
 

                

*Corresponding author 

E-mail address: cicik-a@fst.unair.ac.id 

Received June 1, 2020 

 

     Available online at http://scik.org 

     Commun. Math. Biol. Neurosci. 2020, 2020:37 

https://doi.org/10.28919/cmbn/4744 

ISSN: 2052-2541 

 

 

STABILITY ANALYSIS AND OPTIMAL CONTROL OF MATHEMATICAL 

MODEL FOR THE SPREAD OF HEPATITIS E 

MARATUS SHOLIKAH, CICIK ALFINIYAH*, MISWANTO 

Department of Mathematics, Faculty of Science and Technology, Universitas Airlangga,  

Surabaya 60115, Indonesia 

Copyright © 2020 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits 

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Abstract: Hepatitis E disease is caused by hepatitis E virus (HEV). The transmission of hepatitis E from feces to the 

mouth is mainly through contaminated water and food. This paper proposes the dynamics of HEV transmission 

through a mathematical model. We analyze stability of equilibria point of the model. In addition, we analyze 

parameter sensitivity to determine the important role of every single parameter value on the model. Furthermore, we 

impose treatment and virus extermination on the model as strategy control to reduce HEV transmission. The 

simulation results indicate that the performance of two controls is effective to minimize the number of infected 

human and reduce the number of viruses in the environment. 
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1. INTRODUCTION 

Hepatitis is derived from two words, namely hepa (liver) and itis (inflammation). 

Hepatitis is an inflammation that occurs in liver [1]. There are some kinds of viruses that cause 
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hepatitis and each viruses bring up similar clinical symptoms and some specific symptoms to 

detect the variety of hepatitis [2]. Generally, there are 5 types of viruses that cause hepatitis, 

namely: Hepatitis A Virus (HAV), Hepatitis B Virus (HBV), Hepatitis C Virus (HCV), Hepatitis 

D Virus (HDV), and Hepatitis E Virus (HEV) [3]. Hepatitis A and E are usually caused by 

consumption of contaminated food or water. Hepatitis B, C, and D usually occur due to 

parenteral contact (shared use of the patient's personal tools and syringes) with infected body 

fluids. Hepatitis B, C, and E can be transmitted vertically, that is transmission from pregnant 

mother to her fetus. This transmission is most common in hepatitis B [4-7]. Khuroo et al [8] 

demonstrated fetal outcomes of HEV infection in pregnant mother and found in utero 

transmission with fetal outcomes ranging from intrauterine fetal death to symptomatic and 

asymptomatic neonatal liver infection. 

Hepatitis E is a heart infectious disease caused by Hepatitis E Virus (HEV). This virus is 

small size and belong to single strand ribonucleic acid (RNA) virus [9]. Hepatitis E Virus is 

classified to 4 types of genotype that are genotype 1, 2, 3, and 4. Genotype 1 and 2 have been 

found only in human body, genotype 3 and 4 are belong to animal ( pig, boar, and deer) and can 

infect human. The virus is shed in the stool of an infected person, and enters the human body 

through the intestines. The infection in a human body usually occur after 2-10 weeks [2, 10]. 

Hepatitis E disease is also known as hepatitis fulminant (acute liver failure) which can suffer to 

death [3]. There are 2.3 billion hepatitis E infections, over 3 million acute cases of hepatitis E, 

and 70,000 hepatitis E-related deaths in the world. The prevalence is highest in Eastern and 

Southern Asia [11, 12].  

There is no vaccine for Hepatitis E Virus. Recombinant subunit vaccine for preventing 

Hepatitis E Virus infection had been found in China named Hecolin vaccine, but this is not 

approved in other countries so that it cannot be published commercially [13]. Keeping the 

environment clean, especially consuming hygiene foods and drinks is an effective prevention 

action. Moreover, in current situation, interferon has also been successfully used as a treatment 

for this disease. For the treatment of acute Hepatitis E can be a special treatment using antiviral 



3 

MATHEMATICAL MODEL FOR THE SPREAD OF HEPATITIS E 

drugs such as ribavirin [9]. 

Mathematical models have played an essential role in understanding the dynamics of 

HEV transmission. Several mathematical models and strategies control for HEV transmission 

have been established in a number of literature to capture the dynamics of the disease in a more 

effective method (see, for example, [14, 15, 16, 17] and references therein).  Mercer and 

Siddiqui [14] construct the mathematical model of hepatitis E transmission using Holling II and 

notice four populations that are Susceptible-Infected-Recovered-Viral. Nannyonga et al [15] 

formulate the SMEIR (Susceptible-Malaria-Exposed-Infected-Recovered) model to explain 

co-infection between hepatitis E and malaria. Backer et al [16] reviewed transmission model of 

hepatitis E in pigs with partition of the population of pigs into 3 populations that are 

Susceptible-Infected-Recovered. Alzahrani and Khan [17] construct the mathematics model of 

hepatitis E dissemination by noticing parental infection. The population of this model is parted 

into 2 types of population that are human (Susceptible-Exposed-infected-Recovered) and 

Hepatitis E Virus. Several researchers have presented the optimal control strategies to explore the 

effectiveness of the intervention [17, 18, 19]. In the study [17], they extended the model by 

applying optimal control in the form of prevention and treatment for pregnant women, clean 

water supply, and spraying of the virus. Khan et al [19] proposed three control strategies:  

isolation of infected and non-infected individuals, treatment and vaccination to minimize the 

number of acute infected, chronically infected with hepatitis B individuals and maximize the 

number of susceptible and recovered individuals.  

