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Abstract: The piccolo distance is a simplified approach in clustering time-series data, and it needs the data analysts 

to determine the ARIMA model for each series. Some problems may arise in the modeling step because different 

criteria may lead to different orders of the best models. This current paper is discussing how to handle this model 

uncertainty problem by borrowing the concept of an ensemble in the area of data science. Instead of using a single 

criterion to identify the best model, we proposed to generate the best models using several different criteria. Each 

series was characterized by the average of the estimates of model parameters obtained. In the clustering process, we 

employed a hierarchical approached where the optimal number of clusters identified using the Silhouette coefficient. 

An extensive simulation was completed within this research, and we revealed that our proposed methodology could 

increase the correct cluster membership by more than 10%. We also implemented our methodology to identify clusters 

of areas in Indonesia (i.e., Province of Banten) based on the pattern of rainfall level and found an impressive result. 
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1. INTRODUCTION 

The clustering method of time series data is intensively developed, in line with application needs 

in various fields. One of the advantages of using time series data clustering is to simplify data 

analysis time by organizing data into similar groups [1]. Time series data are generally large, 

making it not easy to analyze directly, by conducting clustering first makes it easier, simpler, and 

more efficient for the next analysis step. 

 Triacca [25] applied clustering to temperature anomaly data. One of the applications in the 

field of economy is the annually clustering Gross Domestic Product (GDP) from several countries 

in the world [26]. In the health sector, Gullo et al. [12] grouped mass spectrometry data, which 

used as early detection of certain diseases. In climate data applications, time-series data clustering 

use as the first step before making a model. Rainfall data in several regions grouped first, then 

modeled according to groups of those regions [24]. There are several methods used to calculate 

the distance between time series include Piccolo distance [19], autocorrelation function (ACF) 

distance [11], dynamic time warping (DTW) distance [23], cepstral-based distance [14], Maharaj 

distance [16], periodogram-based distance [6], copula-based distance [26], and others. 

 The Piccolo distance is one of the popular methods used to clustering time-series data [19]. 

We obtained several ARIMA models from a sequence of time-series data, but only one model is 

selected based on one criterion. However, differences in the selection of model criteria can produce 

different models, and it can produce different cluster results. It raises the problem of uncertainty 

of which model will be chosen. There is much debate about which criteria are best for model 

selection. Some researchers disagree with only selecting the best model based on specific 

information criteria without considering other models [3], [4], [5]. 

 In this paper, we propose a method for clustering time series data using several criteria to 

identify the best model. One of the advantages of this proposed method is to improve the correct 

cluster membership. The systematics of this paper is that in section 2 discusses the proposed 

method, section 3 presents Simulation, section 4 presents application to Clustering Rainfall Data. 

Finally section 5 contains conclusions. 
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2. PROPOSED METHOD 

The use of multi models or average models is an alternative so that it does not only use one model 

that is not necessarily true [3], [5]. Averaging model is one of the ways to determine the model 

selection. The basic idea of the average model is that if we get several estimators for the same 

population, then why not combine these estimators to improve estimation. Suppose the value to be 

estimated is the parameter π, there are several different predictors for π, namely 𝜋̂ Model 1, 

𝜋̂Model2, …, 𝜋̂Model m then we can make weight for the estimator: 

 𝜋̂ Average Model = ∑ 𝑤𝑖 𝜋̂Model 𝑖
𝑚
𝑖=1  (1) 

In this case, what is done is averaging parameter estimators, not averaging the models [8]. The 

averaging model approach gives an idea for developing the Piccolo distance.  

 Piccolo [19] introduces measurements of the distance between the time series using the 

ARIMA model. The distance of the two series is expressed by measuring the structural similarity 

between the two invertible ARIMA processes [6], [9], [19], [20]. The autoregressive expansion 

contains all useful information about the stochastic structures of a time series. The distance 

between two-time series Xt and Yt calculates uses the model parameters: 

 

𝑑(𝑋𝑡 , 𝑌𝑡) = [(𝜋̂𝑥 − 𝜋̂𝑦)′(𝜋̂𝑥 − 𝜋̂𝑦)]
1
2 = √∑(𝜋̂𝑗,𝑥 − 𝜋̂𝑗,𝑦)

2
∞

𝑗=1

  

 

(2) 

where: 𝝅̂𝑥 = (𝜋̂1,𝑥, 𝜋̂2,𝑥, . . . , 𝜋̂𝑗,𝑥, . . . ) and 𝝅̂𝑦 = (𝜋̂1,𝑦, 𝜋̂2,𝑦, . . . , 𝜋̂𝑗,𝑦 , . . . ) are parameters of a 

autoregressive model (AR(∞)) for time series Xt and Yt . For simplicity of the implementations, 

AR (p) is used as an approach for AR (∞), where p = 1, 2, …, p [17].  

