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Abstract. Malaria is an infectious disease caused by Plasmodium and transmitted through the bite of female

Anopheles mosquitoes. This article constructs a mathematical model to understand the spread of malaria by

considering the vector–bias phenomenon in the infection process, secondary infection, and fumigation as a means

of malaria control. The model is constructed as a SIRI-UV model based on six-dimensional non-linear ordinary

differential equations. Analysis of the equilibrium points with their local stability and sensitivity analysis of the

basic reproduction number R0 is shown analytically and numerically. Based on the analytical studies, two types of

equilibrium points were obtained, namely the disease-free equilibrium points and the endemic equilibrium points.

We find that the disease-free equilibrium is locally stable if R0 < 1. Our proposed model shows the possibility of

a forward bifurcation, backward bifurcation, or forward bifurcation with hysteresis. To support the interpretation

of the model, a numerical simulation for the sensitivity of R0 and some autonomous simulations conducted to see

how the change of parameter will affect the dynamics of our model. Simulation results show that the increasing of

mortality rate on mosquitoes due to fumigation will increase the probability that malaria is eliminated.
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1. INTRODUCTION

Malaria is a mosquito-borne disease caused by protozoan parasites in the genus Plasmodium

which infect humans through the bites of infected female genus Anopheles mosquitoes. Ac-

cording to the World Health Organization’s report, there were an estimated 219 million cases of

malaria in 2017, compared to 217 million cases the year before. The total funding for malaria

control and elimination reached an estimated of US$ 3.1 billion in 2017 [1]. The rate of malaria

incidents is highest in the following five countries: Nigeria (25%), Congo Democratic Republic

(11%), Mozambique (5%), India (4%) and Uganda (4%).

Five species of Plasmodium parasites can infect humans: (1) P. falciparum, (2) P. vivax, (3)

P. ovale, (4) P. malariae, and (5) P. knowlesi. Clinically, P. falciparum and P. vivax are the

biggest threat to humans compared to the other species. The common symptoms include fever,

headache, shivering, cold sweat, aches, nausea and vomiting. Infection of P. falciparum can

lead to other complications such as severe anemia, acute respiratory distress syndrome, kidney

failure, and cerebral malaria [2].

Various efforts to prevent and control the spread of malaria have been carried out to reduce

the prevalence of the disease. Some of these efforts include insecticide-treated mosquito nets

and indoor spraying with residual insecticides [1]. In Indonesia, the government has imple-

mented several programs to control mosquito vectors in the form of a week of anti-mosquito

nets (”pekan kelambu anti nyamuk massal”) and monitoring its use, training workers against

malaria, and provision of diagnostic tools and anti-malarial drugs [3].

A mathematical model for malaria transmission was first introduced in 1916 [4] and further

extended by Macdonald [5, 6]. Models with acquired immunity were studied later [7, 8, 9].

Since the resistance to malaria is not fully acquired and declines through time, without new

exposures, individuals may lose immune memory and become infected again [10]. Here, we

use the SIS model to describe the dynamics of malaria in the human population. For a mosquito

population, we use the SI model under the assumption that mosquitoes do not recover from

malaria parasites, and also, the malaria parasites do not harm the host. This type of model is

based on the Ross-Macdonald model [6]. Several blood-seeking mosquitoes search for their

meals by the use of host odors, breath, and sweat [11, 12, 13].
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A vector-bias model in malaria was first introduced in [14]. This model is an extension of

the Ross-Macdonald model by considering the greater attractiveness of infectious humans to

mosquitoes [5, 6]. Following Kingsolver’s work [15] incorporates an extrinsic incubation time

in mosquitoes to study the dynamics of the disease in terms of a reproduction number. Cham-

chod and Britton combined a vector-bias term into the malaria transmission model and showed

that the greater vector-bias affects greater attractiveness of infectious humans to mosquitoes

affected malaria transmission [16].

After recovery, humans with primary infection of malaria can be infected malaria for the sec-

ond time as a secondary infection. Generally, with a secondary infection, humans do not show

clinical symptoms (asymptomatic). However, this infection may be fatal. Therefore, we include

the compartment of secondary infection in our malaria transmission model by also considering

vector-bias, which is the tendency of mosquitoes to bite humans. In detail, we discretized

humans in our model into four compartments: Humans with primary infection (I1) represents

humans who received first-time infections and show clinical symptoms; humans with secondary

infection (I2) describes humans with re-infection without clinical symptoms; susceptible indi-

viduals (S), and individuals who have just recovered from malaria (R) [17].