The present paper will discuss the analysis and optimal control of the spread of Hepatitis 

E. The mathematical model used refers to the article written by Alzahrani and Khan [17]. We 

modify the model by ignoring the vertical transmission because the likelihood factor is small. We 

investigate the dynamics of the model. Furthermore, we demonstrate the effect of optimal control 

strategy, treatments used to reduce the rate of growth of the human population infected with 

hepatitis E, and the virus extermination to reduce the causes of Hepatitis E virus in the 

environment. 
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The paper is organized as follows: the formulation of HEV model is presented in section 

2. The stability analysis are given in section 3 and 4. The parameter sensitivity analysis is 

highlighted in section 5, which determines key parameters in HEV model equilibria.  In section 

6, We employ human treatment and virus extermination in the environment as control variables. 

We then conduct a numerical exploration of HEV model with control in section 7. We conclude 

by discussing our finding and suggesting future work in section 8. 

 

2. FORMULATION OF HEV MODEL 

In this section, the model will be formulated for the spread of hepatitis E. The assumptions 

for the construction of the model are as follows: 

a. The spread of Hepatitis E occurs due to direct and indirect contact. 

b. Individuals who recover are considered immune to hepatitis E. 

c. The population of exposed individuals can not spread the disease. 

d. Deaths due to hepatitis E disease are ignored. 

The population of humans is divided into four compartments as the following; susceptible 

population (𝑆), exposed population (𝐸) that is the human population that has been exposed to the 

virus but has not been able to transmit the virus, infected population (𝐼), and recover population 

(𝑅). The virus populations in the environments are denoted as (𝑃). The definition of parameters 

can be seen in Table 2.1 as follows. 

Table 2.1 Definition of Model Parameters. 

Notation Definition 

Λ Human birth rate 

𝛽 Contact rate with infected individuals 

𝛼 Transmission parameter of P and S 

𝜇 Natural death rate of humans 

𝜌 Rate of infectious of exposed individuals 

𝜏 Natural recovery rate  

𝜃 Shedding of virus by the infected individuals to the environment 

𝜇𝑣 Natural death rate of viruses 
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Based on the assumptions and descriptions of parameters and variables, a transmission 

diagram of hepatitis E transmission model is presented in Figure 2.1 as follows. 

 

Figure 2.1 Transmission Diagram of HEV Model.  

  : Reduce the original population number and increase the intended population number. 

  : Increase the intended population number, but do not reduce the original population   

number. 

    : There is interaction between the two populations, but neither increases nor decreases 

both number. 

 

The transmission diagram in Figure 2.1 is formulated as follows: 

𝑑𝑆

𝑑𝑡
= Λ −

(𝛽𝐼+𝛼𝑃)𝑆

𝑁
− 𝜇𝑆              (2.1a) 

𝑑𝐸

𝑑𝑡
=
(𝛽𝐼+𝛼𝑃)𝑆

𝑁
− (𝜇 + 𝜌)𝐸             (2.1b) 

𝑑𝐼

𝑑𝑡
= 𝜌𝐸 − (𝜇 + 𝜏)𝐼               (2.1c) 

𝑑𝑅

𝑑𝑡
= 𝜏𝐼 − 𝜇𝑅                (2.1d) 

𝑑𝑃

𝑑𝑡
= 𝜃𝐼 − 𝜇𝑣𝑃                (2.1e).  

with 𝑆, 𝐸, 𝐼, 𝑅, 𝑃 ≥ 0  and Λ, 𝛽, 𝛼, 𝜇, 𝜌, 𝜏, 𝜃, 𝜇𝑣  > 0. 
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Total population stated with 𝑁 = 𝑆 + 𝐸 + 𝐼 + 𝑅. Then rate of change of total population is 

 
𝑑𝑁

𝑑𝑡
=
𝑑𝑆

𝑑𝑡
+
𝑑𝐸

𝑑𝑡
+
𝑑𝐼

𝑑𝑡
+
𝑑𝑅

𝑑𝑡
, 

by using equation (2.1a) - (2.1b), we obtained 

𝑑𝑁

𝑑𝑡
= Λ− 𝜇𝑁 .  

From the calculation results we obtained 

 lim
𝑡→∞

𝑁(𝑡) =  
Λ

𝜇
. 

and then, 𝑁 variable will be 𝑁 = 
Λ

𝜇
. 

Therefore, for analysis of the model in equation (2.1𝑎) − (2.1𝑒), the following model can be 

used: 

𝑑𝑆

𝑑𝑡
= Λ −

𝜇(𝛽𝐼+𝛼𝑃)𝑆

Λ
− 𝜇𝑆             (2.1f)  

𝑑𝐸

𝑑𝑡
=
𝜇(𝛽𝐼+𝛼𝑃)𝑆

Λ
− (𝜇 + 𝜌)𝐸            (2.1g) 

𝑑𝐼

𝑑𝑡
= 𝜌𝐸 − (𝜇 + 𝜏)𝐼              (2.1h) 

𝑑𝑅

𝑑𝑡
= 𝜏𝐼 − 𝜇𝑅               (2.1i) 

𝑑𝑃

𝑑𝑡
= 𝜃𝐼 − 𝜇𝑣𝑃               (2.1j) 

 

3. MODEL ANALYIS 

Mathematical model for the spread of hepatitis E has two equilibria: the non endemic 

equilibrium point (𝐸0) and endemic equilibrium point (𝐸1). The non endemic equilibrium point 

of the model is 𝐸0 = (𝑆, 𝐸, 𝐼, 𝑅, 𝑃) = ( 
Λ

𝜇
, 0,0,0,0). 

Next, we will determine the basic reproduction number (𝑅0) which has the important role 

in the disease modelling [20, 21]. The basic reproduction number 𝑅0 can be computed using the 

next generation matrix on the HEV model. 

  Consider the infected compartments in HEV model (1) are E; I; and P. Using the approach in 

[22], the matrices 𝔽 and ℤ at DFE are given as follows 
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𝔽 = (
0 𝛽 𝛼
0 0 0
0 0 0

 ) and ℤ = (
𝜇 + 𝜌 0 0
−𝜌 𝜏 + 𝜇 0
0 −𝜃 𝜇𝑣

 ). 