 It differs from Piccolo [19] that only uses one model; the proposed method uses five models 

(multi model). The following are some criteria for choosing the best model that was used in the 

proposed method. The Akaike’s Information Criterion (AIC) [2] formula written as  

 𝐴𝐼𝐶 = −2 log (𝜎̂𝑒
2) + 2𝑘 (3) 

where k is the number of parameters, 𝜎̂𝑒
2  is the maximum likelihood estimator for the error 

variance. From this formula, we can see that the more parameters in the model will cause the AIC 

value to increase so that the best model tends to come from a model with a smaller number of 
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parameters; in other words, it will be choosing a simpler model. The formula for Bayesian 

Information Criterion (BIC) [22] is  

 𝐵𝐼𝐶 = −2 log (𝜎̂𝑒
2) + 𝑘 log(𝑛) (4) 

where 𝑛 is the number of observations, k is the number of parameters, 𝜎̂𝑒
2  is the maximum 

likelihood estimator for the variance of the error. Notice the first term in the BIC formula is the 

same as the AIC formula; they only differ in the second term. In the second term, the BIC value is 

influenced by the number of sample sizes and parameters in the model. Now consider the Akaike’s 

information Criterion Bias Corrected (AICc) formula which written as 

 𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶 +
2(𝑘 + 1)(𝑘 + 2)

𝑛 − 𝑘 − 2
 

(5) 

AICc is a bias parameter corrected AIC. While Mean Absolute Percentage Error (MAPE) 

formulated as   

 

MAPE =
∑ |

𝑦𝑡 − 𝑦̂𝑡

𝑦𝑡
x100|n

t=1

𝑛
 

 

(6) 

The equation for Root Mean Squared Error (RMSE) is 

 
RMSE = (

∑ (𝑦𝑡 − 𝑦̂𝑡)2n
t=1

𝑛
)

1/2

 
 

(7) 

where 𝑦 𝑡 is the observation at time-t, and 𝑦̂ 𝑡 is the value of the fit of observation at time-t [10], 

[18]. 

 For instance, model 1, model 2, model 3, model 4, and model 5 are the best models based on 

the criteria of AIC, BIC, AICc, RMSE, and MAPE, respectively. The parameters estimator are 

𝝅̂𝐴𝐼𝐶, 𝝅̂𝐵𝐼𝐶, 𝝅̂𝐴𝐼𝐶𝑐, 𝝅̂𝑅𝑀𝑆𝐸, dan 𝝅̂𝑀𝐴𝑃𝐸. Therefore, the average parameters estimator is 

 

𝝅̅̂ = [
𝝅̅̂1

…
𝝅̅̂𝑝

] = [

1

5
( 𝜋̂1,𝐴𝐼𝐶 + 𝜋̂1,𝐵𝐼𝐶 + 𝜋̂1,𝐴𝐼𝐶𝑐 + 𝜋̂1,𝑅𝑀𝑆𝐸 + 𝜋̂1,𝑀𝐴𝑃𝐸)

…
1

5
( 𝜋̂𝑝,𝐴𝐼𝐶 + 𝜋̂𝑝,𝐵𝐼𝐶 + 𝜋̂𝑝,𝐴𝐼𝐶𝑐 + 𝜋̂𝑝,𝑅𝑀𝑆𝐸 + 𝜋̂𝑝,𝑀𝐴𝑃𝐸)

] 

 

(8) 

The average parameters estimator of the model is compiled into new data representing the time 

series data of an object then used to compute the Piccolo distance. The distance between the Xt 

and Yt time series in the proposed method is: 
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𝑑(𝑋𝑡 , 𝑌𝑡)𝑛𝑒𝑤 = [(𝝅̅̂𝒙 − 𝝅̅̂𝒚)′(𝝅̅̂𝒙 − 𝝅̅̂𝒚)]
1
2 = √∑(𝜋̅̂𝑗,𝑥 − 𝜋̅̂𝑗,𝑦)

2

𝑝

𝑗=1

 

 

(9) 

where 𝝅̅̂𝑥 = (𝜋̅̂1,𝑥 , 𝜋̅̂2,𝑥, . . . , 𝜋̅̂𝑝,𝑥) 𝑎𝑛𝑑 𝝅̅̂𝑦 = (𝜋̅̂1,𝑦 , 𝜋̅̂2,𝑦, . . . , 𝜋̅̂𝑝,𝑦)  is the average parameter 

estimator of the autoregressive model (AR(𝑝)) for time series data Xt and Yt. 

