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Abstract: The aim of this paper is to present a review on the stochastic version of the deterministic SIR (Suscep-

tible – Infectious - Recovery) epidemiological compartment model through the branching process approximation.

The stochastic process (branching process) approximation was developed using the Continuous Time Markov

Chains where the time variable is continuous and the state variable is discrete. The state random variables are the

compartments: S(t), I(t) and R(t). In this review two ways of estimating the state transition probability has been

provided and some stochastic thresholds of the branching process (basic reproduction number, Malthusian parame-

ter and the average number of infections produced by an infectious individual in a single generation) have also been

deduced. Finally, the probability of major and minor outbreak of the branching process (epidemic process) has

been presented. The theoretical methods have also been validated with some examples of numerical simulations.
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1. INTRODUCTION

Models employed to study the transmission of communicable diseases are termed dynamic

epidemiological models since they study the performance of infectious disease over time. The
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huge spread of communicable diseases in living organisms has increased the need for mathe-

matical epidemiology research in the world by building models to help foretell the spread of

communicable disease for development of strategies to help prevent their occurrence. These

models can be either deterministic or stochastic depending on the assumptions made during the

development of the model.

Using deterministic models in studying the epidemiology of communicable disease has a very

long history. These models have been utilized enormously in studying communicable diseases

like: influenza, chicken pox, measles and many more in various contexts [1]. The accuracy of

these models developed determines the variability and reliability of the remedies suggested to

curb the disease [2]. Stochastic model on the other hand is a model that estimates the likelihood

distributions of possible outcomes by permitting random variation in one or more input over

time. This model relies on variation in risk exposure, other diseases as well as the disease itself.

The model is often employed when random change remains significant [3, 4].

In deterministic modeling it is presumed that every individual contacts every other individ-

ual at the same rate which maybe false for an infectious disease because the time for exposure

maybe different. It is against this backdrop that the deployment of stochastic model is particu-

larly relevant. It is revealed that the deterministic mathematical model has certain challenges or

drawbacks for which the stochastic model seeks to address but in all stochastic models average

outcome of the deterministic mathematical model [5, 6].

In this study, the focus is on the development of stochastic version of the SIR compartment

model with demographic characteristics using branching process approximation for an epidemic

through markovian property and the development of some thresholds such as the Malthusian

parameter (intrinsic growth rate of the branching process), the average number of infection

produce by an infectious individual in a single generation and basic reproduction number. Also

two methods for determining the state transition probabilities will be deduced. The branching

process conjecture will also be used to deduce the likelihood of epidemic disappearance even at

the beginning of the study.
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2. DETERMINISTIC SIR EPIDEMIC MODEL

In this section we introduce the deterministic mathematical model formation of the SIR mod-

els with demographic characteristics as an extension of the model in [7] and a reduced form of

the model in [8, 9]. The assumption of constant population size is made (demography: birth

rate ( λ ) equal to death rate (µ)). The model is formulated by dividing the host population into

three classes: Susceptible (S), Infectious (I) and Recovery (R). Mathematically: N = S+I+R.

Figure 1 presents the flow chart diagram of the SIR compartment model.

FIGURE 1. Flow chart of the SIR model

Where λ = birth rate, µ = death rate, α = infection rate, and β = recovery rate of the

infectious individual. The above stated assumptions together with Figure 1 lead to the following

system of ordinary differential equations to indicate the rate of change from one class to the

other.

dS
dt

= λN−µS−αS
1
N

dI
dt

= αS
1
N
− (β +µ)I(1)

dR
dt

= β I−µR

From equation 1 the basic reproduction number is mostly deduced using the next generation

matrix. The original nonlinear system of ODEs including these compartments can be written

as spectral radius of HK−1 where H = matrix of infection rates and K−1 = the inverse of matrix

of transition rates as presented in [8-13]. According to Mettle and his group, Affi, Odo and

Heesterbek and many more mathematical epidemiological studies: when the basic reproduction
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number R0 > 1 then the endemic equilibrium point is stable which means the infection will

persist in the population but when R0 ≤ 1, the disease free equilibrium point will be stable

which means the infection will die out in the long run [3-17]. These theorems have been proven

deterministically in the respective studies above.