The next section of this paper discusses the construction of malaria transmission model,

which is followed by mathematical analysis of the model. The analysis is the existence and lo-

cal stability of DF , basic reproduction number (R0), endemic equilibrium EE, and bifurcation.

Section 4 explains the numerical simulations that are carried out on the model. The numer-

ical simulations consist of sensitivity of R0 relative to some parameters, and an autonomous

simulations. Finally, the last section is the conclusion.

2. THE CONSTRUCTION OF MATHEMATICAL MODEL

To begin our construction, let us divide the human population into four classes based on their

health status: susceptible (S); clinical symptomatic malaria individuals resulting in a suscepti-

ble individual after the first infection (I1); recovered (R); asymptomatic infection resulting from

recovered individuals (I2); while the mosquito population is divided into two classes: suscepti-

ble (U) and infected (V ). I2 compartment is only for non-primary infections, while the primary

infection individuals are included in I1. In this paper, we assume that individuals who have
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FIGURE 1. The transmission diagram of malaria with secondary infection.

recovered from the first malaria infection may instantly get infected again by mosquito bites.

The vector-bias phenomenon occurs when mosquitoes are more attracted to infected individu-

als, and this vector-bias is included in our model. Variables N and M are the total number of

individuals and mosquitoes, respectively. The malaria transmission diagram with the secondary

infection is given in Fig.1.

Hence, based on transmission diagram in Fig.1, the dynamics of malaria with secondary

infection is written as follows:
dS
dt

= A− βhSV
S+η (I1 + I2)+R

−µS,

dI1

dt
=

βhSV
S+η (I1 + I2)+R

− τ1I1−µI1,

dR
dt

= τ1I1 + τ2I2−
βhRV

S+η (I1 + I2)+R
−µR,

dI2

dt
=

βhRV
S+η (I1 + I2)+R

− τ2I2−µI2−δ I2,

dU
dt

= B− βvηU (I1 + I2)

S+η (I1 + I2)+R
−κU−θU,

dV
dt

=
βvηU (I1 + I2)

S+η (I1 + I2)+R
−κV −θV,

(1)

where all parameters are positive and described as in Table 1. Denote η ≥ 1, and η is called a

bias parameter. When η = 1, there is no vector-bias effect in the model.
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TABLE 1. List of parameters for malaria transmission in model (1).

Par Description Value Unity References

A The number of human births 0.4215 human
day assumed

µ Natural death rate of humans 0.000039 1
day [18]

δ Natural death rate from asymptomatic infections 0.1 1
day assumed

βh Transmission rate in humans 0.0084 human
mosquito×day [18]

βv Transmission rate in mosquitoes 0.084 1
day [18]

τ1 Recovery rate from clinical infections 0.14 1
day assumed

τ2 Recovery rate from asymptomatic infections 0.0714 1
day assumed

η Bias parameter 2 − assumed

B The number of adult mosquitoes 4761.9 mosquito
day assumed

κ Natural death rate of mosquitoes 0.0476 1
day [19]

θ Fumigation death rate of mosquitoes 0.1 1
day assumed

For the system in model (1) to be epidemiological meaningful, we have to prove that all of

its state variables are always non-negative. In this case, we have to prove the positivity and

boundedness of solutions, and also an invariant region of solutions.

2.1. Positivity and boundedness of solutions.

Theorem 1. Given the initial conditions of model (1) is

(S(0), I1(0),R(0), I2(0),U(0),V (0))≥ 0,

then the solution (S(t), I1(t),R(t), I2(t),U(t),V (t)) of the malaria model (1) is non-negative for

all t ≥ 0. Furthermore

lim
t→∞

supN(t)≤ A
µ
, lim

t→∞
supM(t)≤ B

κ +θ
,

where

N(t) = S(t)+ I1(t)+R(t)+ I2(t), M(t) =U(t)+V (t).
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Proof. Consider the first equation in model (1), i.e. dS
dt +S( βhV

S+η(I1+I2)+R +µ) = A. If S(t)→ 0,

then lim
S(t)→0

dS
dt = A ≥ 0, it means S(t) is a non decreasing function. Therefore S(t) ≥ S(0) for

t ≥ 0. In the similar way, it can be proven that R(t) > 0, I2(t) > 0,U(t) > 0,V (t) > 0. Then

(S(t), I1(t),R(t), I2(t),U(t),V (t)) ≥ 0 for t ≥ 0. Next, the rate of change in the total of human

population over time is

dN
dt

= A−µN−δ I2,

≤ A−µN.

