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Abstract: Since it was first discovered in Wuhan, China, COVID-19 has continued to spread throughout the world. 

Since then, many research works have been conducted to understand the spread of COVID-19. In this article, we 

propose an epidemiological model to understand the spread of COVID-19, considering the saturated treatment rate, 

direct/indirect transmission, and optimal control problem to find the best strategy for the COVID-19 eradication 

program. The model constructed is based on a nonlinear system of ordinary differential equations. Analytical results 

regarding the basic reproduction number and all equilibrium points are obtained analytically. Our model shows a 

possibility of the existence of the COVID-19 endemic state such that even the basic reproduction number is less than 

unity. We also found that indirect transmission contributes to the increases in the basic reproduction number and also 

the occurrence of the multiple endemic states. An optimal control approach was applied to determine the best strategy 

for the COVID-19 eradication program. Three control parameters were considered in the model: medical mask, 

disinfectant, and medical treatment. A Pontryagin’s Maximum Principle was used to derive the optimal control 

characterization of the related model and was solved numerically using the forward-backward iterative method. 
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Several simulations were conducted to determine the impact of interventions for short time experiments. From the 

cost-effectiveness analysis, we found that using a medical mask as a single intervention is the most effective strategy 

to reduce the spread of infection. 

Keywords: COVID-19; direct-indirect transmission; basic reproduction number; medical mask; disinfectant; 

treatment; optimal control; cost-effectiveness. 

2010 AMS Subject Classification: 00A69, 37N25, 93D20. 

 

1. INTRODUCTION 

At the end of 2019, the world was shocked by the discovery of a new variant of the coronavirus 

known as the COVID-19 [1]. The strongest suspicion is that the virus was first spread through 

animals and then transmitted to humans. Since it was first discovered in the animal market in 

Wuhan, China, the disease has continued to spread throughout the world. According to data from 

WHO until 15 July 2020, more than 13 million cases have been detected worldwide. From the total 

cases, only about 8 million cases ended in recovery, while the other 586,821 cases resulted in 

deaths. With a Case Fatality Rate (CFR) value of only 7 %, COVID-19 is not categorized as deadly 

as a MERS disease which has a CFR value of 34%. 

There is an early report’s advice that transmission might occur from three paths [2] i.e., (1) 

contact with an object that has the virus on it; (2) inhaling droplets emitted by sneeze and coughs; 

(3) micro-droplet infection. This third infection path is suspected to have resulted from a close 

contact (conversation or even from standing at a certain distance apart) with infected individuals. 

In the experiment from NHK, it was found that when an infected individual coughs in a closed 

space, it is estimated that about a hundred thousand droplets are released within a few seconds. 

Compared to large droplets that fall to the floor within 20–30 seconds, micro-droplets remain in 

the air for a longer period. This leaves people at risk of infection virtually all the time. 

Several interventions have been put in place by the government to control the spread of 

COVID-19 such as (1) endemic prevention strategy (mitigation strategy) and (2) endemic 

reduction strategy (suppression strategy). This first strategy focused on slowing the spread of 

COVID-19 such as combining home isolation of suspect cases, social distancing, and so on. The 

second strategy aims to reverse the growth of COVID-19 through the improvement of medical 

treatment policy, research on medicine and vaccine for COVID-19, and so on [3]. These strategies 



3 

COST-EFFECTIVENSS AND BACKWARD BIFURCATION ON COVID-19 MODEL 

have their own challenges whether it is from human behavior, minimum funding for 

prevention/control strategy, and so on. 

Since COVID-19 was declared by WHO as a global pandemic, there have been many 

mathematical models introduced by authors to understand how COVID-19 spreads with the help 

of many aspects such as a model to understand the impact of non-pharmaceutical interventions 

(NPIs) [3], a model for understanding the effect of undetected cases [4,5], and a model for 

parameter estimation [6,7,8]. In this article, the result objective is focused on understanding the 

effect of micro-droplet transmission and its contribution to COVID-19 spread. Many reports have 

stated that medical resources are very limited in many countries. Therefore, we have included a 

saturated treatment rate in our model. The model is constructed with a basic SIS model combined 

with a new compartment for the droplets. Mathematical analysis regarding the stability analysis of 

the equilibrium points and the existence of backward bifurcation was conducted rigorously. For 

practical purposes for the COVID-19 control program, we constructed an optimal control problem 

based on our proposed model by adding three types of intervention as a time-dependent parameter: 

medical mask use, disinfectant intervention, and medical treatment. An optimal control problem 

analysis was conducted to determine the best strategy to reduce the number of COVID-19 infected 

individuals with an optimal intervention, which will depend on time. Some numerical experiments 

were conducted to provide a visual interpretation of the analytical results. 

The rest of the paper is organized as follows. We propose our COVID-19 transmission models in 

Section 2. The first model is proposed without any intervention implemented. The purpose is to 

analyze the possible intervention strategy that might be implemented for COVID-19 prevention 

and endemic reduction purposes. The second model is proposed for policy purposes to eradicate 

COVID-19. In Section 3, optimal control simulations are conducted based on the second model. 

Discussion on the cost-effectiveness analysis provided in Section 4, and followed with some 

conclusions in Section 5. 

 

2. MATERIAL AND METHODS 

2.1 Model without control program  

2.1.1 Model formulation 
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To study the effect of indirect transmission and limited medical resources on the spread of 

COVID-19, in this section, we present the formulation of the model that will examine the dynamics 

of COVID-19. Human population (𝑁(𝑡)) is divided into two compartments: susceptible (𝑆(𝑡)) 

and infected (𝐼(𝑡)) compartments. The model is based on the standard SIS model. As mentioned 

previously, the droplet produced by an infected human through cough or sneeze can last a long 

time on surfaces [9]. Therefore, it is important to accommodate the existence of the droplets that 

are free in the environment which, in this article, we denote with (𝑉(𝑡)). 

Let the recruitment with the constant rate given by 𝐴 always be susceptible. The susceptible 

population is decreased by infection with an infected population following a population dependent 

infection function. This infection parameter is formed by a multiplication between the average 

number of meetings between 𝑆 and 𝐼 for each time interval Δ𝑡 denoted as 𝑐ℎ, and the chance of 

success infection denoted as 𝜂ℎ . Therefore, the infection caused by direct contact between 

susceptible and infected individual is given by 𝑐ℎ𝜂ℎ
𝑆

𝑆+𝐼
𝐼, where 

𝑆

𝑆+𝐼
 is the proportion of the 

susceptible population in time 𝑡. For simplification, we wrote 𝑐ℎ𝜂ℎ = 𝛽ℎ. In addition to direct 

infection, we assumed that COVID-19 can also be transmitted to susceptible humans 𝑆 through 

contact between healthy human and surfaces containing the coronavirus 𝑉. Unlike the previous 

direct infection, the indirect infection in this article is assumed to be modeled as a mass contact 

between the healthy population and coronavirus on the surface with an infection rate of 𝛽𝑣 . 