The basic reproduction number of the model (1) is obtained through the spectral radius of the 

matrix 𝔽ℤ−1  which is given by 

𝑅0 =
𝜌(𝜇𝑣𝛽+𝛼𝜃)

𝜇𝑣(𝜇+𝜏)(𝜇+𝜌)
. 

From the calculation we obtained the endemic equilibrium point of the model is as follows. 𝐸1 =

(𝑆∗, 𝐸∗, 𝐼∗, 𝑅∗, 𝑃∗) 

 𝑆∗ =
Λ2𝜇𝑣

𝜇(𝜇𝑣𝛽𝐼∗+𝛼𝜃𝐼∗+Λ𝜇𝑣)
             (3.1a) 

 𝐸∗ =
(𝜇𝑣𝛽𝐼

∗+𝛼𝜃𝐼∗)Λ

(𝜇+𝜌)(𝜇𝑣𝛽𝐼∗+𝛼𝜃𝐼∗+Λ𝜇𝑣)
             (3.1b) 

 𝐼∗ =
𝜌Λ

(𝜇+𝜏)(𝜇+𝜌)
−

Λ𝜇𝑣

(𝜇𝑣𝛽+𝛼𝜃)
             (3.1c) 

 𝑅∗ =
𝜏

𝜇
𝐼∗             (3.1d) 

 𝑃∗ =
𝜃

𝜇𝑣
𝐼∗             (3.1e) 

Based on the description above, the endemic equilibrium point (𝐸1) will exist if it 

fulfills the condition  𝑅0 − 1 > 0 or 𝑅0 > 1. 

 

4. LOCAL STABILITY OF EQUILIBRIUM POINT 

In this section, stability analysis will be applied on both equilibrium points, non endemic 

equilibrium point (𝐸0)  and endemic equilibrium point (𝐸1). 

4.1 LOCAL STABILITY OF NON-ENDEMIC EQUILIBRIUM POINT 

Local stability analysis of non endemic equilibrium point begins by substituting the non 

endemic equilibrium point 𝐸0 = (𝑆, 𝐸, 𝐼, 𝑅, 𝑃) = ( 
Λ

𝜇
, 0,0,0,0)  into the Jacobian matrix, thus 

obtained 

𝐽𝐸0 =

(

 
 

−𝜇 0 −𝛽 0 −𝛼
0 −𝜌 − 𝜇 𝛽 0 𝛼
0 𝜌 −𝜏 − 𝜇 0 0
0 0 𝜏 −𝜇 0
0 0 𝜃 0 −𝜇𝑣)

 
 
. 
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Based on the 𝐽𝐸0  Jacobian matrix, a characteristic equation is made as follows:  

det(𝐽𝐸0 − 𝜆𝐼) = 0. 

𝑑𝑒𝑡

(

 
 

−𝜇 − 𝜆 0 −𝛽 0 −𝛼
0 −𝜌 − 𝜇 − 𝜆 𝛽 0 𝛼
0 𝜌 −𝜏 − 𝜇 − 𝜆 0 0
0 0 𝜏 −𝜇 − 𝜆 0
0 0 𝜃 0 −𝜇𝑣 − 𝜆)

 
 
= 0 , 

 

⟺ (−𝜇 − 𝜆)(−𝜇 − 𝜆)[𝜆3 + 𝑎1𝜆
2 + 𝑎2𝜆+𝑎3] = 0,         (4.1a) 

with 

 𝑎1 = 2𝜇 + 𝜌 + 𝜏 + 𝜇𝑣, 

 𝑎2 = 𝜇
2 + 𝜌𝜇 + 𝜏𝜇 + 𝜏𝜌 + 2𝜇𝜇𝑣 + 𝜇𝑣𝜌 + 𝜇𝑣𝜏 − 𝜌𝛽, 

 𝑎3 = (𝜇
2𝜇𝑣 + 𝜌𝜇𝜇𝑣 + 𝜏𝜇𝜇𝑣 + 𝜏𝜌𝜇𝑣) − 𝜌(𝛽𝜇𝑣 + 𝛼𝜃). 

Based on the equation (4.1a), we obtained eigen values 𝜆1 = 𝜆2 = −𝜇 , and roots of 

equation as follows, 

𝜆3 + 𝑎1𝜆
2 + 𝑎2𝜆+𝑎3 .                     (4.1b) 

The non endemic equilibrium point will be asymptotically stable if and only if the characteristic 

equation (4.1a) has the roots part of negative real number. It is clear that 𝜆1 and 𝜆2 are negative 

because all parameters as described are positive. Then equation (4.1b) will have the roots part of 

negative real number with Routh-Hurwitz criteria. Based on Routh-Hurwitz criteria, the non 

endemic equilibrium point will be asymptotically stable if and only if 𝑅𝑖 < 1, with 𝑖 = 0,1,2. 

𝑅0 =
𝜌(𝜇𝑣𝛽+𝛼𝜃)

𝜇𝑣(𝜇+𝜏)(𝜇+𝜌)
, 

𝑅1 =
𝜌𝛽

𝜇2+𝜌𝜇+𝜏𝜇+𝜏𝜌+2𝜇𝜇𝑣+𝜇𝑣𝜌+𝜇𝑣𝜏
, 

𝑅2 =
𝑎3

𝑎1𝑎2
, 

This shows that if all conditions are fulfilled, then there is no further transmission of the disease. 