3. STOCHASTIC SIR EPIDEMIC MODEL

This section is where the focus of the paper is presented; that is deriving the stochastic version

of the deterministic SIR compartment epidemic model with demographic characteristics. The

stochastic version of the model presented in equation (1) is derived using Continuous Time

Markov Chains. This model takes into account the random effect of birth and death processes.

In this Continuous Time Markov Chain the time variable is continuous s ∈ [0, t) but the state

variable is discrete. The discrete random variables S(t), I(t) and R(t) represent Susceptible,

Infectious and Recovered individuals respectively. S(t), I(t),R(t) ∈ 0,1,2, · · · ,k where k is the

maximum population size. Initially when t = 0 the host population is made up of n susceptible

individuals and infection is introduced by infecting one individual, the infected individual stay

in the infectious class for an exponential time with rate β unless he or she dies out. But after

this period the individuals from the infectious class recovers to attain permanent immunity to

remain in the recovery/remove class unless he or she dies. During the infectious period the

infective has infectious contact randomly in time according to homogeneous Poisson process

with rate α , each time with a uniformly selected random individual. The contacted individual

if susceptible moves to the infectious class else the contact has no influence. For the CTMC

stochastic model the transition from one state to a new state occurs at any time and the transition

probabilities and population component are presented in Table 1.

3.1. Alternative Method for State Transition Probabilities Estimation. Suppose the dis-

crete states: Susceptible (State 0), Infected (State 1) and Removed/Recovery (State 2). Let(Xi, i=

0,1,2) represent the number of individuals at any state from the underlying epidemics at any

time t. Clearly, Xi is a stochastic process with states 0, 1 and 2. Thus, the First-Order Time

Markov dependency can statistically be modeled as;
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Table 1: State transitions and rates of the CTMC SIR model
Event Population Component at t Population Component at4t+t Transition probabilities

Birth (S, I,R) (S+1, I,R) λ4t

Susceptible death (S, I,R) (S−1, I,R) µS4t

Susceptible Infection (S, I,R) (S−1, I +1,R) αS I
N4t

Death of infectious (S, I,R) (S, I−1,R) µI4t

Recovery (S, I,R) (S, I−1,R+1) β I4t

Death of recovered (S, I,R) (S, I,R−1) µR4t

P(Xn = in|Xn−1 = in−1, .....,X1 = i1,X0 = i0)

(2) P(Xn = in|Xn−1 = in−1)

Then, the transition probability Pi j for i, j = 0,1,2 is denoted in matrix form as;

P =


P00 P01 P02

P10 P11 P12

0 0 1


Where, ∑

2
i=0 Pi j = 1, i = 0,1,2

The susceptible state (S): is made up of individuals who are prone but not yet victims of

the epidemic. The infectious state (I): is made up of infected individuals and carriers of the

infection. The remove/recovered state (R): is made up of individuals who either died from

the disease or found to be immune after recovery in the course of the study period. Also the

components of the transition probability matrix represent the following: P00: Probability of

remaining in a susceptible state, P01: transition Probability from susceptible state to infectious

state, P02: transition probability from susceptible to a removed state, P10: transition probability

from infectious state to susceptible state, P11: Probability of remaining in an infectious state,

P12: transition probability from an infectious state to a removed state and P22: Probability of

remaining in a removed state. P01is mostly referred to in literature as discrete time force of

infection. P02 and P12 signify mortality for uninfected and infected individuals, respectively,

while P10 is the recovery or defection probability (Cohen, 1973). The removed state is an
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absorbing state since the probability of becoming susceptible or infected is zero. Below are the

assumptions made for the alternative method for State transition probabilities estimation:

• The current state of an individual is dependent only on the state of the individuals at the

previous time step.

• No individual at the removed state can be susceptible or infected.

• Transitioning probabilities are independent of time and remain constant over time or the

study period.

• Successive transitions or relapse, confirmed co-infections of the diseases or other med-

ical complications were not taken into consideration.

• The removed state comprised of subjects who either died of the infection or found to be

immune after recovery.