Therefore, indirect transmission of Covid-19 is given by 𝛽𝑣𝑆 𝑉. 

Next, it is important to mention other details on the recovery rate in this article. In many 

countries, medical resources significantly impact the success of COVID-19 control policy. 

Unfortunately, the medical resources to control COVID-19 are limited in terms of the number of 

medical personnel, the availability of hospital beds, and many other factors. To accommodate this 

situation, the recovery rate that transfers the infected population into the susceptible population is 

in the term of 
𝛼

1+𝑏𝐼
, where 𝛼  and 𝑏  are the recovery rate and half saturated parameter, 

respectively. 

Based on this explanation, we formulate the transmission model for COVID-19 with the direct 

and indirect transmission as well as saturated treatment as follows: 
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𝑑𝑆

𝑑𝑡
= 𝐴 − 

𝛽ℎ𝑆𝐼

𝑆 + 𝐼
− 𝛽𝑣𝑆 𝑉 − 𝜇ℎ𝑆 +

𝛼𝐼

1 + 𝑏𝐼
, 

𝑑𝐼

𝑑𝑡
=   

𝛽ℎ𝑆𝐼

𝑆 + 𝐼
+ 𝛽𝑣𝑆 𝑉 − 𝜇ℎ𝐼 −

𝛼𝐼

1 + 𝑏𝐼
− 𝜇𝑐𝐼, 

𝑑𝑉

𝑑𝑡
= 𝜉𝐼 − 𝜇𝑣𝑉, 

(1) 

where 𝜇𝑐 is the death rate induced by disease, 𝜉 is the average of production of coronavirus from 

the infected individual, and 𝜇𝑣  is the expected rate of survival of the coronavirus in the 

environment. System (1) is supplemented with a non-negative initial condition 

𝑆(𝑡 = 0) = 𝑆0 ≥ 0, 𝐼(𝑡 = 0) = 𝐼0 ≥ 0, 𝑉(𝑡 = 0) = 𝑉0 ≥ 0. 

 The rate of change on the total of human populations is as follows: 

𝑑𝑁

𝑑𝑡
= 𝐴 − 𝜇ℎ𝑁 − 𝜇𝑐𝐼. 

As we assume that 𝐴 =  𝜇ℎ𝑁, therefore we have the total of human population decreasing with 

respect to COVID-19 death incidence. It is easy to see that 𝑁(𝑡) for all 𝑡 > 0, and 𝑁(𝑡) ∈ [0,
𝐴

𝜇ℎ
] 

for 𝑡 → ∞. Since 
𝑑𝑉

𝑑𝑡
(𝑉 = 0) = 𝜉𝐼, we have that 𝑉(𝑡) always non-negative and has the upper 

bound 
𝜉𝐴

𝜇ℎ𝜇𝑣
. Therefore, we have 𝑉(𝑡) ∈ [0,

𝜉𝐴

𝜇ℎ𝜇𝑣
] for all time 𝑡 > 0. With these properties, we 

have that system (1) is a biologically well-posed problem. 

2.1.2 Model analysis 

Before we analyze the model, it is important to reduce the model into a two-dimensional 

system, using the fact that 𝑉 has a very fast dynamic as the survival rate 𝜇𝑣 is much larger than 

the human survival rate 𝜇ℎ , that is 𝜇𝑣 ≫ 𝜇ℎ . Using the Quasi-Steady-State Approximation 

(QSSA) approach [10] and taking 𝑉 in the equilibrium state, we have 𝑉∗ =
𝜉𝐼

𝜇𝑣
. Substituting 𝑉∗ 

into 
𝑑𝑆

𝑑𝑡
 and 

𝑑𝐼

𝑑𝑡
 on system (1), we have the new COVID-19 model: 

𝑑𝑆

𝑑𝑡
= 𝐴 − 

𝛽ℎ𝑆𝐼

𝑆 + 𝐼
− 𝛽𝑣𝑆 

𝜉𝐼

𝜇𝑣
− 𝜇ℎ𝑆 +

𝛼𝐼

1 + 𝑏𝐼
, 

𝑑𝐼

𝑑𝑡
=   

𝛽ℎ𝑆𝐼

𝑆 + 𝐼
+ 𝛽𝑣𝑆 

𝜉𝐼

𝜇𝑣
− 𝜇ℎ𝐼 −

𝛼𝐼

1 + 𝑏𝐼
− 𝜇𝑐𝐼. 

(2) 

The next step is re-scaling the time-space into recovery rate time-space by using 𝜏 = 𝑡/𝛼, where 

𝜏 is the new time-space. Thus, equation (2) is now read as follows: 
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𝑑𝑆

𝑑𝜏
= 𝐴∗ − 

𝛽ℎ
∗𝑆𝐼

𝑆 + 𝐼
− 𝛽𝑣

∗𝑆𝐼 − 𝜇ℎ
∗𝑆 +

𝐼

1 + 𝑏𝐼
, 

𝑑𝐼

𝑑𝑡
=   

𝛽ℎ
∗𝑆𝐼

𝑆 + 𝐼
+ 𝛽𝑣

∗𝑆𝐼 − 𝜇ℎ
∗ 𝐼 −

𝐼

1 + 𝑏𝐼
, 

(3) 

where  𝐴∗ =
𝐴

𝛼
, 𝛽ℎ

∗ =
𝛽ℎ

𝛼
, 𝛽𝑣

∗ =
𝛽𝑣𝜉

𝜇𝑣𝛼
, 𝜇ℎ

∗ =
𝜇ℎ

𝛼
,  and 𝜇𝑐

∗ =
𝜇𝑐

𝛼
. Using these assumptions, all 

parameters now have no dimension except 𝑏  which is 
1

𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙
. For the sake of written 

simplification, we neglect the “*” sign in all parameters and read system(3) as follows: 

𝑑𝑆

𝑑𝜏
= 𝐴 − 

𝛽ℎ𝑆𝐼

𝑆 + 𝐼
− 𝛽𝑣𝑆𝐼 − 𝜇ℎ𝑆 +

𝐼

1 + 𝑏𝐼
, 

𝑑𝐼

𝑑𝑡
=   

𝛽ℎ𝑆𝐼

𝑆 + 𝐼
+ 𝛽𝑣𝑆𝐼 − 𝜇ℎ𝐼 −

𝐼

1 + 𝑏𝐼
− 𝜇𝑐𝐼. 

(4) 

One of the most important concepts in analyzing the epidemiological model of disease is the 

concept of the basic reproduction number which is commonly denoted as 𝑅0 . The basic 

reproduction number has been used by many authors to determine the behavior of the stability of 

the equilibrium from their disease model [11–15]. Commonly, the disease will die out whenever 

𝑅0 < 1  and persist whenever 𝑅0 > 1 . In this section, we will derive the basic reproduction 

number as the spectral radius of the next-generation matrix of the disease model. Please see [16] 

for further detail on the next-generation matrix approach in determining 𝑅0 and [17–20] for more 

examples of the implementation of this method in some epidemiological models. 