By the variable separation method, we have N ≤ A−e−µ(t+C)

µ
. While t→ ∞, then N→ A

µ
. Previ-

ously it is known that N ≤ A− e−µ(t+C)

µ
, then N ≤ A

µ
− e−µ(t+C)

µ
≤ A

µ
. So we have

lim
t→∞

supN(t)≤ A
µ
.

Similarly, the rate of change in the mosquito population is

dM
dt

= B− (κ +θ)M.

By the variable separation method, we have M = B−e−(κ+θ)(t+C)

κ+θ
. When M = B−e−(κ+θ)(t+C)

κ+θ
, then

M = B
κ+θ
− e−(κ+θ)(t+C)

κ +θ
≤ B

κ+θ
.

For t→ ∞, then

M =
B− e−(κ+θ)(t+C)

κ +θ
,

M→ B
κ +θ

.

This result can be written as

lim
t→∞

supM(t)≤ B
κ +θ

.

Hence, N is bounded by A
µ

and M is bounded by B
κ+θ

. �
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2.2. Invariant regions. The malaria model (1) can be stated in a biologically-feasible region

as follows. Consider the region

Ω = Ωh×Ωv ⊂ R4
+×R2

+,

where

Ωh =

{
(S, I1,R, I2) ∈ R4

+ : N(t)≤ A
µ

}
,

Ωv =

{
(U,V ) ∈ R2

+ : M(t)≤ B
κ +θ

}
.

Based on subsection 2.1, the region Ω in model (1) is positively-invariant with non-negative

initial conditions in R6
+.

3. MODEL ANALYSIS

This section discusses the analysis of the deterministic model (1), that consists of: the exis-

tence and local stability of disease-free equilibrium (DF), basic reproduction number (R0) and

the endemic equilibrium points (EE).

3.1. Existence and local stability of disease-free equilibrium. The malaria model (1) has a

disease-free equilibrium point given by

DF = (S, I1,R, I2,U,V ) =

(
A
µ
,0,0,0,

B
κ +θ

,0
)
.(2)

This steady state presents the extinction of malaria in both populations, human and mosquito.

One should note that the total of human population in (2) is absorbed in the susceptible pop-

ulation, likewise as in mosquito population. Next, we analyze the local stability of DF by

linearizing the system (1) using the Jacobian matrix. The Jacobian matrix of system (1) is given
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by

JDF =



−µ 0 0 0 0 −βh

0 −µ τ1 τ2 0 0

0 0 −τ1−µ 0 0 βh

0 0 0 −τ2−µ−δ 0 0

0 0 − βvηBµ

(κ+θ)A − βvηBµ

(κ+θ)A −κ−θ 0

0 0 βvηBµ

(κ+θ)A
βvηBµ

(κ+θ)A 0 −κ−θ



.(3)

The corresponding eigenvalues are λ1 = λ2 =−µ , λ3 =−θ −κ , λ4 =−δ −µ− τ2, while the

other two eigenvalues are determined from the second degree polynomial as follows:

λ
2 +a1λ +a0 = 0,

where a1 = (κ +µ + τ1 +θ)> 0,a0 = (1−R2
0)A(µ + τ1)(κ +θ)2, and

R0 =

√
A(µ + τ1)βvηBµβh

A(µ + τ1)(κ +θ)
.

Based on the Routh-Hurwitz criterion, the following result holds:

Theorem 2. The malaria free steady state (DF) of system (1) always exists and is locally asymp-

totically stable (LAS) if R0 < 1.

3.2. Basic reproduction number(R0). In this section, the basic reproduction number of the

system (1) is discussed. In many mathematical models, the disease will always die out whenever

the basic reproduction number is less than one [20, 21, 22, 23, 24]. The basic reproduction

number (R0) is determined from the system (1) by using the next generation matrix approach

[25]. For that purpose, we define the transmission matrix (F ) and the transition matrix (V ) of
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system (1), respectively, as follows:

F =


− βhSV η

(S+η(I1+I2)+R)2 − βhSV η

(S+η(I1+I2)+R)2
βhS

S+η(I1+I2)+R

− βhRV η

(S+η(I1+I2)+R)2 − βhRV η

(S+η(I1+I2)+R)2
βhR

S+η(I1+I2)+R

βvηU
S+η(I1+I2)+R −

βvη2U(I1+I2)
(S+η(I1+I2)+R)2

βvηU
S+η(I1+I2)+R −

βvη2U(I1+I2)
(S+η(I1+I2)+R)2)

0

 ,

V =


−τ1−µ 0 0

0 −τ2−µ−δ 0

0 0 −κ−θ

 .