4.2 LOCAL STABILITY OF ENDEMIC EQUILIBRIUM POINT  

Substitute endemic equilibrium point 𝐸1 = (𝑆
∗, 𝐸∗, 𝐼∗, 𝑅∗, 𝑃∗) to the Jacobian matrix as 
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follow, 

𝐽𝐸1 =

(

 
 

𝑏1 0 𝑏6 0 𝑏7
𝑏8 𝑏2 𝑏9 0 𝑏10
0 𝑏11𝜌 𝑏3 0 0
0 0 𝑏12 𝑏4 0
0 0 𝑏13 0 𝑏5 )

 
 

, 

with 

 𝑏1 =
𝛼𝜇𝜃𝐼∗

Λ𝜇𝑣
− 𝜇     𝑏8 =

𝛼𝜇𝜃𝐼∗

Λ𝜇𝑣
  

 𝑏2 = −𝜌 − 𝜇     𝑏9 =
𝛽𝜇Λ2𝜇𝑣

Λ𝜇(𝜇𝑣𝛽𝐼∗+𝛼𝜃𝐼∗+Λ𝜇𝑣)
 

 𝑏3 = −𝜏 − 𝜇     𝑏10 =
𝛼𝜇Λ2𝜇𝑣

Λ𝜇(𝜇𝑣𝛽𝐼∗+𝛼𝜃𝐼∗+Λ𝜇𝑣)
 

 𝑏4 = −𝜇      𝑏11 = 𝜌 

 𝑏5 = −𝜇𝑣      𝑏12 =  𝜏 

 𝑏6 =
−𝛽𝜇Λ2𝜇𝑣

Λ𝜇(𝜇𝑣𝛽𝐼∗+𝛼𝜃𝐼∗+Λ𝜇𝑣)
   𝑏13 = 𝜃 

 𝑏7 =
−𝛼𝜇Λ2𝜇𝑣

Λ𝜇(𝜇𝑣𝛽𝐼∗+𝛼𝜃𝐼∗+Λ𝜇𝑣)
 𝐼∗ =

𝜌Λ

(𝜇+𝜏)(𝜇+𝜌)
−

Λ𝜇𝑣

(𝜇𝑣𝛽+𝛼𝜃)
. 

Next is a characteristic equation by using det(𝐽𝐸1 − 𝜆𝐼) = 0. 

det

(

 
 

𝑏1 − 𝜆 0 𝑏6 0 𝑏7
𝑏8 𝑏2 − 𝜆 𝑏9 0 𝑏10
0 𝑏11 𝑏3 − 𝜆 0 0
0 0 𝑏12 𝑏4 − 𝜆 0
0 0 𝑏13 0 𝑏5 − 𝜆)

 
 
= 0. 

Thus, we obtain the characteristics equation 

 ⟺ (𝑏4 − 𝜆)(𝜆
4 + 𝑐1𝜆

3 + 𝑐2𝜆
2 + 𝑐3𝜆 + 𝑐4) = 0     (4.2a) 

Because 𝑐1, 𝑐2, 𝑐3,  dan 𝑐4 contain many parameter values that are difficult to be simplified 

analytically, so it will be analyzed through numerical simulation using the phase field. 

The Simulation is by giving parameters value and three initial value for 

(𝑆(0), 𝐸(0), 𝐼(0), 𝑅(0), 𝑃(0)), which are different. The parameters value are presented in Table 

4.1 
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Table 4.1 Parameters Value of Model 

Parameter Value Unit Source 

Λ 100 𝑜𝑟𝑎𝑛𝑔

ℎ𝑎𝑟𝑖
 

Assume 

𝛽 0003 1

ℎ𝑎𝑟𝑖
 

Alzahrani and Khan (2018) 

𝛼 0.8 1

ℎ𝑎𝑟𝑖
 

Assume 

𝜇 0004 1

ℎ𝑎𝑟𝑖
 

Alzahrani and Khan (2018) 

𝜌 0:02 1

ℎ𝑎𝑟𝑖
 

Alzahrani and Khan (2018) 

𝜏 0:02 1

ℎ𝑎𝑟𝑖
 

Alzahrani and Khan (2018) 

𝜃 0:06 1

ℎ𝑎𝑟𝑖
 

Assume 

𝜇𝑣 0:02 1

ℎ𝑎𝑟𝑖
 

Alzahrani and Khan (2018) 

 

The three initial values are presented in Table 4.2. 

Table 4.2 Initial Value 

Initial value 𝑺(𝟎) 𝑬(𝟎) 𝑰(𝟎) 𝑹(𝟎) 𝑷(𝟎) Colour 

Initial Value 1 500 200 150 90 2000 Blue 

Initial Value 2 750 400 100 80 3000 Green 

Initial value 3 1000 750 500 150 2500 Red 

 

The results of the phase field simulation at the endemic equilibrium point in the spread of Hepatitis 

E are shown in Figure 4.1 
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Figure 4.1 Phase Field Simulation on 𝑆 − 𝐸 Population for Endemic Equilibrium Model 

 

Figure 4.1 shows phase field simulation for susceptible human population 𝑆(𝑡) with 

exposed human population 𝐸(𝑡). Based on three different initial values have been given, it 

shows that all graphs of population tend to converge to a point (𝑆, 𝐸) = (299,62  ,

4116,72) which is an endemic equilibrium point 𝐸1 =

(299,62 ; 4116,72 ; 3430,61 ; 17153,03 ; 10291,82).  In addition, based on the given 

parameter values we obtained value 𝑅0 = 83,43750000 > 1 . 

Based on the explanation above, the endemic equilibrium point 𝐸1 = (𝑆
∗, 𝐸∗, 𝐼∗, 𝑅∗, 𝑃∗) 

on the mathematical model of the spread of hepatitis E will tend to be asymptotically stable if 

and only if 𝑅0 > 1. This shows transmission of hepatitis E disease. 

 

5. ANALYSIS OF PARAMETERS SENSITIVITY 

The analysis sensitivity aims to determine the parameters that have a large influence in 

terms of stability of the equilibrium point, non endemic and endemic. The parameters considered 

are only the parameter contained in 𝑅0 because these parameter indicate the condition whether 

the spread of the disease is occured  or not. This can be known through sensitivity index (𝑒𝑚) 

of each parameter. Using the approach in [23], the parameter sensitivity index is formulated as 
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follows, 

𝑒𝑚 = (
𝜕𝑅0
𝜕𝑚

)
𝑚

𝑅0
 , 

with: 

𝑚 : Parameters to be analyzed 

𝑒𝑚 : Sensitivity index parameter. 