System (4) always has a trivial equilibrium state, that is, a COVID-19 free state which given 

by 

Γ0 = (𝑆, 𝐼) = (
𝐴

𝜇ℎ
, 0). 

Applying the next-generation matrix approach to system (4), the basic reproduction number of 

system (4) is given by 

𝑅0 =
𝐴 𝛽𝑣 + 𝛽ℎ𝜇ℎ

𝜇ℎ(𝜇ℎ + 𝜇𝑐 + 1)
. (5) 

Theorem 1. System (4) has a COVID-19 free state 𝛤0, which is locally asymptotically stable if 

𝑅0 < 1  and unstable if 𝑅0 > 1. 

Proof. Linearize system (4) at Γ0 yield 

𝐽0 = 

[
 
 
 
 −𝜇ℎ 1 − 𝛽ℎ −

𝛽𝑣𝐴

𝜇ℎ

0 𝛽ℎ − 1 + 
𝛽𝑣𝐴

𝜇ℎ
− 𝜇ℎ − 𝜇𝑐]

 
 
 
 

. 
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The eigenvalues of 𝐽0  are 𝜆1 = −𝜇ℎ  and 𝜆2 = (1 + 𝜇ℎ + 𝜇𝑐)(𝑅0 − 1).  Therefore, it is 

clear that all eigenvalues of 𝐽0 will be negative if 𝑅0 < 1. Hence, Γ0 is locally asymptotically 

stable if 𝑅0 < 1. On the other hand, if 𝑅0 > 1, then Γ0 will be a saddle point. Hence, the proof is 

complete.                      ∎ 

From the form of the basic reproduction number, when 𝛽𝑣 = 0, which indicate that we neglect 

the indirect transmission, we have  

𝑅0
∗ = 

 𝛽ℎ

(𝜇ℎ + 𝜇𝑐 + 1)
< 𝑅0. 

Remark 1. The indirect transmission that occurs from contact with objects containing viruses on 

their surface will increase the standard basic reproduction number from direct contact 

transmission only. Therefore, using disinfectant to kill the coronavirus could be a wise option to 

reduce the transmission of COVID-19 in the community. 

Next, we analyze the existence of the untrivial equilibrium point. Taking the right-hand side 

of system (4) equal to zero and solving it with respect to 𝑆 and 𝐼, the endemic state of system (4) 

is given by 

Γ1 = (𝑆, 𝐼) =  (𝑆1, 𝐼1), 

where 𝑆1 =
𝑐2𝐼2+𝑐1𝐼+𝑐0

𝑑2𝐼2+𝑑1𝐼+𝑑0
,  c2 =  b βv(μc + μh) ,  𝑐1 = (𝛽𝑣 + 𝑏𝜇ℎ)(𝜇ℎ + 𝜇𝑐) − 𝑏 𝛽𝑣𝐴 , 𝑐0 =

 𝜇ℎ(𝜇ℎ + 𝜇𝑐 + 1) − 𝐴 𝛽𝑣,  𝑑2 = −𝑏 𝛽𝑣(𝜇𝑐 + 𝜇ℎ),  𝑑1 = 𝑏 (𝛽𝑣𝐴 + 𝛽ℎ𝜇ℎ) − (𝜇𝑐 + 𝜇ℎ)(𝑏𝜇𝑣 +

 𝛽𝑣)  and 𝑑0 = 𝜇ℎ(𝜇𝑐 + 𝜇ℎ + 1)(𝑅0 − 1) ,  while 𝐼1  is taken from the positive roots of the 

following polynomial: 

𝐹(𝐼) = 𝑎3𝐼
3 + 𝑎2𝐼

2 + 𝑎1𝐼 + 𝑎0 = 0, 

Where 

𝑎0 = 𝐴 𝜇ℎ(𝜇ℎ +  𝑚𝑢𝑐 + 1)(𝑅0 − 1),   

𝑎1 = 𝐴 (𝐴 𝛽𝑣 + 𝜇ℎ(𝛽ℎ − 𝜇𝑐 − 𝜇ℎ))𝑏 − 𝛽ℎ𝜇ℎ(𝜇𝑐 − 𝜇ℎ) + 𝛽ℎ𝜇ℎ(𝜇𝑐 + 𝜇ℎ) + 𝜇ℎ𝜇𝑐(1 + 𝜇ℎ + 𝜇𝑐),  

𝑎3 = 𝑏 𝛽𝑣𝜇𝑐(𝜇𝑐 + 𝜇ℎ),  

while 𝑎2 has an expression too long to be shown in this article. 

To analyze the existence of a positive solution of polynomial 𝐹(𝐼), we will analyze the sign 

of 
𝜕𝐼

𝜕𝑅0
 at 𝐼 = 0, 𝑅0 = 1. If 

𝜕𝐼

𝜕𝑅0
< 0 at 𝐼 = 0, 𝑅0 = 1, then we will have an endemic equilibrium 

when 𝑅0 < 1  which indicates the existence of backward bifurcation. To do this, we should 

express all coefficient of 𝐹(𝐼) in the term of 𝑅0. To do this, we choose 𝛽ℎ as the bifurcation 

parameter and solve 𝑅0 respect to 𝛽ℎ which gave us 
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𝛽ℎ
∗ =

𝑅0𝜇ℎ(𝜇ℎ + 𝜇𝑐 + 1) − 𝛽𝑣𝐴

𝜇ℎ
. 

Substituting 𝛽ℎ = 𝛽ℎ
∗ into 𝐹(𝐼), we have 

𝐹∗(𝐼) = 𝑎3
∗𝐼3 + 𝑎2

∗𝐼2 + 𝑎1
∗𝐼 + 𝑎0

∗ = 0, 

where 𝑎3
∗ , 𝑎2

∗ , 𝑎1
∗ and 𝑎0

∗  now is a function of 𝑅0. Taking the derivative of 𝐼 respect to 𝑅0 from 

𝐹∗(𝐼), and then solve it respect to 
𝜕𝐼

𝜕𝑅0
 at 𝐼 = 0, 𝑅0 = 1 yield 

𝜕𝐼

𝜕𝑅0

(𝐼 = 0, 𝑅0 = 1) =  −
𝐴(𝜇ℎ + 𝜇𝑐 + 1)

𝐴𝑏𝜇ℎ − 𝐴𝛽𝑣𝜇𝑐 − 𝜇ℎ
2 (𝜇ℎ + 𝜇𝑐 + 1)

. 