By using both matrices above, the basic reproduction number of system (1) is given by:

R0 =ρ(−FV−1) =

√
A(µ + τ1)βvηBµβh

A(µ + τ1)(κ +θ)
,(4)

where ρ is the spectral radius operator. Please note that according to Theorem (2) , and the form

of basic reproduction number in (4), we have the following corollary.

Corollary 1. Malaria will be eradicated and disappear from population whenever the basic

reproduction number is less than unity, and unstable otherwise.

The basic reproduction number (R0) presents the number of secondary malaria infection

in a completely susceptible population, due to infection from one primary infected malaria

individual in one infection period.

3.3. Endemic equilibrium and bifurcation. The endemic equilibrium of system (1), that is

EE, is difficult to determine explicitly. Therefore, we show this equilibrium as a function of I1,

which is given by

EE = (S, I1,R, I2,U,V ) = (S∗, I∗1 ,R
∗, I∗2 ,U

∗,V ∗),(5)
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where

S∗ =
(A+ I1(−µ− τ1))

µ
,

R∗ =
τ1((−µ− τ1)I1 +A)I1(µ +δ + τ2)

(−τ2(µ + τ1)I1 +A(µ +δ + τ2))µ
,

I∗2 =
I2
1 τ1(µ + τ1)

((−µ− τ1)I1 +A)τ2 +A(µ +δ )
,

U∗ =
B((µk1k5−δτ1)(µ + τ1)I2

1 +A(k1µ2 +(δk1 + k2τ2)µ− τ1τ2)I1 +A2(µ + k6))

k4(k5b1µ−δτ1k3)I2
1 +A(b1µ2 +(b2κ +b2θ +βvηk6)µ− τ1τ2k3)I1 +A2k3(µ + k6)

,

V ∗ =
I1((µk1k5−δτ1)k4I2

1 +A(k1µ2 +(δk1 + k2τ2)µ− τ1τ2)I1 +A2(µ + k6))k4

((−µ− τ1)I1 +A)(−τ2(µ + τ1)I1 +A(µ +δ + τ2))βh
,

and k1 = η − 1,k5 = τ1− τ2,k2 = η − 2,k6 = δ + τ2, k3 = κ +θ ,b1 = k1κ + k1θ +βvη ,k4 =

µ +τ1, and b2 = δk1+k2τ2, with I∗1 is taken from the positive root of the following polynomial

a4 I4
1 +a3 I3

1 +a2 I2
1 +a1 I1 +a0 = 0,(6)

with coefficients a0,a1,a2,a3,a4 can be seen in Appendix 1.

To determine the number of positive roots in (6), first we show that a0 as a function of R0.

From Appendix (1), we have that

a0 = A3(δ +µ + τ2)
2(A(κ +θ)2(µ + τ1)−Bµβhβvη),

= A3(δ +µ + τ2)
2 (R0−1) .

Hence, it is easy to see that a0 > 0↔R0 > 1.

Next, we can determine the number of possible positive real roots of the polynomial in equa-

tion (6) using the Descartes Rule of Signs in Table 2.

Based on Table 2 and a0 > 0⇔R0 < 1, we have:

(1) If a0 > 0⇔R0 < 1, and a4 > 0 whereas for a1,a2 and a3 can be positive or negative

then the eq.(6) has 0, 2, or 4 positive roots.

(2) If a0 < 0⇔R0 > 1, and a4 > 0 whereas for a1,a2 and a3 can be positive or negative

then the eq.(6) has one or three positive roots.

Note that all variables in eq.(5), depend on I1. When the solution of (6), that is I∗1 , and I∗1 > 0,

then all other variables will also be positive. So, based on the result of point 2, we have the
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TABLE 2. Descartes rule of signs for polynomial (6).

a4 >0

a3 >0 <0

a2 >0 <0 >0 <0

a1 >0 <0 >0 <0 >0 <0 >0 <0

a0 >0 <0 >0 <0 >0 <0 >0 <0 >0 <0 >0 <0 >0 <0 >0 <0

Maximum

positive

roots

0 1 2 1 2 3 2 1 2 3 4 3 2 3 2 1

system (1) has one or three endemic equilibrium points if R0 > 1. Based on point 1, the system

(1) may have some endemic equilibrium points even though R0 < 1. To illustrate the existence

of the endemic equilibrium point using polynomial (6), we substitute the parameter values in

Table 1, except βh which we choose as the bifurcation parameter. The results can be seen in

Fig. 2

FIGURE 2. Bifurcation diagram of system (1) using polynomial (6).
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The relation between βh and I1 can be distinguished based on the value of βh. Note that Fig. 2

has two fold points, namely at βh1 and βh3. Furthermore, we have that R0 = 1 when βh = βh2.