The 𝑅0 value is influenced by 7 parameters. These are 𝜌, 𝜇𝑣, 𝛽, 𝛼, 𝜃, 𝜏, and 𝜇 . The 

following is the example of the sensitivity index calculation for 𝛼 parameter. By substituting 

the parameters value in Table 4.1 we obtained: 

𝑒𝛼 = (
𝜕𝑅0
𝜕𝛼
)
𝛼

𝑅0
=

𝜌𝜃

𝜇𝑣(𝜇 + 𝜏)(𝜇 + 𝜌)

𝛼𝜇𝑣(𝜇 + 𝜏)(𝜇 + 𝜌)

𝜌(𝜇𝑣𝛽 + 𝛼𝜃)
=

𝛼𝜃

𝜌(𝜇𝑣𝛽 + 𝛼𝜃)
= 0.99. 

The results of the calculation of the sensitivity index parameters can be seen in Table 5.1 below: 

        Table 5.1 Parameter Sensitivity Index Calculation Results 

 

 

 

 

 

 

Based on Table 5.1 it can be seen that the sensitivity of the index 𝛼 and 𝜃 is 0.99. This 

can be interpreted that if the transmission parameter of P and S (𝛼) and shedding of virus by the 

infected individuals to the environment (𝜃) increased by 10%, then the 𝑅0 value will increase 

by 9.9% and as well as vice versa. The analysis also applies to the parameters 𝜌 dan 𝛽. This 

shows that for positive sensitivity index, if the parameter value increases, the 𝑅0 value will also 

increase. On the other hand, for the negative sensitivity index, if the value of the parameter 

increases, the 𝑅0 value will be reduced. For example, if the Natural death rate of viruses (𝜇𝑣) 

increase by 10%, then the 𝑅0 value will be reduced by 9.9%. The analysis also applies to the 

parameter 𝜏 dan 𝜇. 

Parameter Sensitivity Index 

𝛼 0.99 

𝜃 0.99 

𝜇𝑣 -0.99 

𝜏 -0.83 

𝜇 -0.33 

𝜌 0.17 

𝛽 0.0012 
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        Figure 5.1 Sensitivity 𝜃 against 𝑅0 values in three different 𝛼 values 

 

        Figure 5.2 Sensitivity 𝛼 against 𝑅0 values in three different 𝜃 values 

Furthermore, sensitivity parameters of 𝛼 and 𝜃 are simulated against 𝑅0. In the first 

simulation, we selected 𝛼 = 0,008, 𝛼 = 0,08 and 𝛼 = 0,8, while the 𝜃 value is in the interval 

0,1 ≤ 𝜃 ≤ 0,9 . The second simulation, we selected   𝜃 = 0,0006, 𝜃 = 0,006, and 𝜃 = 0,06 , 

while the 𝛼 value is in the interval 0,1 ≤ 𝛼 ≤ 0,9. The results of the simulation can be seen in 
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Figure 5.1 and Figure 5.2. 

Figure 5.1 and 5.2 describe that if parameters 𝛼 and 𝜃 increase, then the 𝑅0 value will 

also increase, meaning that the spread of hepatitis E disease will become more prevalent. This 

because the sensitivity index of parameters 𝛼 and  𝜃 are positive, so that when the value is 

increase, the  𝑅0value will also increase. 

 

6. FORMULATION OF OPTIMAL CONTROL 

We examine the application of optimal control in HEV model to reduce the spread of 

HEV. There are two control variables applied to the model, namely treatment (𝑢1) and virus 

extermination in the environment (𝑢2). The following is the mathematical model for the spread 

of hepatitis E with control variables 

𝑑𝑆

𝑑𝑡
= Λ −

𝜇(𝛽𝐼+𝛼𝑃)𝑆

Λ
− 𝜇𝑆      (6.1a) 

𝑑𝐸

𝑑𝑡
=
𝜇(𝛽𝐼+𝛼𝑃)𝑆

Λ
− (𝜇 + 𝜌)𝐸      (6.1b) 

𝑑𝐼

𝑑𝑡
= 𝜌𝐸 − (𝜇 + 𝜏)𝐼 − 𝜀1𝑢1𝐼     (6.1c) 

𝑑𝑅

𝑑𝑡
= 𝜏𝐼 − 𝜇𝑅 + 𝜀1𝑢1𝐼       (6.1d) 

𝑑𝑃

𝑑𝑡
= 𝜃𝐼 − 𝜇𝑣𝑃 − 𝜀2𝑢2𝑃      (6.1e) 

 

The variable and parameter have been described in detail in section 4. From the model, it 

can be seen there are additional variable in the form of control variables 𝑢1and 𝑢2. The cost 

function or objective function which might be formed based on the explanation above are as 

follows: 

𝑀𝑖𝑛 𝐽 = ∫ (𝐼 + 𝑃 +
𝑊1
2
𝑢1
2 +

𝑊2
2
𝑢2
2) 𝑑𝑡

𝑡𝑓

0

 

with 𝑊1,𝑊2 are weighting constants in the form of costs for the controls. The optimal control is 

at 0 ≤ 𝑢𝑖(𝑡) ≤ 1,with 𝑖 = 1,2 , 0 ≤ 𝑡 ≤ 𝑡𝑓 and 𝑡𝑓  is the final time. We take a quadratic form 

to quantify the control costs [24, 25, 26].  
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6.1 SOLVING OF OPTIMAL CONTROL 

Based on Pontryagin’s Maximum Principle [27], the first step taken is to form the 

Hamiltonian function in the model as follows: 

ℋ = 𝐼 + 𝑃 +
𝑊1

2
𝑢1
2 +

𝑊2

2
𝑢2
2 + 𝛾𝑇(𝑡)(𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡))  (6.1f) 

with 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡) is at the right hand side of the mathematical model of the spread of 

hepatitis E, while 𝛾𝑇(𝑡) expresses the Lagrange multiplier or co-state variable. 