It can be seen that 
𝜕𝐼

𝜕𝑅0
 at 𝐼 = 0, 𝑅0 = 1 will be negative if 

𝑏 > 𝑏† =
𝐴𝛽𝑣𝜇𝑐 + 𝜇ℎ

2(𝜇𝑐 + 𝜇ℎ + 1)

𝐴 𝜇ℎ
. 

Therefore, we can conclude that whenever 𝑏 > 𝑏†, there will always exist an endemic state of 

COVID-19 of system (4) when 𝑅0 < 1. This result is summarized in the following theorem. 

Theorem 2. System (4) will have a positive endemic state when 𝑅0 < 1 if 𝑏 > 𝑏†,  where 𝑏†is 

given by 

𝑏† =
𝐴𝛽𝑣𝜇𝑐 + 𝜇ℎ

2(𝜇𝑐 + 𝜇ℎ + 1)

𝐴 𝜇ℎ
. 

Theorem 2 states the existence of the COVID-19 endemic state even though 𝑅0 < 1. In the 

following theorem, we state the stability criteria of the COVID-19 equilibrium state. 

Theorem 3. System (4) undergoes a backward bifurcation at 𝑅0 = 1 if 𝑏 > 𝑏†,  where 𝑏†is given 

in Theorem 2.  

Proof. To analyze the stability of the COVID-19 endemic state, we will use the Castillo-Song 

theorem which introduced in [27]. First, let system (4) be redefined as follows  

𝑓1 ≔ 𝐴 − 
𝛽ℎ𝑆𝐼

𝑆 + 𝐼
− 𝛽𝑣𝑆𝐼 − 𝜇ℎ𝑆 +

𝐼

1 + 𝑏𝐼
, 

𝑓2 ≔  
𝛽ℎ𝑆𝐼

𝑆 + 𝐼
+ 𝛽𝑣𝑆𝐼 − 𝜇ℎ𝐼 −

𝐼

1 + 𝑏𝐼
. 

 

Next, let 𝛽ℎ be the bifurcation parameter. Hence, 𝛽ℎ is evaluated when 𝑅0 = 1.  

𝛽ℎ
∗ =

𝜇ℎ(𝜇ℎ + 𝜇𝑐 + 1) − 𝛽𝑣𝐴

𝜇ℎ
. 
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Substituting 𝛽ℎ
∗ , Γ0 = (

𝐴

𝜇ℎ
, 0)  into the Jacobian matrix of our system and evaluating the 

eigenvalues with respect to it, we have one zero simple eigenvalue, and the other eigenvalue is 

−𝜇ℎ. Hence, we can use the center-manifold theorem to analyze the stability of Γ1.  

 To use the Castillo-Song theorem, first, we need to calculate the left and right eigenvectors 

related to the zero eigenvalue. Using a simple calculation, we have the right eigenvector of our 

system with respect to 𝜆 = 0 is [𝑤1 𝑤2]𝑇 , where 𝑤1 = 
−(𝜇𝑐+ 𝜇ℎ)𝑤2

𝜇ℎ
, 𝑤2 = 𝑤2 . On the other 

hand, the left eigenvector with respect to 𝜆 = 0 is [𝑣1 𝑣2], where 𝑣1 = 0, 𝑣2 = 𝑣2. Since 𝑣1 =

0, we only need to calculate the second partial derivative of 𝑓2 as follows: 

𝜕2𝑓2
𝜕𝑆2

= 0,
𝜕2𝑓2
𝜕𝑆𝜕𝐼

=
𝜕2𝑓2
𝜕𝐼𝜕𝑆

= 0,
𝜕2𝑓2
𝜕𝐼2

= 2𝑏 −
2𝛽ℎ

∗𝜇ℎ

𝐴
,

𝜕2𝑓2
𝜕𝑆𝜕𝛽ℎ

= 0,
𝜕2𝑓2
𝜕𝐼𝜕𝛽ℎ

= 1. 

Hence, we have  

𝐴 = 𝑣2 (𝑤1𝑤1

𝜕2𝑓2
𝜕𝑆2

+ 𝑤1𝑤2

𝜕2𝑓2
𝜕𝑆𝜕𝐼

+ 𝑤2𝑤1

𝜕2𝑓2
𝜕𝑆𝜕𝐼

+ 𝑤2𝑤2

𝜕2𝑓2
𝜕𝐼2

)

= 2
(𝐴𝜇ℎ𝑏 − (𝐴𝛽𝑣𝜇𝑐 + 𝜇ℎ

2(𝜇𝑐 + 𝜇ℎ + 1)))

𝐴𝛽𝑣(𝜇ℎ + 𝜇𝑐)
,

 

and  

𝐵 = 𝑣2𝑤1

𝜕2𝑓2
𝜕𝑆 𝜕𝛽ℎ

+ 𝑣2𝑤2

𝜕2𝑓2
𝜕𝐼 𝜕𝛽ℎ

= 𝑣2𝑤2.

 

We can see that 𝐵 > 0 without any condition and 𝐴 > 0 if 

𝑏† =
𝐴𝛽𝑣𝜇𝑐 + 𝜇ℎ

2(𝜇𝑐 + 𝜇ℎ + 1)

𝐴 𝜇ℎ
. 

Hence, system (4) undergoes a backward bifurcation at 𝑅0 = 1  if 𝑏† =
𝐴𝛽𝑣𝜇𝑐+ 𝜇ℎ

2(𝜇𝑐+ 𝜇ℎ+1)

𝐴 𝜇ℎ
. 

Hence, the proof is complete.                    ∎ 

Recall that 𝑏 is the saturation parameter for the treatment. Therefore, we have the following 

remark. 

Remark 2. A more significant saturation parameter (indicated by lack of facility of treatment, the 

minimum number of beds in the hospital, minimum number of doctors, and other treatment 

facilities) will increase the probability of the existence of endemic equilibrium state of COVID-19, 

even though the disease-free state is stable when 𝑅0 < 1. 
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2.1.3 Numerical experiments 

In this section, we illustrate the numerical examples of the possible phenomena of the COVID-19 

model in (4), especially describing Theorem 2 numerically. 

 Example 1. Forward bifurcation. From Section 3, we found that system (4) will have a 

forward bifurcation whenever  𝑏 < 𝑏† . To illustrate this phenomenon, we use the following 

parameters: 

𝛽ℎ
∗ =

1000

65 × 365
× 6, 𝛽𝑣

∗ = 10−10 ×
103

5
× 6, 𝜇ℎ

∗ =
1

65 × 365
× 6, 𝜇𝑐

∗ = 10−4. 