• The only assumption required regarding losses and withdrawals is that they have the

same future experience as those remaining under observation.

3.1.1. Estimating the Transition Probabilities. With this alternative method of transition prob-

ability estimation, the maximum likelihood estimation (MLE) approach is employed to estimate

the transition probabilities. Table 2 shows the number of individuals during the study period at

any state (S, I, R) for the infection.

Table 2: Number of individuals at any state

Class Susceptible Infected Recovery/Remove

Susceptible individuals X00 X01 X02

Infected individuals X10 X11 X12

X00: Number of susceptible individuals who remained susceptible at the end of study period,

X01: Number of susceptible individuals who became infected at the end of study period, X02:

Number of susceptible individuals who either died or remained immune after recovery at the

end of the study period, X10: Number of infected individuals who recovered at the end of the

study period, X11: Number of infected individuals who remained infected at the end of the study

period and X12: Number of infected individuals who remained immune after recovery at the end

of the study period.
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3.1.2. Distribution of Transitions. The number of individuals in each transition state follows

a binomial distribution. This is because, there are fixed number of subjects in each state at

the end of the study period; where the disease outcome of an individual is independent of the

other within each state. Also, each person is subjected to two mutually exclusive outcomes

(either to remain or leave that state); with a constant probability Pi j. Thus, the transition events

are independent of one another (as defined by the Markov principle). The likelihood of the

transition probability Pi j follows a binomial distribution as in equation (3):

(3) L(Pi j \N,x) =
(

Ni j

xi j

)
Pxi j

i j (1−Pi j)
Ni j−xi j

Where Ni j is the number of observed transition that starts from state i to j and

∑
j

Pi j = 1

3.1.3. Maximum Likelihood estimation. The maximum likelihood estimation (MLE) is a method

which estimates the parameters of a statistical model given the observations, by finding the

parameter values that maximize the likelihood function of making the observations given the

parameters. Anderson and Goodman proved that the estimator obtained from equation (3) is a

maximum-likelihood estimator of the transition probabilities [19]. Other researchers proposed

that the MLE in a way assumes a uniform prior distribution of the underlying parameters. Thus,

ML estimator is known to coincide with the most probable Bayesian estimator given a uni-

form prior distribution on the parameters. The maximum likelihood estimate of the transition

probability is given as;

(4) P̂i j =
xi j

∑xi j

for i = 0,1 and j = 0,1,2; with standard errors from the sampling distribution of the ML esti-

mate given as:

(5) SE(P̂i j) =

√
P̂i j(1− P̂i j)

Ni
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3.2. Branching Process Approximation of the SIR Model. We employed the single-type

Galton-Watson branching process in the approximation. The single – type was used because

the individuals are of the same kind. This type of branching process is a Continuous Time

Markov Chain process as described in section 3. It is a Markov chain because of the fact that it

makes use of the Markov property where the population size at generation n+1 depends on only

the population size at generation n.

At the initial stage of the epidemic the infection rate is small. The infectious class at any

time I(t) is fed with a rate αI(t)S(t)
N(t) and is being reduced by the rate (β + µ)I(t). At the initial

stage the host population N(t) is almost the same as the susceptible population S(t), implying

that the ratio of the two is approximately one ( S(t)
N(t) ' 1). Hence the infectious class turns to be

increased by the rate αI(t) instead of αI(t)S(t)
N(t) . We let In(t) be the number of infected individual

at time t. From the above relation In(t) can be approximated by the branching process according

to theorem 1.

Theorem 1: if In(t) is epidemic process and I∞(t) be the branching process then In(t) con-

verges weakly to I∞(t) that is In⇒ I∞,n→ ∞ on any finite interval [0, t1].

For proof of Theorem 1 see ([11], page 54). This approximation is possible due to the fact that

when I hits zero it stays in the state zero. This means I has reached the absorbing state and the

disease transmission stops, that is I(t)→ 0 as t→ ∞ [20]. The approximation of the stochastic

SIR process is near the disease – free equilibrium where there is no disease in the system.