From numerical calculation, we have the following results: If βh < βh1, then system (1) has

no endemic equilibrium. If βh ∈ [β1,β2], (see Table 3 by taking βh = 0.042), we get two I∗1

values associated with two endemic points (EE1 and EE2). In addition, there is always a stable

DF based on Theorem 2. The stability of two endemic points is determined by eigenvalues

from the correspondent Jacobian matrix. The eigenvalues of EE1 (ω3 at Fig. 2) are (-0.30898,

-0.15359, 0.00497, -0.00505, -0.00223, -0.14761) which shows that EE1 is unstable. On the

other hand, the eigenvalues of EE2 on ω4 are (-13.45736, -13.53472, -0.09738, -0.14428, -

0.22887, -0.14761) which shows that EE2 is stable.

Using a similar approach with the previous description on the yellow region, the green region

has an unstable DF , three endemic equilibria: one (in the curve of ω3) is unstable, and the other

two (small (in the curve ω2) and large one (in the curve ω4)) are stable. Finally, the red region,

which R0 > 1, has one endemic equilibrium which is stable. The dashed line shows that the

endemic equilibrium point is unstable, and the solid line shows that the endemic equilibrium

point is stable. We summarized our numerical experiments in Table 3. It indicates how sensitive

is βh is to the stability of the equilibrium point.

TABLE 3. Equilibrium point stability based on Fig. 2.

Domain ω1 ω2 ω3 ω4

βh ∈ [0,β1] Stable - - -

βh ∈ (β1,β2) Stable - Unstable Stable

βh ∈ (β2,β3] Unstable Stable Unstable Stable

βh ∈ (β3,∞) Unstable - - Stable

We close our analytical section with the following remark.

Remark 1. Our proposed malaria model shows the usual behavior regarding the relationship

between the disease-free equilibrium and R0, i.e., it will always be stable whene R0 < 1. An

interesting feature occurs when our model shows the possibility of the existence of endemic

equilibrium even though the disease-free stable. Hence, bistability phenomena appear, which
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makes the long time behavior of our model highly dependent on the initial condition. On the

other hand, it is also possible that our model shows the existence of multiple stable endemic

equilibrium, especially when R0 is larger but close to one.

4. NUMERICAL SIMULATIONS

In this section, a sensitivity analysis is conducted to find how sensitive R0 is to the robustness

of parameters in system (1). Also, some numerical simulations for the autonomous system will

be carried out from the mathematical model of malaria transmission in system (1) for several

possible scenarios that might appear in the field.

4.1. Sensitivity of R0. In this section, numerical simulations are performed to investigate the

sensitivity of R0 related to controllable parameters such as recovery rate (τ1) fumigation rate

(θ ) and infection rate (βh). Taking the derivative of R0 with respect to these parameters will

yield the following:

∂R0

∂θ
=−

√
A(µ + τ1)Bη µ βhβv

A(µ + τ1)(κ +θ)2 ,

∂R0

∂τ1
= 1/2

Bη µ βhβv√
A(µ + τ1)Bη µ βhβv (µ + τ1)(κ +θ)

−
√

A(µ + τ1)Bη µ βhβv

A(µ + τ1)
2 (κ +θ)

,

∂R0

∂βh
= 1/2

Bη µ βv√
A(µ + τ1)Bη µ βhβv (κ +θ)

,

∂R0

∂η
= 1/2

Bµ βhβv√
A(µ + τ1)Bη µ βhβv (κ +θ)

.

These equations tell us that increasing θ and τ1 will reduce R0. For the implementation in the

field, increasing τ1 is related to increased quality of medical treatment, drugs, health services,

and other forms of intervention in a purpose to accelerate the human recovery rate. Increasing θ

is not only related to large-scale fumigation but should also consider the quality of the chemical

composition of insecticides. The chosen insecticide should effectively kill the adult mosquito

and must not be harmful to the ecosystem. Furthermore, the possibility of resistance to in-

secticide must be considered carefully, since many reports show the phenomenon of mosquito

resistance. On the other hand, reducing infection rate βh is related to intervention that is not only

that intended to protect people from infection but also the genetic modifications of mosquitoes
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related to their capability to inject Plasmodium should be contemplated. Many means of inter-

vention have massively campaigned to reduce βh such as the distribution of mosquito bed nets

made from insecticide, the use of mosquito repellent, and using Wolbachia.