Using this parameter, we found that 𝑏† = 10−3. Therefore, to conduct the forward bifurcation, we 

choose 𝑏 = 10−4 < 𝑏†. A bifurcation diagram for system (4) is shown in Fig.1 with respect to 

𝛽ℎ as the bifurcation parameter. In this setting, we found that system (4) only has the COVID-19 

free equilibrium as the stable equilibrium whenever 𝛽ℎ
∗ < 1.0023 (𝑅0(𝛽ℎ=1.0023) = 1). When 𝛽ℎ

∗ 

increases, leaving 𝛽ℎ
∗ = 1.0023, the COVID-19-free state becomes unstable. On the other hand, 

the stable COVID-19 endemic starts to appear and increases when 𝛽ℎ
∗ increases. Biologically, this 

means that system (4) is robust with the initial condition as the long-term behavior of the model 

only depends on 𝑅0 whether its larger or smaller than 1. 

 

FIGURE 1. A forward bifurcation phenomenon of system (4) appears when 𝑏 < 𝑏†. The blue and 

red curve indicates a COVID-19-free state and COVID-19 endemic state, respectively. Dotted and 

solid curves indicate unstable and stable states, respectively. 
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 Example 2. Backward bifurcation. Similar to the previous example, from Section 3 we 

found that system (4) will have a backward bifurcation whenever 𝑏 > 𝑏† . To illustrate this 

phenomenon, we use the same parameter value as example 1. Therefore, to conduct the backward 

bifurcation, we choose 𝑏 = 10−2 > 𝑏†. A bifurcation diagram for system (4) shows in Fig.2 with 

respect to 𝛽ℎ
∗ as the bifurcation parameter. In this setting, we found that system (4) only has the 

COVID-19 free equilibrium as the stable equilibrium whenever 𝛽ℎ
∗ < 0.385. When 𝛽ℎ

∗ = 0.385, 

hysteresis appears, which is shown by the appearance of another positive equilibrium. 

Furthermore, when 𝛽ℎ
∗  increases from 0.385 until 1.0023 ,  system (4) generates one stable 

COVID-19 endemic state and one unstable COVID-19 endemic state. On the other hand, the 

COVID-19-free equilibrium remains stable in this region. Therefore, a bistability phenomenon 

appears in this region. When 𝛽ℎ
∗ increases, leaving 𝛽ℎ

∗ = 1.0023, 𝑅0 becomes larger than unity. 

Consequently, there is only one stable state, i.e. the COVID-19 endemic state, while the COVID-

19 free state becomes unstable. Biologically, this implies that system (4) is very sensitive to a small 

perturbation in the initial condition whenever backward bifurcation occurs as it might lead to a 

large difference in the dynamic behavior of COVID-19 final state. 

 

FIGURE 2. A backward bifurcation phenomenon of system (4) appear when 𝑏 > 𝑏†. The blue 

and red curves indicate COVID-19 free state and COVID-19 endemic state, respectively. The 

dotted and solid curves indicate unstable and stable states. 
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2.1.4 Preliminary conclusions 

In this section, we propose an epidemic model with a saturation recovery rate from infected to 

susceptible population considering the indirect transmission from the free pathogen. Our 

mathematical analysis started by approximating the coronavirus compartment in its equilibrium 

condition using the QSSA approach. Our model has two equilibrium states. The COVID-19 free 

state is locally stable if the basic reproduction number is less than one and becomes unstable 

otherwise. Our analysis shows that it is possible that the COVID-19 endemic state might appear 

even if the basic reproduction number is less than unity. This condition might lead to a 

misinterpretation of the condition of the COVID-19 eradication program by the policymaker in the 

community. Our analysis also shows that the indirect transmission which occurs from touching 

objects that contain viruses on their surface could increase the possibility of the existence of 

COVID-19 in the community. Therefore, except only using social/physical distancing and rapid 

assessment [21] or medical treatment [22], the use of disinfectant to wipe out the coronavirus that 

could potentially cause indirect transmission could be considered an additional effort to reduce 

COVID-19 transmission. Hence, we will improve our proposed model to consider three different 

interventions: medical mask use, disinfectant, and treatment. These three interventions will be 

introduced as a time-dependent parameter in the following section. 

2.2 Improved model with control program 

Based on our previous analysis, it is important to consider other interventions except focusing 

on social distancing to eradicate COVID-19. Hence, in this section, we modify our previous 

COVID-19 transmission model in (1). The modification entails adding three different interventions 

with specific purposes; they are as follows: 

(i) Medical mask. The medical mask is strongly recommended by many policymakers in 

many countries not only for the infected individual but also for the susceptible one as 

many infected people do not show any symptoms. In our model, this intervention is 

denoted by 𝑢1(𝑡). The construction of the model is as follows. First, we assume that 

only 𝑢1(𝑡) proportion of the human population use a medical mask, while the rest (1 −

𝑢1(𝑡)) do not. Furthermore, we assume that the use of a medical mask could protect 
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humans from direct contact with infected individuals perfectly with the efficacy of the 

medical mask being 100%. Therefore, the infection caused by contact with an infected 

individual is 0. Hence, infection from direct contact only occurs from contact between 

a susceptible and an infected individual who does not wear any medical mask, i.e. (1-

𝑢1(𝑡))𝑆(𝑡) and (1-𝑢1(𝑡))𝐼(𝑡), respectively. Therefore, the new infection coming from 

direct contact with an infected individual is given as follows: 

Λℎ(𝑡) =  
𝛽ℎ(1 − 𝑢1(𝑡))𝑆 (1 − 𝑢1(𝑡))𝐼

𝑆 + 𝐼
=

𝛽ℎ(1 − 𝑢1(𝑡))
2𝑆𝐼

𝑆 + 𝐼
. 

(ii) Disinfectants. Disinfectants are implemented to kill coronavirus, which probably lies 

in the surface that already touch/had droplet by an infected individual previously. In 

our model, we denote this intervention as 𝑢2(𝑡). 

(iii) Treatment. Although specific medicine to cure infected individuals has not yet been 

created, medical support can still increase the recovery rate of an infected individual. 

We use 𝑢3(𝑡) to symbolize this intervention on our model. 

Considering these kinds of interventions, the COVID-19 transmission model in this article can 

be read as follows: 

𝑑𝑆

𝑑𝑡
= 𝐴 − 

𝛽ℎ(1 − 𝑢1(𝑡))
2𝑆𝐼

𝑆 + 𝐼
− 𝛽𝑣𝑆 𝑉 − 𝜇ℎ𝑆 +

(𝛼 + 𝑢3(𝑡))𝐼

1 + 𝑏𝐼
, 

𝑑𝐼

𝑑𝑡
=   

𝛽ℎ(1 − 𝑢1(𝑡))
2𝑆𝐼

𝑆 + 𝐼
+ 𝛽𝑣𝑆 𝑉 − 𝜇ℎ𝐼 −

(𝛼 + 𝑢3(𝑡))𝐼

1 + 𝑏𝐼
− 𝜇𝑐𝐼, 

𝑑𝑉

𝑑𝑡
= 𝜉𝐼 − (𝜇𝑣 + 𝑢2(𝑡))𝑉, 

(6) 

which is supplemented with the following initial condition: 

𝑆(𝑡 = 0) = 𝑆0 ≥ 0, 𝐼(𝑡 = 0) = 𝐼0 ≥ 0, 𝑉(𝑡 = 0) = 𝑉0 ≥ 0. 