Next, in order to obtain the optimal condition, the Hamiltonian function must in the 

stationary condition of   

𝜕𝐻

𝜕𝑢
= 0 ⇔

𝜕𝐻

𝜕𝑢1
= 0 , dan  

𝜕𝐻

𝜕𝑢2
= 0 

i. 
𝜕𝐻

𝜕𝑢1
= 0 

 ⇔𝑊1𝑢1 − 𝛾3𝜀1𝐼 + 𝛾4𝜀1𝐼 = 0 

 ⇔ 𝑢1 =
𝜀1𝐼(𝛾3−𝛾4)

𝑊1
, 

ii.
𝜕𝐻

𝜕𝑢2
= 0  

 ⇔𝑊2𝑢2 − 𝛾5𝜀2𝑃 = 0 

 ⇔ 𝑢2 =
𝜀2𝛾5𝑃

𝑊2
,    

due to  0 ≤ 𝑢𝑖(𝑡) ≤ 1, with 𝑖 = 1,2 the following possible value of 𝑢 are: 

 𝑢1
∗ = {

0 for 𝑢1
∗ ≤ 0

𝜀1𝐼(𝛾3−𝛾4)

𝑊1
for 0 < 𝑢1

∗ < 1

1 for 𝑢1
∗ ≥ 1,

 

 𝑢2
∗ = {

0        for 𝑢2
∗ ≤ 0

𝜀2𝛾5𝑃

𝑊2
       for 0 < 𝑢2

∗ < 1

1        for 𝑢2
∗ ≥ 1 .

 

Based of the probability above, the optimal of control value is obtained as follows 

 𝑢1
∗ = 𝑚𝑖𝑛 (1,𝑚𝑎𝑥 (0,

𝜀1𝐼(𝛾3−𝛾4)

𝑊1
))     (6.1g) 
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 𝑢2
∗ = 𝑚𝑖𝑛 (1,𝑚𝑎𝑥 (0,

𝜀2𝛾5𝑃

𝑊2
))      (6.1h). 

Next, due to the controller 𝑢1
∗ and 𝑢2

∗
 there are state variables, = (𝑆, 𝐸, 𝐼, 𝑅, 𝑃)𝑇  , 

therefore the state equation and co-state equation  need to be resolved to obtain these variables. 

Thus it will be determined the completion of the state equation to obtain the variable 𝑥̇ =
𝜕𝐻

𝜕𝛾
. 

Furthermore, co-state equation on controller 𝑢1
∗ and 𝑢2

∗
 will be determined, from the 

following formula  

𝛾̇ = −
𝜕𝐻

𝜕𝑥
. 

which resulted in  

𝛾1̇ = −
𝜕ℋ

𝜕𝑆
= −[ 

−𝜇(𝛽𝐼+𝛼𝑃)(𝛾2−𝛾1)−𝛾1𝜇Λ

Λ
],  

𝛾2̇ = −
𝜕ℋ

𝜕𝐸
= −[−𝛾2(𝜇 + 𝜌) + 𝛾3𝜌],  

 𝛾3̇ = −
𝜕ℋ

𝜕𝐼
= −[1 +

𝛽𝜇𝑆(𝛾2−𝛾1)

Λ
− 𝛾3(𝜇 + 𝜏 + 𝜀1𝑢1) + 𝛾3(𝜏 + 𝜀1𝑢1) + 𝛾5𝜃], 

 𝛾4̇ = −
𝜕ℋ

𝜕𝑅
= −[−𝛾4𝜇], 

𝛾5̇ = −
𝜕ℋ

𝜕𝑃
= −[1 +

𝛼𝜇𝑆(𝛾2−𝛾1)

Λ
+ 𝛾5(𝜇𝑣 + 𝜀2𝑢2)].  

 

7. NUMERICAL RESULTS 

We address the numerical solution of the control model (4) with and without control. We 

utilize the fourth- order Runge-Kutta (RK4) algorithm to obtain the numerical solution of the 

control model. The forward RK4 algorithm is employed to solve the state systems. Thus, the 

backward RK4 algorithm is used to solve the co-state system [28]. 

Simulation is conducted for the following 𝑡 = 0 to 𝑡 = 100 days with the initial value 

for each condition is  𝑆(0) = 500, 𝐸(0) = 200, 𝐼(0) = 150, 𝑅(0) = 90, 𝑃(0) = 2000.  The 

parameter value used is the same as the parameter value when simulating the phase field for the 

endemic equilibrium point. Weighting constants for the controls is 𝑊1 = 100 and 𝑊2 = 70. 
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Simulation is in four condition. The first simulation is without any control. The second 

simulation is only the treatment (𝑢1). The third simulation is only virus extermination (𝑢2). The 

last simulation is the treatment (𝑢1) and virus extermination (𝑢2). 

 

Figure 7.1 Comparison Simulation of Infected Human Population for 100 Days. 

Table 7.1 Comparison of Total Individuals Infected for 100 days. 

Scenario Total population of infected individuals at day 100 

Without control 2200 

Control 𝑢1 85 

Control 𝑢2 1039 

Control 𝑢1 and 𝑢2 16 

 

Figure 7.1 shows that there is a significant difference between the number of infected 

individuals population when without and with the control variables. The number of infected 

individuals with the control 𝑢1 population decreased significantly. When given a control 𝑢2, 

the number of infected individuals decreased by about 50% of the total population with no 

control. When given the control 𝑢1 and 𝑢2, it decreased even dramatically. This is as presented 

in Table 7.1 shows that at the end of the observation the number of infected individuals 

population has the least amount compared to other scenarios. 
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Figure 7.2 Comparison Simulation of Virus in the Environment for 100 Days 

 

Table 7.2 Comparison of virus in the environment for 100 days. 