(a) (b)

FIGURE 3. Sensitivity of R0 respect to τ1 and θ : continuously (a) and discrete (b).

Fig. 3-4 present the numerical results of the sensitivity of R0 related to τ1,θ and βh. It

can be seen that increasing τ1 and θ will significantly reduce R0. From our analytical result,

to achieve a stable disease-free equilibrium, R0 should be as small as possible less than one.

Therefore, implementation fumigation needs to be carried out partially with a good quality of

medical treatment of malaria. Fig.3 (b) shows that carelessness in choosing a combination

between fumigation and medical treatment cannot provide malaria eradication. To be specific,

for a constant τ1, θ should be larger than its lower bound θ ∗ (where θ ∗ fulfill R0(θ
∗
1 ) = 1),

which depend on τ1 and is given by :

(7) θ > θ
∗ =

10−12
(

2.3×109
√

4.3×109 +1.1×1014τ1−4.76×1016τ1−1.85×1012
)

39+106τ1
.

On the other hand, for a specific value of θ , τ1 should be larger from its lower bound τ∗1

(where τ∗1 fulfill R0(τ
∗
1 ) = 1) which is given by :

(8) τ1 > τ
∗
1 =
−243.75θ 2−23.25θ +3885.56

(119+2500θ)2 .
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(a) (b)

FIGURE 4. Sensitivity of R0 respect to βh and η : continuously (a) and discrete (b).

Similar interpretations apply for Fig. 4 about how robust is R0 to the change of θ and βh.

Next, we examine which model parameter has the most significant effect on the value of

the basic reproduction number (R0). Following Chitnis et al. (2008) [26], we calculate the

sensitivity index of the basic reproduction number (R0), to the parameters in the model. These

indices indicate how sensitive R0 is to a change in each parameter; in other words, this tells us

how crucial each parameter is to malaria transmission. Sensitivity indices allow us to measure

the relative change in a state variable when a parameter changes. The normalized forward

sensitivity index (NFSI) of the basic reproduction number (R0) to a parameter is the relative

change in the variable R0 to the relative change in a given parameter.

Definition 1. Let R0 : V →W and R0 ∈C1(V ), where V ,W ⊆ R+. Then, for every parameter

p ∈V , the NFSI of R0 is defined as:

γ
R0
p =

∂R0

∂ p
× p

R0
.(9)
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Using a Definition 1, the sensitivity index of R0 with respect to each of the parameters R0 is

as follows:

γ
R0
A = ∂R0

∂A ×
A

R0
=−1

2 , γ
R0
B = ∂R0

∂B ×
B

R0
= 1

2 , γ
R0
τ1 = ∂R0

∂τ1
× τ1

R0
=− τ1

2µ+2τ1
,

γ
R0
βh

= ∂R0
∂βh
× βh

R0
= 1

2 , γ
R0
βv

= ∂R0
∂βv
× βv

R0
= 1

2 , γ
R0
µ = ∂R0

∂ µ
× µ

R0
= τ1

2µ+2τ1
,

γ
R0
κ = ∂R0

∂κ
× κ

R0
=− κ

κ+θ
, γ

R0
θ

= ∂R0
∂θ
× θ

R0
=− θ

κ+θ
.

FIGURE 5. Diagram of sensitivity index of R0.

Substitute all parameters in Table 1, we show the sensitivity diagram in Fig. 5. A positive

index in Fig. 5 presents the proportional relation to the change of parameters with R0. For

example, increasing βv,βh,A and β will increase R0. Furthermore, the value of sensitivity

present how 1% change of the parameter will change R0. For example, increasing τ1 for 10%

will reduce R0 for 4.99%. According to this result, we have the following remark.

Remark 2. To control the spread of malaria transmission, the best and easiest strategy is to

use fumigation in a purpose to control the vector population. However, The use of fumigation

on a large scale should consider any other aspect, such as ecology and cost constrain for

intervention.



MALARIA MODEL WITH SECONDARY INFECTION 17

4.2. Autonomous simulation. Numerical simulations of model system (1) are carried out

with a set of parameter values given in Table 1 with the following initial conditions:

S(0) = 6500, I1(0) = 2000,R(0) = 1000, I2(0) = 500,U(0) = 70.000,V (0) = 30.000.