This is so because when the initial infectious are few the branching process will either grow

exponentially or hit zero. The branching process is a birth and death process for the infectious I

where αI is the infection rate (birth) and β I is the recovery rate (death).The approximation was

possible based on the following assumption:

• The susceptible population is sufficiently large

• Every infectious individual has the same chance of recovery and same chance of trans-

ferring an infection

• Every infectious individual lives independent from other infectious individuals
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3.2.1. Computation of the stochastic Thresholds of the SIR model. In this subsection we de-

duced the thresholds R0 (basic reproduction number), ρ(Malthusian parameter) and f |(1) (the

average number of infections produced by an infectious individual in a single generation) for

the branching process I∞. These thresholds are used in making decisive decision so far as the

spread of an epidemic is concern.

Malthusian parameter: is the intrinsic exponential growth rate of the epidemic branching

process (I∞). We denote it by ρ hence:

∫
∞

0
e−ρtg(t)dt = 1(6)

Where g(t) is the average rate at which an individual gives birth (infectious contact) at time t

[21]. In the SIR model, the contact rate during the infectious period is α . Hence it follows that:

g(t) = αe−µt
∫ t

0
e−β (t−s)ds⇒ g(t) = αe−(µ+β )t

∫ t

0
eβ sds

Integrating g(t) with respect to s and applying the limit gives

g(t) =

{
α

β
(e−µt− e−(β+µ)t), i f α 6= β

e−µt− e−(β+µ)t , i f α = β

Substituting g(t) obtained above into (6) and solving for the value of ρ gives:

ρ =

{
α− (µ +β ), i f α 6= β

α−µ, i f α = β

By considering a situation where α 6= β , we have ρ = α− (µ +β )

Basic reproduction number(R0)): is the mean number of secondary infections produced by

one infective individual in a completely susceptible population at the disease – free equilibrium

point [3-10]. This is the most important threshold used to predict the spread of an epidemic

and the other two thresholds as supporting thresholds. At this subsection we deduced the basic

reproduction using the branching process approximation. We denote X to be the number of

infectious contact that an individual has during the infection period. Hence,
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(7) P(X = 0) =
β +µ

α +β +µ

Which follows a zero - modified geometric distribution and for all positive integer r we have:

P(X = r) = (
r

α +β +µ
)r β +µ

α +β +µ
(8)

If the number of infectious contact before a secondary infection is produced follows a geo-

metric distribution then it has a parameter A = β+µ

α+β+µ
[21, 23]. Then the expectation of X

having a zero modified geometric distribution is:

E(X) =
1−A

A
=

{
1− β+µ

α+β+µ

β+µ

α+β+µ

}

E(X) =

{
α+β+µ−(β+µ)

α+β+µ

β+µ

α+β+µ

}

⇒ E(X) =
α

α +β +µ

α +β +µ

β +µ

Hence:

(9) R0 = E(X) =
α

(β +µ)

The average number of infections produced by an infectious individual in a single gener-

ation [ f |(1)]:

We assumed geometric offspring probability generating function [22].

(10) f (z) =
∞

∑
r=0

P(X = r)zr,z ∈ [0,1]

Where P(X = r) is the probability that an individual will infect r new individuals of the same

type. Expanding equation (10) results in:

(11) f (z) =
β +µ

α +β +µ
+

α

α +β +µ
z2,z ∈ [0,1]



STOCHASTIC MODELING APPROACH WITH SIR MODEL 11

Differentiating the offspring probability generating function in equation (11) and evaluating

the derivative obtained at 1(one) gives[ f |(1)] =
2α

α +β +µ

3.2.2. Relationship between these Thresholds. We consider the instances where the intrinsic

growth rate of the epidemic is greater than zero and the average number of offspring produced

by an infectious individual in a single generation greater than one. That is:

ρ > 0⇒ α− (µ +β )> 0

then

α > µ +β

Dividing both sides of the inequality above by µ +β

⇒ α

µ +β
>

µ +β

µ +β
⇒ R0 > 1

Also if

[ f |(1)] =
2α

α +β +µ
> 1⇒ 2α > α +β +µ

2α−α > β +µ ⇒ α > µ +β

Dividing both sides of the inequality above by µ +β

⇒ α

µ +β
>

µ +β

µ +β
⇒ R0 > 1

Hence ρ > 0 only if R0 > 1 and f |(1)> 1 only when R0 > 1.