 Let ℳ is the class of ARMA invertible models, and lets 𝑑(𝑋𝑡, 𝑌𝑡) 𝑛𝑒𝑤 be a metric on ℳ. The 

measure denotes 𝑑(𝑋𝑡, 𝑌𝑡) 𝑛𝑒𝑤 satisfies the properties of a distance: 

1. non-negativity 

𝑑(𝑋𝑡 , 𝑌𝑡)𝑛𝑒𝑤 ≥  0 ∀ 𝑋𝑡, 𝑌𝑡  ∈ ℳ 

2. symmetry  

𝑑(𝑋𝑡 , 𝑌𝑡)𝑛𝑒𝑤  = 𝑑(𝑌𝑡 , 𝑋𝑡)𝑛𝑒𝑤∀𝑋𝑡, 𝑌𝑡  ∈ ℳ 

3. triangularity 

𝑑(𝑋𝑡 , 𝑌𝑡)𝑛𝑒𝑤 ≤ 𝑑( 𝑋𝑡 , 𝑍𝑡)𝑛𝑒𝑤 + 𝑑(𝑍𝑡  , 𝑌𝑡)𝑛𝑒𝑤 ∀ 𝑋𝑡, 𝑌𝑡 , 𝑍𝑡 ∈ ℳ. 

 

3. SIMULATION  

In this study, we generated 30 time-series data from three clusters with the Autoregressive (AR (p)) 

model. The cluster is called group A, B, and C. In each group, ten rows are generated, so there are 

30 rows of generated data. The parameter values from the generated data are as follows: model A 

is AR (0.2, 0.1), model B is AR (0.4, 0.5), model C is AR (0.6, 0.2). The values of the parameters 

used for this simulation have met stationary conditions [10], and these parameters also used in the 

study of Kumar and Patel [15]. Each data generation has a length of the observation period (t). 

There are six periods used: 50, 75, 100, 150, 200, and 300. Generated data for each group has two 

kinds of variation in groups. The group with small variations has εit distribution N ~ (0, 0.01), and 

group with large variations has a distribution of εit is N ~ (0, 1). 

 We grouped the generated data using the Piccolo distance and the proposed method, then 

compared it. The generated data modeled by using the Autoregressive (AR (p)) approach with p = 

1, 2, ..., 5. Each object in the data will be selecting the best model; the model is chosen based on 
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the smallest AIC value. We used the model parameters' values to calculate distances using the 

Piccolo distance formula, as in equation (2). All distances of each object were calculated and 

formed the distance matrix. The method for clustering used Ward method. Each step in the Ward 

method combines the object pairs with the smallest increase in error sum of squares (ESS), with 

formula 

 
ESS =  ∑(𝒙𝑗 − 𝒙̅)′(𝒙𝑗 − 𝒙̅)

𝑛

𝑗=1

 
(10) 

where 𝒙𝑗 is a j-th object, and 𝒙̅ is an average of objects [13]. The optimal number of clusters is 

using an average value of the Silhouette index. The formula is 

 Silhouette =  
∑ 𝑆(𝑖)𝑛

𝑖=1

𝑛
 

(11) 

 𝑆(𝑖) = 
𝑏(𝑖)−𝑎(𝑖)

𝑚𝑎𝑥 {𝑎(𝑖);𝑏(𝑖)}
 (12) 

where the value 𝑎(𝑖) is the average dissimilarity of object i-th to others in cluster 𝐶𝑟; the 𝑑𝑖𝐶𝑠
is 

the average dissimilarity of object i-th to others in clusters 𝐶𝑠; the 𝑏(𝑖) is min
𝑠≠ 𝑟

{𝑑𝑖𝐶𝑠
}; and n is the 

number of observations [3], [7], [21]. Repeat the clustering process as above, but use different 

criteria for model selection; based on the smallest BIC, AICc, RMSE, and MAPE values. This 

process was repeated 100 times. 