4.2.1. Example 1 : Variations of βh. In this section, the analysis of autonomous simulation

is discussed. In this simulation, it is shown that the different transmission rate in humans can

affect the long-term behavior of model (1). The simulation results are in Fig.6 with a table of

equilibrium points in Table 4.

FIGURE 6. The dynamics of the human population with variations in βh values.

TABLE 4. Autonomous simulation results with variations in the value of βh in

human population.

Case R0 S I1 R I2

βh = 0.04 0.1541 6,415 0 3,279 0

βh = 0.042 0.99991 0 3 0 4

βh = 0.0421 1.00038 0 3 0 4

βh = 0.07 1.5417 0 3 0 4
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From the above results, malaria does not cause an epidemic if the success rate for infection

from mosquitoes to humans (βh) is very small at 0.001, this can be seen in Fig.6 (Symptomatic

Infected Human) and Table 4. Furthermore, the dynamics will continue to remain endemic

when the value of βh = 0.042, i.e. I1 = 3. Using similar parameters and initial conditions, the

dynamics of mosquitoes is shown in Fig.7 with a table of equilibrium given in Table 5.

FIGURE 7. The dynamics of the mosquito population with variations in βh values.

TABLE 5. Autonomous simulation results with variations in the value of βh in

mosquito population.

Case R0 U V

βh = 0.001 0.1541 32.258 0

βh = 0.042 0.9991 2057.7 1168.1

βh = 0.0421 1.00038 2057.7 1168.1

βh = 0.1 1.5417 2056.7 1169.2
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TABLE 6. Autonomous simulation results with variations in the value of θ .

Case R0 V I1 + I2

θ = 0.9 0.2148 395 7

θ = 0.2 0.8221 4,860 7

θ = 0.08 4.2749 63,815 7

Similar interpretation given for Fig. 7 that βh must be reduced as much as possible to find a

condition when all infected mosquitoes disappear. Please see Table 5 for the equilibrium point

of mosquito with various values of βh in Fig. 7.

4.2.2. Example 2 : Variation of θ . In this section, the analysis of the autonomous simulation

by varying θ is discussed. In this simulation, it is shown that a proper value of the fumigation

rate can eradicate the mosquito population from the population. We conduct the simulation

using four values of θ , i.e. θ = 0.9 (high intensity); θ = 0.2 (medium intensity); θ = 0.08 (low

intensity) and with a value of βh = 0.08. The simulation results result are given in Fig. 8 with a

table of equilibrium is in Table 6.

FIGURE 8. The dynamics of the infected mosquito and infected humans with

variations in θ values.

Based on our simulation and analytical result in the previous section, there is a minimum

rate of fumigation that can make our system tend to the small size of endemic equilibrium.

To illustrate this, please see the green and blue curves in Fig. 8, which represents that the

fumigation does not cross the minimum threshold of fumigation. The green curve show how

a minimum effort of fumigation makes the infected mosquito tend to its endemic equilibrium
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point. On the other hand, when the fumigation rate is given in a larger value (0.2), the number of

infected mosquitoes decreased significantly even without reaching the disease-free equilibrium.

Hence, since R0(θ = 0.2) = 0.8221 < 1 still gives a stable endemic equilibrium, we conclude

that our system exhibits a backward bifurcation in this scenario. Furthermore, with significant

intervention of fumigation given in the field (please see the red curve), the number of infected

humans and mosquitoes decreased significantly.

5. CONCLUSIONS

In this paper, the transmission model for malaria by considering secondary infection has been

discussed analytically and numerically. The basic reproduction number is calculated using the

next-generation matrix approach. The stability of equilibrium points has been shown to be

related to the basic reproduction number. We found that malaria can be eradicated if the basic

reproduction number is less than unity. However, it is observed that the model might still have a

stable endemic equilibrium of malaria, even though the basic reproduction number is less than

unity. Hence, the policymakers should not rely solely on the threshold of the basic reproduction

number being equal to one. This is because secondary infections could be fatal, leading to

backward bifurcation phenomena. Our local sensitivity analysis and numerical experiments

indicate that increasing the death rate of mosquitoes is the most effective way to reduce the

basic reproduction number.