2.2.1 The basic reproduction number  

 Assuming all interventions are constant in time, system (6) has a COVID-19 free equilibrium 

given by 

Γ0 = (𝑆, 𝐼, 𝑉) = (
𝐴

𝜇ℎ
, 0,0). (7) 

Using the next-generation matrix method [16], the basic reproduction number of system (6) is 

given by  
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𝑅0
𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 = 𝑅𝑑 + 𝑅𝑖 = 

𝛽ℎ(1 − 𝑢1)
2

(𝜇ℎ + 𝜇𝑐 + 𝛼 + 𝑢3)
+

𝛽𝑣𝐴𝜉

𝜇ℎ(𝜇𝑣 + 𝑢2)(𝜇ℎ + 𝜇𝑐 + 𝛼 + 𝑢3)
. (8) 

 Please note that 𝑅𝑑 denotes the basic reproduction number for the direct transmission caused 

by contact between the susceptible and the infected individual, while 𝑅𝑖 is the infection from the 

indirect infection. From [24] we have the following theorem. 

Theorem 4. The COVID-19 free equilibrium 𝛤0 of system (6) is locally asymptotically stable if 

𝑅0 < 1 and unstable otherwise. 

2.2.2 Characterization of the optimal control problem 

In this section, we analyze the optimal control problem for COVID-19 transmission model (6) 

to determine the optimal trajectories of 𝑆(𝑡), 𝐼(𝑡),  and 𝑉(𝑡) which correspond to the optimal 

intervention strategy. Let us define the objective function as follows: 

𝐽(𝑢1, 𝑢2, 𝑢3) = ∫ (𝑏1𝐼(𝑡) + 𝑏2𝑉(𝑡) +
1

2
𝑐1𝑢1

2 +
1

2
𝑐2𝑢2

2 +
1

2
𝑐3𝑢3

2)  𝑑𝑡.

𝑡𝑓

0

 (9) 

This objective function describes the aim of our optimal control problem: minimizing the number 

of infected people and free coronavirus in the environment with a minimum cost of intervention 

strategies. We assume that the cost of the treatment is quadratic as has already been used by many 

authors in [12, 17, 20, 24]. The positive coefficients 𝑏1, 𝑏2, 𝑐1, 𝑐2, and 𝑐3  are the weight 

parameters which will guarantee the balance of each component in the cost function (9). 

The Pontryagin Maximum Principle [25] has been used in this article to derive the necessary 

conditions that the optimal control parameters should satisfy. According to this principle, 

𝑢1
∗, 𝑢2

∗ , and 𝑢3
∗  as the optimal trajectories of control parameters with corresponding optimal 

𝑆∗, 𝐼∗, and 𝑉∗ will minimize the cost function 𝐽(𝑢1, 𝑢2, 𝑢3) for a fixed final time 𝑡𝑓. 

(i) The optimality condition 

𝜕𝐻(𝑆, 𝐼, 𝑉, 𝑢1, 𝑢2, 𝑢3, 𝑍)

𝜕𝑢1
= 0, 

𝜕𝐻(𝑆, 𝐼, 𝑉, 𝑢1, 𝑢2, 𝑢3, 𝑍)

𝜕𝑢2
= 0,

𝜕𝐻(𝑆, 𝐼, 𝑉, 𝑢1, 𝑢2, 𝑢3, 𝑍)

𝜕𝑢3
= 0, 

(10) 

where 𝑍 = {𝑧𝑠, 𝑧𝑖, 𝑧𝑣}  is the co-state variables and the Hamiltonian function 

𝐻(𝑆, 𝐼, 𝑉, 𝑢1, 𝑢2, 𝑢3, 𝑍) is defined by 

𝐻 = 𝑏1𝐼(𝑡) + 𝑏2𝑉(𝑡) +
1

2
𝑐1𝑢1

2 +
1

2
𝑐2𝑢2

2 +
1

2
𝑐3𝑢3

2  (11) 
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+ 𝑧𝑠 (𝐴 − 
𝛽ℎ(1 − 𝑢1(𝑡))

2
𝑆𝐼

𝑆 + 𝐼
− 𝛽𝑣𝑆 𝑉 − 𝜇ℎ𝑆 +

(𝛼 + 𝑢3(𝑡))𝐼

1 + 𝑏𝐼
) 

+ 𝑧𝑖 (
𝑝𝛽ℎ(1 − 𝑢1(𝑡))

2
𝑆𝐼

𝑆 + 𝐼
+ 𝛽𝑣𝑆 𝑉 − 𝜇ℎ𝐼 −

(𝛼 + 𝑢3(𝑡))𝐼

1 + 𝑏𝐼
− 𝜇𝑐𝐼) 

+𝑧𝑣(𝜉𝐼 − (𝜇𝑣 + 𝑢2(𝑡))𝑉). 

(ii) The co-state system 

𝑑𝑧𝑠

𝑑𝑡
=  −

𝜕𝐻

𝜕𝑆
,   

𝑑𝑧𝑖

𝑑𝑡
=  −

𝜕𝐻

𝜕𝐼
,     

𝑑𝑧𝑣

𝑑𝑡
=  −

𝜕𝐻

𝜕𝑉
  (12) 

(iii) The optimal control system 

𝑑𝑆

𝑑𝑡
=  −

𝜕𝐻

𝜕𝑧𝑠
,   

𝑑𝐼

𝑑𝑡
=  −

𝜕𝐻

𝜕𝑧𝑖
,     

𝑑𝑉

𝑑𝑡
=  −

𝜕𝐻

𝜕𝑧𝑣
  (13) 

(iv) The minimization conditions 

𝐻(𝑆∗, 𝐼∗, 𝑉∗, 𝑢1
∗, 𝑢2

∗ , 𝑢3
∗ , 𝑍∗) =  min

0≤𝑢𝑖≤1
𝐻(𝑆, 𝐼, 𝑉, 𝑢1, 𝑢2, 𝑢3, 𝑍) (14) 

is true for all 𝑡 ∈ [0, 𝑡𝑓]. 