 

 

 

 

Figure 7.2 shows that there is a siginificant difference between the number of virus when 

without and with the control variables. The number of viruses with control 𝑢1 decreased until 

the last day. When given control 𝑢2, the number of viruses decreased quite dramatically until 

day 5, and then remained constant until the last day of observation. When given the control 

𝑢1 and 𝑢2, it also decreased the amount of the virus that is similar to the second scenario, but the 

amount of the virus in this scenario is a little more at the last day. This is as presented in Table 

7.2 shows that at the end of the observation, the number of viruses in the environment has the 

least amount compared to other scenarios. 

Furthermore, the simulation of the control profile for 𝑢1 and 𝑢2 are presented in Figure 

7.3, Figure 7.4 and Figure 7.5 below: 
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Scenario Total population of virus in the environment at day 100 

Without control 3684 

Control 𝑢1 430 

Control 𝑢2 69 

Control 𝑢1 and 𝑢2 4 
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Figure 7.3 Control Profile of Treatment (𝑢1) 

Figure 7.3 shows that the control variables of the treatment (𝑢1), on the day 1 to day 5, 

the effort is done maximally. When the observation is on the day 5 to day 10, the effort fell to 

0.88 or 88%. Then, when the observation is on the day 10 to day 90, the effort increased up to 

0.98 or 98% until the maximum effort. Furthermore, on the day 90 until the last day, the effort 

decreased gradually until around 0.82 or 82%. 

 

 

Figure 7.4 Control Profile of Virus Extermination (𝑢2) 
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Figure 7.4 shows that the control variables of virus extermination (𝑢2), on day 1 to day 

95, the effort is done maximally. When the observation is on the day 95 until the last day, the 

effort decreased to 0.85 or 85%. 

 

 

Figure 7.5 Control Profile of Treatment (𝑢1) and Virus Extermination (𝑢2) 

 

Figure 7.5 shows that the control variables 𝑢1 and 𝑢2 are given simultaneously. On the 

day 1 to day 5, the effort is given around 0.74 or 74%, while for control 𝑢2 is given a maximum. 

When the observation is on the day 5 to day 10, the effort of 𝑢1 and 𝑢2 decreased respectively 

to 0.47 and 0.45 or 47% or 45%. Then, when the observations is on the day 10 to day 15 control 

𝑢1 increased up to 0.49 or 49%, while for control 𝑢2  decreased to 0.33 or 33%. Next, control 

𝑢1 on the day 15 to day 95 with a difference of once every 5 day decreased by about 0.01 or 1%, 

but on the day 95 to the last day, the effort exerted fell up again to 0.24 or 24%, whereas for 

control 𝑢2 it decreased gradually once every 5 days up to day of 45 for 0.01 or 1%. Next, at the 

day of 45 to day 90 the effort given is decline gradually into a 0.2 or 20% and at the last day of 

the observation, control 𝑢2 given was just 0.1 or 10%. The cost function value of each control 

can be seen in Table 7.3 below: 
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Table 7.3 The cost function of each control on a given. 

 

 

 

 

Based on Table 7.3 it can be concluded that, in the 100 days, to minimize the number of 

infected individuals and populations of viruses in the environment as well as to minimize the 

cost of controlling the application of the most effective control, is to perform the treatment (𝑢1) 

and virus extermination (𝑢2) that are given simultaneously. 

 

8. CONCLUSION 

Based on the results and observations described, the following conclusions are derived: 

1. The mathematical model for the spread of hepatitis E as control variables has two equilibria, 

non endemic equilibrium point(𝐸0) and endemic equilibrium point(𝐸1). Non endemic 

equilibrium point will be asymptotically stable if and only if 𝑅0 < 1 and fulfill several 

conditions. Endemic equilibrium point will tend to be locally asymptotically stable if and 

only if 𝑅0 > 1, with 

𝑅0 =
𝜌(𝜇𝑣𝛽 + 𝛼𝜃)

𝜇𝑣(𝜇 + 𝜏)(𝜇 + 𝜌)
 . 

2. The form of optimal control on a mathematical model for the spread of hepatitis E with 

control treatment(𝑢1) and virus extermination(𝑢2) is 

𝑢1
∗ = 𝑚𝑖𝑛 (1,𝑚𝑎𝑥 (0,

𝜀1𝐼(𝛾3 − 𝛾4)

𝑊1
)) 

𝑢2
∗ = 𝑚𝑖𝑛 (1,𝑚𝑎𝑥 (0,

𝜀2𝛾5𝑃

𝑊2
)) 

3. Based on numerical simulation results on the mathematical model for the spread of hepatitis 

E before and after being given control, the form of treatment (𝑢1)  and virus 

Scenario Cost Function Value 

Control 𝑢1 104,887.07 

Control 𝑢2 50956.72 

Control 𝑢1 and 𝑢2 5072.15 
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extermination(𝑢2) are the most effective way to minimize the infected individuals and the 

population of virus in the environment. 

Further research can modify the mathematical model for the spread of hepatitis E by 

adding control variable in the form of prevention given in susceptible individuals. Furthermore, 

it also can investigate the most effective effort to reduce the spread of hepatitis E. 

 

ACKNOWLEDGMENTS 

This research is funded by Research Grants from Faculty of Science and Technology, Universitas 

Airlangga, Indonesia. 

 

CONFLICT OF INTERESTS 

The authors declare that there is no conflict of interests. 

 

REFERENCES 

[1] R. Aggarwal, S. Naik, Epidemiology of hepatitis E: current status, J Gastroenterol Hepatol. 24(9)(2009), 

1484-1493. 

[2] A.J. Zuckerman, Hepatitis Viruses. In: S. Baron, editor. Medical Microbiology. 4th edition. Galveston (TX): 

University of Texas Medical Branch at Galveston; 1996. Chapter 70.  

Available from: https://www.ncbi.nlm.nih.gov/books/NBK7864. 

[3] G.J. Ebrahim, The Five Hepatitis Viruses, J. Trop. Pediatr. 57 (6) (2011), 401–404. 