However, the existence of the backward bifurcation and/or forward bifurcation with hystere-

sis in our model suggests that malaria may still exist even though the basic reproduction number

is already less than one. Further analysis needs to investigate to understand how to avoid the ex-

istence of this type of bifurcation. As another possible improvement for the model in this article,

application of optimal control could be used to find the optimal strategy of malaria eradication

policy. The optimal control in many epidemiological models intended to minimize number of

infected individuals with minimal cost for intervention. This task is usually read as minimizing

the following cost function:

(10) J (x,u) =
∫ T

0

(
∑x+∑ωu

)
dt
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where x and u are vector values for infected populations, respectively, ω as the weight parame-

ter, and T is the final time simulation. Minimizing this cost function is subject to its respective

disease transmission model ẋ = f(x) with initial condition x(0) > 0. Pontriagin’s Maximum

principle used to characterize the optimal control problem, and can be solved using the well

known forward-backward sweep method [27]. Please see [28, 29, 30, 31] for examples of ap-

plications of optimal control problems in a ODE based disease transmission model, PDE in

[32], time delay in [33], discrete model in [34], and many more.
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APPENDIX A. THE POLYNOMIAL FOR THE ENDEMIC EQUILIBRIUM

Following are the coefficients in the equation (6). The equation (6) can be written as a4 I4
1 +

a3 I3
1 +a2 I2

1 +a1 I1 +a0 = 0, with :

a4 = ((τ1− τ2)(η−1)µ−δτ1)(((η−1)κ +(η−1)θ +βv)(τ1− τ2)µ−δτ1(κ +θ))(µ + τ1)
3(κ +θ)

a3 = (2(A(κ +θ)(η−1)(τ1− τ2)((η−1)κ +(η−1)θ +βv)µ
3 +((κ +θ)(((−η

2 +3η−2)κ+

(−η
2 +3η−2)θ − (−3/2+η)βv)τ

2
2 +(((η2−3η +2)κ +(η2−3η +2)θ +(−3/2+η)βv)τ1−

δ (η−1)((η−1)κ +(η−1)θ +βv))τ2 +((η2−3η +2)κ +(η2−3η +2)θ +(−3/2+η)βv)τ1δ )A−

(1/2)βhβvBτ2(τ1− τ2))µ
2− (1/2)τ1((κ +θ)(((−2η +2)κ +(−2η +2)θ −βv)τ

2
2+

(((2η−2)κ +(2η−2)θ +βv)τ1 +δ ((2η−4)κ +(2η−4)θ +βv))τ2 +δ
2((2η−2)κ+

(2η−2)θ +βv))A+βhβvBτ2(τ1− τ2))µ +Aδτ
2
1 τ2(κ +θ)2))(µ + τ1)

2

a2 = A(A(κ +θ)(η−1)((η−1)κ +(η−1)θ +βv)µ
4 +((2(κ +θ))((τ1 +(η−3)τ2 +δ (η−1))(η−1)κ+

(τ−1+(η−3)τ2 +δ (η−1))(η−1)θ +((1/2)τ1 +(η−2)τ2 +δ (η−1))βv)A+βhβvB(τ1−2τ2))µ
3+

((κ +θ)(((2η−2)τ2
1 +((−2η +2)τ2 +2δ (η−2))τ1 +(η2−6η +6)τ2

2 +2δ (η−1)(η−3)τ2+

δ
2(η−1)2)κ +((2η−2)τ2

1 +((−2η +2)τ2 +2δ (η−2))τ1 +(η2−6η +6)τ2
2 +2δ (η−1)(η−3)τ2+

δ
2(η−1)2)θ +(τ2

1 +(δ − τ2)τ1 +((η−3)τ2 +δ (η−1))(δ + τ2))βvA+βhβvB(δτ1−

2δτ2 + tau2
1−3τ

2
2 ))µ

2 + τ1((κ +θ)((((2η−2)τ2 +2δ (η−2))τ1 +(−4η +6)τ2
2+

(−4η +2)δτ2−2δ
2)κ +(((2η−2)τ2 +2δ (η−2))τ1 +(−4η +6)τ2

2 +(−4η +2)δτ2−2δ
2)θ+

βv(τ1−2τ2)(δ + τ2))A+((δ +2τ2)τ1−2τ2δ −3τ
2
2 )βhBβv)µ−2τ

2
1

(δ 2 + τ2δ − (1/2)τ2
2 )A(κ +θ)2)(µ + τ1)

a1 = (((κ +θ)((2η−2)κ +(2η−2)θ +βv)A+βhβvB)µ2 +((κ +θ)(((2η−4)τ2 +2δ (η−1))κ+

((2η−4)τ2 +2δ (η−1))θ +βv(δ + τ2))A+βhβvB(δ − τ1 +3τ2))µ−2Aτ1τ2(κ +θ)2)

(δ +µ + τ2)A2(µ + τ1)

a0 = A3(δ +µ + τ2)
2((κ +θ)2(µ + τ1)A−Bµβhβv).