 For the proposed method, the generated data obtained were each modeled with the 

Autoregressive (AR (p)) approach with p = 1, 2, ..., 5. Each object in the data was selected for the 

five best models based on the smallest of AIC, BIC, AICc, RMSE, and MAPE. The average 

parameter estimator of the model is calculated by using the formula in equation (8). It is used to 

calculate distances with the proposed method, as seen in equation (9). The distance of all objects 

was calculated to form the matrix of distance. Then the distance matrix was grouped by the Ward 

method in equation (10). This process was repeated 100 times. 

 The correct cluster membership was evaluated for both Piccolo and the proposed method. 

Groups originating from the same generated data will be grouped into the same group as well. If 

the data comes from the same group but grouped differently, there has been an error of grouping 
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or missing class error. The percentage of correct cluster membership (CC) calculated by the 

formula: 

 CC =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡 − 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑠𝑠 𝑐𝑙𝑎𝑠𝑠

 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡
 × 100%  (13) 

The average of correct cluster membership for 100 replications calculated. We compared the 

average of correct cluster membership of Piccolo with the proposed method. We also explored the 

proposed method for different order p in the autoregressive (AR (p)) model. Two kinds of 

autoregressive (AR (p)) model approach scenarios created, with p maximum of five and p 

maximum of 10. 

 Table 1 shows the results of Piccolo compared to the proposed method for generated data with 

variance 0.01. As the length of the observation period (t) increases, the percentage of correct cluster 

membership increases for both the proposed method and the Piccolo method. The use of different 

model selection criteria results in different correct cluster membership. In Table 1, the lowest and 

highest correct cluster membership values marked with bold numbers. The Piccolo method (with 

RMSE criterion) has the lowest correct cluster membership than other methods for t = 50. 

Otherwise, for t = 75, 100, 150, 200, and 300, the percentage of correct cluster membership of the 

Piccolo method (with MAPE criterion) has the lowest correct cluster membership compared to 

other methods.  

Table 1. Percentage of correct cluster membership of the Piccolo and the proposed method for 

generating data with 𝜎𝑒
2 = 0.01. 

t Piccolo Method Proposed 

Method AIC BIC AICc RMSE MAPE 

50 78.03% 83.8% 79.53% 72.47% 74.27% 84.53% 

75 82.67% 86.4% 83% 79.97% 78.23% 88.8% 

100 90.27% 88.1% 90.67% 89.13% 81.43% 92.83% 

150 94.77% 93.33% 94.93% 94.5% 85.3% 96.3% 

200 96.5% 97.03% 96.33% 96.8% 86.27% 97.3% 

300 98.87% 98.93% 99% 98.57% 87.8% 99.2% 
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 The proposed method increases the correct cluster membership by 12.06% compared to the 

Piccolo method with RMSE criterion for t = 50. Compared to the Piccolo method with MAPE 

criteria, the proposed method succeeded in increasing the correct cluster membership by 10.57%, 

11. 4%, 11%, 11.03%, 11.4% for t = 75, 100, 150, 200, and 300 respectively. The Piccolo method 

with AIC, BIC, and AICc criterion also provides lower correct cluster membership than the 

proposed method. 

 Table 2 shows the results of Piccolo compared to the proposed method for the group of 

generated data with variance 1. For t = 50, the proposed method increases the correct cluster 

membership by 12.56% compared to the Piccolo method with RMSE criterion. Proposed methods 

compared to Piccolo method with MAPE criterion increases the correct cluster membership by 

11.06%, 10.93%, 10.63%, 11.8%, 11.36% for t = 75, 100, 150, 200, and 300 respectively. Table 1 

and Table 2 indicate that the clustering using the proposed method gives better results than Piccolo. 

Table 2. Percentage of correct cluster membership of the Piccolo and the proposed method for 

generating data with 𝜎𝑒
2 = 1. 

t Piccolo Method Proposed 

Method AIC BIC AICc RMSE MAPE 

50 78.03% 83.37% 78.67% 71.57% 73.73% 84.13% 

75 85.17% 86.1% 83.23% 82.8% 78.77% 89.83% 

100 89.43% 86.8% 90.47% 87.93% 81.77% 92.7% 

150 95.17% 92.43% 94.37% 94.43% 86.17% 96.8% 

200 97.5% 96.4% 97.23% 96.87% 86.23% 98.03% 

300 98.37% 98.53% 98.63% 98.5% 87.67% 99.03% 

 

 The correct cluster membership of the proposed method evaluated with a different order of p 

in AR (p). The order, namely p maximum five and p maximum 10. Table 3 shows the correct 

cluster membership of the proposed method for p maximum 5 and 10 on generation data with 

variance 0.01. Table 4 shows the correct cluster membership of generation data with variance 1.  