[4] U.S. Preventive Services Task Force, D.K. Owens, K.W. Davidson, et al., Screening for Hepatitis B Virus 

Infection in Pregnant Women: U.S. Preventive Services Task Force Reaffirmation Recommendation Statement, 

JAMA. 322(4)(2019), 349‐354.  

[5] R. Ragusa, L.S. Corsaro, E. Frazzetto, E. Bertino, M.A. Bellia, G. Bertino, Hepatitis C Virus Infection in 

Children and Pregnant Women: An Updated Review of the Literature on Screening and Treatments, AJP Rep. 

10(1) (2020), e121–e127. 

[6] S. Saab, R. Kullar, C. Amini, P. Gounder, The next frontier: universal hepatitis C virus screening in pregnant 

women, Amer. J. Obstet. Gynecol. 2020, doi:10.1016/j.ajog.2020.01.058. 



23 

MATHEMATICAL MODEL FOR THE SPREAD OF HEPATITIS E 

[7] T. Ahmad, J. Hui, T.H. Musa, M. Behzadifar, M. Baig, Seroprevalence of hepatitis E virus infection in pregnant 

women: a systematic review and meta-analysis, Annals of Saudi medicine. 40(2)(2020) :136–146.  

[8] M.S. Khuroo, S. Kamili, M.S. Khuroo, Clinical course and duration of viremia in vertically transmitted hepatitis 

E virus (HEV) infection in babies born to HEV-infected mothers, J Viral Hepat. 16(7)(2009) : 519–523. 

[9] World Health Organization, 2018, Hepatitis E, WHO, [online] Available from: 

https://www.who.int/news-room/fact-sheets/detail/hepatitis-e [Accessed on 29th August, 2018]. 

[10] H. Sooryanarain, X.J. Meng, Swine hepatitis E virus: Cross-species infection, pork safety and chronic 

infection, Virus Res. 284 (2020) :197985. doi:10.1016/j.virusres.2020.197985 

[11] H. Ren, J. Li, Z. Yuan, J. Hu, Y. Yu, Y. Lu, The development of a combined mathematical model to forecast the 

incidence of hepatitis E in Shanghai, China, BMC Infect Dis. 13(2013) : 421. 

[12] World Health Organization, 2010, Viral hepatitis, WHO, [online] Available 

from: http://apps.who.int/gb/ebwha/pdf_files/A62/A62_22-en.pdf.  

[13] Y. Nan, C. Wu, Q. Zhao, Y. Sun, Y-J. Zhang, E-M. Zhou, Vaccine Development against Zoonotic Hepatitis E 

Virus: Open Questions and Remaining Challenges, Front. Microbiol. 9 (2018): 266. 

[14] G. Mercer, M.R. Siddiqui, Application of a hepatitis E transmission model to assess intervention strategies in a 

displaced persons camp in Uganda. 19th International Congress on Modelling and Simulation. Perth, Australia 

(2011). 

[15] B. Nannyonga, D.J. Sumpter, J.Y. Mugisha, L.S. Luboobi, The Dynamics, Causes and Possible Prevention of 

Hepatitis E Outbreak, Plos ONE. 7 (2012): e41135. 

[16] J.A. Backer, A. Berto, C. McCreary, F. Martelli, W.H.M. van der Poel, Transmission dynamics of hepatitis E 

virus in pigs: Estimation from field data and effect of vaccination, Epidemics. 4(2)(2012) : 86-92. 

[17] E.O. Alzahrani, M.A. Khan, Modeling the dynamics of Hepatitis E with optimal control, Chaos Soliton. Fract. 

116 (2018) : 287-301. 

[18] G.F. Medley, N.A. Lindop, W.J. Edmunds, D.J. Nokes, Hepatitis-B virus endemicity: heterogeneity, catastrophic 

dynamics and control, Nat Med. 7 (5) (2001) :619‐624.  

[19] T. Khan, G. Zaman, M.I. Chohan, The transmission dynamic and optimal control of acute and chronic hepatitis 

B, Jounal of Biological Dynamics, 11(1) (2017) : 172-189. 

http://apps.who.int/gb/ebwha/pdf_files/A62/A62_22-en.pdf


24 

M. SHOLIKAH, C. ALFINIYAH, MISWANTO 

[20] O. Diekmann, J.S.P. Heesterbeek, J.A.J. Metz, On the Definition and the Computation of the Basic Reproduction 

Ratio 𝑅0 in Models for Infectious Diseases in Heterogenous Populations, J. Math. Biol. 28(4) (1990), 365–382. 

[21] O. Diekmann, J.A.P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, 

Analysis and Interpretation, John Wiley & Son, Chichester, 2000. 

[22] P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for 

compartmental models of disease transmission, Math. Biosci. 180 (2002), 29–48. 

[23] N. Chitnis, J.M. Hyman, J.M. Cushing, Determine important parameters in the spread of malaria through the 

sensitivity analysis of mathematics model, Bull. Math Biol. 70(5) (2008), 1272-1296. 

[24] K.O. Okosun, O.D. Makinde,  A co-infection model of malaria and cholera diseases with optimal control, Math. 

Biosci. 258 (2014), 19–32. 

[25] K.O. Okosun, O.D. Makinde, Optimal control analysis of hepatitis C virus with acute and chronic stages in the 

presence of treatment and infected immigrants, Int. J. Biomath. 7(2) (2014), 1450019. 

[26] G.T. Tilahun, O.D Makinde, D. Malonza, Co-dynamics of Pneumonia and Typhoid fever diseases with 

cost-effective optimal control analysis, Appl. Math. Comput. 316 (2018), 438–459. 

[27] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, E.F. Mishchenko, The Mathematical Theory of Optimal 

Processes, Wiley, New York, 1962. 

[28] S. Lenhart, J.T. Workman, Optimal control applied to biological models, Chapman & Hall/CRC, Boca Raton, 

2007. 


