim_2; 

end 

end 

if n == n2e % End 2nd stimulus 

i_stim=zeros(N,M); 

end 
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