(v) The transversality conditions are true 

𝑧𝑠(𝑡𝑓) = 0,    𝑧𝑖(𝑡𝑓) = 0,    𝑧𝑣(𝑡𝑓) = 0. (15) 

Theorem 5. Given the optimal controls (𝑢1
∗, 𝑢2

∗ , 𝑢3
∗)  and corresponding state trajectories 

(𝑆∗, 𝐼∗, 𝑉∗) of system (6), there exist the co-state variables which satisfy 

𝑑𝑧𝑠

𝑑𝑡
=

𝛽ℎ𝐼

𝑆 + 𝐼
((1 − 𝑢1)

2 −
(1 − 𝑢1)

2𝑆

𝑆 + 𝐼
+ 𝛽𝑣𝑉) (𝑧𝑠 − 𝑧𝑖) + 𝜇ℎ𝑧𝑠, 

𝑑𝑧𝑖

𝑑𝑡
=  −𝑏1 + [

(1 − 𝑢1)
2𝛽ℎ𝑆

𝑆 + 𝐼
(1 −

𝐼

𝑆 + 𝐼
) +

𝛼 + 𝑢3

1 + 𝑏𝐼
(

𝑏𝐼

1 + 𝑏𝐼
− 1)] (𝑧𝑖 − 𝑧𝑠)… 

           + (𝜇ℎ + 𝜇𝑐)𝑧𝑖 − 𝜉𝑧𝑣, 

𝑑𝑧𝑣

𝑑𝑡
=  −𝑏2 + 𝛽𝑣𝑆 (𝑧𝑠 − 𝑧𝑖) + (𝜇𝑣 + 𝑢2)𝑧𝑣, 

(16) 

supplemented with 𝑧𝑠(𝑡𝑓) = 0,    𝑧𝑖(𝑡𝑓) = 0,    𝑧𝑣(𝑡𝑓) = 0. Furthermore,  
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𝑢1
∗(𝑡) = min {max {

2𝑆𝐼𝛽ℎ(𝑧𝑖 − 𝑧𝑠)

2𝑆𝐼𝛽ℎ(𝑧𝑖 − 𝑧𝑠) + 𝑐1(𝑆 + 𝐼)
, 0} , 0.1} , 

𝑢2
∗(𝑡) = min {max {

𝑧𝑣𝑉

𝑐2
, 0} , 0.1} , 

𝑢3
∗(𝑡) =  min {max {

𝐼(𝑧𝑖 − 𝑧𝑠)

𝑐3(1 + 𝑏𝐼)
, 0} , 0.1} . 

(17) 

Proof. The co-state system in (16) is the direct result from equation (12) in which we differentiate 

the Hamiltonian 𝐻 with respect to each state variable. The transversality condition is derived from 

(15). Taking the derivative of 𝐻 with respect to 𝑢1, solving it with respect to zero, and combining 

it with its lower bound and upper bound 0 and 1 respectively, we have 𝑢1
∗(𝑡) in equation (17). A 

similar approach is used to find 𝑢2
∗  and 𝑢3

∗ .            ∎  

3. RESULTS IN THE OPTIMAL CONTROL PROBLEM 

To conduct the numerical simulation for the optimal control problem in this article, we use the so-

called forward-backward iterative method [26] and MATLAB codes for the implementation. 

Please see [12, 17, 20, 24, 28-30] for other examples for the implementation of this method. 

Generally, the forward-backward iterative method is as follows. We begin with having an 

initial estimation for all control variables, solving the state variables in system (6) forward in time 

for all time 𝑡 ∈ [0, 𝑡𝑓], and then calculating the value of initial cost function (9). Having the 

solutions of all state variables, we use the same to find the solution to all co-state variables using 

system (16) backward in time. We update our control variables using (17). Using these updated 

control variables, we re-calculate the state variables and cost function. We repeat this step until 

some convergence condition is achieved, which in this case is that the norm-2 difference of control 

and state variables in iteration 𝑘 + 1 compared to the 𝑘𝑡ℎ  iteration should be less than small 

number 𝜖. 

To conduct the simulation in this section, we use the following parameter values: 

𝐴 =
100000

65 × 365
, 𝛽ℎ =  0.4, 𝛽𝑣 = 8 × 10−11, 𝛼 =

1

2
, 

𝜇ℎ =
1

65 × 365
, 𝑏 =

1

10000
, 𝜇𝑐 =

3

100
, 𝜉 =  10000, 𝜇𝑣 =

1

2
, 

and all controls are 0. These parameter values give us 𝑅0 = 1.06. Since 𝑅0 > 1, the disease-free 

equilibrium point becomes unstable and it exists in a stable endemic equilibrium state, i.e. 

𝑆 = 80509,    𝐼 = 28,      𝑉 = 5.5 × 109. 

In simulating the optimal control problem, we use three different strategies, i.e. the use of 

single intervention (Section 3.1), two interventions (Section 3.2), and all interventions (Section 
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3.3). To run the optimal control simulation, we use the aforementioned parameter value, weight 

parameter as follows 

𝑏1 =  1, 𝑏2 = 1, 𝑐1 = 1012, 𝑐2 = 1012, 𝑐3 = 1017, 

to balance the cost function and describe the cost for implementation. It is evident that 𝑐1 = 𝑐2 as 

the cost for medical mask use is almost the same as the cost for personal disinfectant use. On the 

other hand, 𝑐3  is higher than 𝑐1  and 𝑐2  as the cost for medical intervention requires a more 

expensive cost for implementation. Furthermore, we use the following state initial condition:  

(𝑆0, 𝐼0, 𝑉0) = (99.000,1.000,0). 

3.1 Single intervention 

It can be seen from Fig. 3–5 that without the implementation of any control, the dynamic of 

infected peoples increased to outbreak at Day 40 and started decreasing to equilibrium when 𝑡 

started increasing. Consequently, the implementation of control will behave related to the dynamic 

of the infected individual. It can be seen that 𝑢1 and 𝑢2 are maximum from the beginning of the 

simulation time until a few days after the outbreak; they then start to decrease to 0. On the other 

hand, the dynamic of 𝑢3 is monotonically decreasing from the beginning of simulation time. This 

is probably because the cost of treatment in the hospital is high compared to other interventions. 

 

FIGURE 3. Dynamic of infected individual and control profile for Strategy 1: Medical mask use 

only. 
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3.2 Combination of two interventions 

In Fig. 6, we can see that each strategy could reduce the number of predicted infected 

individuals with a combination of 𝑢1and 𝑢2 to yield a better result (please see the green curve in 

Fig. 6) with the cost function 𝐽 = 6.844 × 1011. Second-best interventions are provided by a 

combination of 𝑢1 and 𝑢3  (please see the blue curve in Fig. 7) with the cost function 𝐽 =

3.945 × 1014. Compared to 𝑢1and 𝑢2 only, the number of infected individuals increases in the 

time close to the final time of simulation which indicates that possible delayed outbreak will occur. 

From 8, a combination of 𝑢2 and 𝑢3 should be given at a maximum rate at the beginning of the 

simulation and start to decrease when the peak of the outbreak passes. 

 

FIGURE 4. Dynamic of infected individual and control profile for Strategy 2: disinfectant use 

only. 
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Figure 5. Dynamic of infected individual and control profile for Strategy 3: medical 

treatment only. 

 

 

FIGURE 6. Dynamic of infected individual and control profile by combining two controls for 

Strategy 4: medical mask and disinfectant use  



20 

DIPO ALDILA 

 

FIGURE 7. Dynamic of infected individual and control profile by combining two controls for 

Strategy 5: medical mask and treatment use. 