 Table 3 shows that for t = 50, 100, and 300, the correct cluster membership with p maximum 

10 shows better than p maximum five even though the difference is small. While for t = 150, p 
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maximum five is slightly above p maximum 10. Table 4 shows at t = 50, 100, and 150, the 

percentage of correct cluster membership for p maximum 10 lower than p maximum five. However, 

there is a little difference at t = 300, p maximum 10 shows higher than p maximum five.   

Table 3. Percentage of the correct cluster membership of the proposed method for the AR (p) 

approach with p maximum five and ten on generation data 𝜎𝑒
2 = 0.01. 

t p maximum 5 p maximum 10 

50 84.53% 85.37% 

100 92.83% 93.27% 

150 96.30% 96.07% 

300 99.20% 99.47% 

 

Table 4. Percentage of the correct cluster membership of the proposed method for the AR (p) 

approach with p maximum five and ten on generation data 𝜎𝑒
2 = 1. 

t p maximum 5 p maximum 10 

50 84.13% 83.60% 

100 92.70% 92.63% 

150 96.80% 96.06% 

300 99.03% 99.43% 

 

 We use the mean difference test at the 0.05 significance level to test the similarity of the results 

obtained from the two kinds of maximum p used in the proposed method. Based on the mean 

difference test, there was no significant difference in the AR (p) approach between p maximum 

five and maximum 10. In other words based on these results, there is no difference between using 

the p approach maximum of five or 10 on AR (p). 

 

4. CLUSTERING RAINFALL DATA 

The application of the proposed method used in this study is the intensity of monthly rainfall 

obtained from the Meteorology, Climatology, and Geophysics Agency (BMKG) Province of 

Banten, Indonesia. The data contains the average value of rainfall intensity (mm) from 15 rainfall 
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stations located in Banten from 1998 to 2014. The names of the rainfall stations are (1) Baros, (2) 

Carenang, (3) Cinangka, (4) Ciomas, (5) Padarincang, (6) Pamarayan, (7) Regas Hilir, (8) 

Cibaliung, (9) Cimanuk, (10) Jiput, (11) Labuhan, (12) Menes, (13) Pandeglang, (14) Sepatan, and 

(15) Ciliman. 

 The rainfall data were clustered based on the proposed method. Figure 1 shows the results of 

clustering presented with a dendrogram. However, we have not had the option to decide the number 

of groups. The method used to determine many groups is the Silhouette index.  

 

Figure 1. Cluster dendrogram of rainfall data based on the proposed method. 

 

Figure 2. The plot of the average silhouette coefficient. 
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 The maximum average Silhouette of the data used to determine the optimal number of groups. 

The average Silhouette coefficient was calculated for the clusters. The maximum value is 

0.47656014, so that the optimal number of groups is five (Figure 2). The clusters formed can be 

seen in Table 5. 

Table 5. Rainfall stations based on the cluster. 

 

 

 

 

  

  

 

  

 

 

a 

 

b 

Figure 3. The plot of rainfall for cluster one (a) and five (b). 

Cluster Rainfall stations 

1 Baros and Carenang 

2 Cinangka, Ciomas, Pamarayan, and Pandeglang 

3 Padarincang, Regas Hilir, Cibaliung, Sepatan, and 

Ciliman 

4 Cimanuk and Labuhan 

5 Jiput and Menes 
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 Figure 3 shows the rainfalls plot members for cluster one and five. The plot of rainfall in one 

cluster has similar patterns. Baros and Carenang have low rainfall values, most of the values in 

cluster one are less than 500 mm and the maximum value is not more than 700 mm. Jiput and 

Menes have high rainfall values, some values are more than 500 mm, but the maximum values 

are not more than 1,200 mm. 

 

5. CONCLUSIONS  

This study was clustering time-series data used several criteria to identify the best model. Based 

on the simulation, each model selection criteria results in a different percentage of correct cluster 

membership. The proposed method that used five criteria is better than the primary Piccolo 

distance that used one criterion. The proposed method increases the correct cluster membership by 

more than 10% compared to the Piccolo distance method. There were not different groups between 

generating data with variations 0.01 and variations 1. For the proposed method, the order p 

approaches in AR (p) maximum of five and 10 do not give different results. We have applied the 

proposed method to clustering of rainfall stations in Province of Banten (Indonesia). The results 

obtained five groups which the rainfall in one group have the same pattern. Further research is 

needed for clustering using different model selection criteria. 
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