 

FIGURE 8. Dynamic of infected individual and control profile by combining two controls for 

Strategy 6: disinfectant and medical treatment. 
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3.3 Combination of all interventions 

From Fig.9, it is evident that the number of infected individuals can be reduced significantly from 

the beginning of simulation time to be less than 1000 individuals for the entire simulation. For the 

control interventions, it can also be seen that they are only present at a high rate before the predicted 

outbreak (without control strategy) occurs; all controls start to decrease to 0 after that. It is also 

apparent that 𝑢1 maintains the highest rate longer than other controls. The cost for intervention 

when all interventions are in place is 4.9 × 1013. 

 

 

FIGURE 9.  Dynamic of infected human (a) and controls (b) when all interventions are combined in a single 

implementation (Strategy 7). 
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4. COST-EFFECTIVENESS ANALYSIS 

In this section, we perform a cost-effectiveness analysis of our optimal control Strategy discussed 

in Section 3. We consider two types of methods to determine the best strategies, namely the 

infection averted ratio (IAR) approach and the average cost-effectiveness ratio (ACER) approach. 

The IAR is defined as  

𝐼𝐴𝑅 =
number of infection averted

Number of recovered
. 

The highest IAR ratio is the best strategy. On the other hand,  

𝐴𝐶𝐸𝑅 =
Total cost produced by intervention

Total number of infection averted
. 

The smallest value of ACER is the best strategy. The result for numerical calculation according 

to total cost function (9), number of infected averted, total recovery, cost for intervention, IAR 

and ACER can be seen in Table 1. 
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No Strategy 𝐽 in Eq (9) Infected 

averted 

Total 

recovered 

Cost for 

intervention 

IAR ACER 

1 𝑢1 ≠ 0, 𝑢2 = 0, 𝑢3 = 0 3,74 × 1011 3,23 × 107 2,29 × 106 7,16 × 1012 14,123 2,212 × 105 

2 𝑢1 = 0, 𝑢2 ≠ 0, 𝑢3 = 0 3,725 × 1011 1,78 × 106 5,56 × 106 6,48 × 1012 0,323 3,63 × 106 

3 𝑢1 = 0, 𝑢2 = 0, 𝑢3 ≠ 0 3,94 × 1014 5,98 × 105 5,73 × 106 7,88 × 1015 0,104  1,318 ×  1010 

4 𝑢1 ≠ 0, 𝑢2 ≠ 0, 𝑢3 = 0 6,844 × 1011 4,99 × 107 5,08 × 105 1,36 × 1013 98,19 2,73 × 105 

5 𝑢1 ≠ 0, 𝑢2 = 0, 𝑢3 ≠ 0 3,945 × 1014 4,03 × 107 1,747 × 106 7,89 × 1015 23,07 1,957 × 108 

6 𝑢1 = 0, 𝑢2 ≠ 0, 𝑢3 ≠ 0 4,965 × 1015 7,9 × 106 4,569 × 106 9,929 × 1016 1,729 1,257 × 1010 

7 𝑢1 ≠ 0, 𝑢2 ≠ 0, 𝑢3 ≠ 0 4,965 × 1015 5,054 × 107 2,31 × 105 9,93 × 1016 218,74 1,965 × 109 

Table 1. Numerical result for optimal control Strategy in Section 3.
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4.1 Infected averted ratio (IAR) 

According to Fig. 9, the best strategy is Strategy 7 when all controls are implemented. The second 

and third best are Strategy 4 (when medical mask and disinfectant combined) and Strategy 5 (when 

the medical mask and medical treatment are combined), respectively. We can see that Strategy 3 

is the least cost-effective. 

 

FIGURE 10. IAR plots indicating the effect of the seven strategies that were conducted in Sec.3. 

4.2 Average cost-effectiveness ratio (ACER) 

Fig. 10 shows that the three most effective strategies are Strategies 1, 4, and 2, respectively 

(magenta bar). On the other hand, Strategies 5, 7, 6, and 3 are the least effective, respectively (red 

bar). This result indicates that the single strategy of using a medical mask only is the best single 

strategy if there is a budget limitation for the eradication of COVID-19.  
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FIGURE 11. ACER plots indicating the effect of the seven strategies that were analyzed in Sec.3. 

 

5. DISCUSSION AND CONCLUDING REMARKS 

In this study, a deterministic model for understanding the spread of COVID-19 that considers 

direct and indirect transmission has been proposed as a system of ordinary differential equations. 

Mathematical analysis of the existence and local stability criteria of all equilibrium points was 

conducted and indicated how the basic reproduction number plays an important role in determining 

the long-term behavior of the model. Our proposed model might exhibit a backward bifurcation 

phenomenon at 𝑅0 = 1 if the saturated treatment parameter is larger than its threshold. 

Further improvement of the model under the interventions medical mask, disinfectant, and 

medical treatment were proposed later. The model has a disease-free equilibrium which is locally 

stable when the basic reproduction number is less than one. The optimal control problem of the 

proposed model constructed is based on Pontryagin’s Maximum Principle to minimize the number 

of infected individuals with an optimal cost. The problem was solved using the forward-backward 

iterative method. 

The numerical simulation of the optimal control problem was conducted using three strategies. 

In the first Strategy, when only a single intervention was implemented, our simulation revealed 

that the medical mask use is the best single intervention strategy. This was followed by disinfectant 

and medical treatment. In the second Strategy, a combination of medical mask use and disinfectant 

yielded a better result compared to the other combination. In the last Strategy, a combination of all 
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interventions together provided the best result in reducing the number of infected individuals 

compared to the best strategy in the first and second strategies. All strategies show the profile of 

control adapted with the number of infected individuals in the community. A larger intervention 

is needed to substantially reduce the number of infected individuals, and this intervention then start 

to reduce whenever the number of infected individual start to show a trend to decrease. Further 

analysis to determine the most cost-effective strategy was conducted using the IAR and ACER 

indices. We found that using all controls simultaneously is the most cost-effective method based 

on the calculation of IAR and that using a medical mask only is the most cost-effective method in 

a single intervention which was analyzed using the ACER calculations.   

The results in this study provide an alternative scientific background for the eradication of 

COVID-19 in the community. The limitation of budget that will force policymakers to save on 

intervention costs by choosing priority strategies has been discussed here. Each intervention has 

its own focus. If the policy is to reduce the number of deaths, then the intervention should focus 

on medical treatment. However, this intervention comes with high-cost consequences. On the other 

hand, if the policy is to prevent the outbreak of COVID-19, then medical mask use or disinfectant 

intervention or combination of both is the best strategy as that could prevent the outbreak well. It 

also costs less compared to medical treatment intervention. For future work, including other 

interventions into the model could be considered such as physical/social distancing intervention, 

rapid infected assessment, quarantine, and many more. 
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