3.2.3. Probability of Epidemic Extinction. In this section we derive the probability of extinc-

tion using the branching process approximation. The probabilities of extinction of the epidemic

when started with one infectious individual will be derived. We will also derive the probability

of extinction of the epidemic when it starts with n infectious individuals. To derive this we

assumed geometric offspring probability generating function in equation (10) [3, 22]. From

equation (11),
µ +β

µ +α +β
term is the chance that an individual recovers or die and

α

µ +α +β

which is the coefficient of the second term in (11) represent the probability that an infectious

individual infects another individual. The index of z represents the number of infectious indi-

vidual generated from one infectious individual. z0 means the individual recovers or die out

hence no new infectious are generated and z2 also means the infection is transferred to another
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individual and hence there are now two individuals infectious. This offspring probability gen-

erating function is different from the discrete-time branching process where the parent will die

and the child represents the parent in the next generation. The difference is due to the fact that

the time interval is small and also the continuous - time process upon which this stochastic pro-

cess is built, the infectious individual that infect another individual is still counted as infectious

hence the number of infectious individual are two. To derive the probability for extinction we

solved for the roots of the relation f (z) = z ∈ [0,1] where f (z) is given in equation (10) and its

expansion in equation (11), hence:

β +µ

α +β +µ
+

α

α +β +µ
z2 = z

(12)
α

α +β +µ
z2− z+

β +µ

α +β +µ
= 0

Simplifying by multiplying equation (12) by α +β +µ gives:

(13) αz2− (α +β +µ)z+(β +µ) = 0

Factorizing the quadratic equation (13) for the values of z gives the probabilities of minor out-

break whose stability is condition on the value of R0.

(αz2−αz)−{(β +µ)z+(β +µ)}= 0

{αz− (β +µ)}{z−1}= 0⇒ z =
β +µ

α
=

1
R0

and z = 1

This yields the two points:

p(minor outbreak) = P0 =

{
1 i f R0 ≤ 1
1

R0
i f R0 > 1

p(ma jor outbreak) = 1−P0 =

{
0 i f R0 ≤ 1

1− 1
R0

i f R0 > 1

We also present the probability of both major and minor outbreak when the system starts with

q infectious individual.
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p(minor outbreak) = P0 =

{
1 i f R0 ≤ 1

( 1
R0
)q i f R0 > 1

p(ma jor outbreak) = 1−P0 =

{
0 i f R0 ≤ 1

1− ( 1
R0
)q i f R0 > 1

4. NUMERICAL SIMULATIONS

In this section we present some numerical simulations to validate the theoretical results pre-

sented above. We give some examples of stochastic simulations of epidemics starting with three

infectious individuals and 500 susceptible individuals. We employed EpiModel package in R

statistical software with 1000 simulations over 50 time point to study the dynamics of some

scenarios. We also present the compartment size plot of the simulations at the end of the study

period. The simulations are presented in two scenarios with the following parameters:

Scenario 1: λ = β = 0.007, α = 0.2, β = 0.005, then R0 = 16.667, ρ = 0.188, f |(1)= 1.887,

probability of minor outbreak (P) = 0.0002 and major outbreak (1−P) = 0.9998. Fig 2 and Fig

3 display the infection dynamics and compartment size plot at the end of the study respectively.

FIGURE 2
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FIGURE 3

Scenario 2: λ = β = 0.007, α = 0.2, β = 0.5, then R0 = 0.394, ρ =−0.307, f |(1) = 0.566,

probability of minor outbreak (P) = 1.000 and major outbreak (1−P) = 0.000. Fig 4 and Fig

5 display the infection dynamics and compartment size plot at the end of the study respectively.

FIGURE 4
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FIGURE 5

The two scenarios of numerical simulations presented above to validate the theoretical results

depict two possible equilibrium points of the SIR model (endemic and disease free). Thus for

the first scenario the basic reproduction number was greater than one (RO > 1) hence endemic

equilibrium point is stable. This was confirmed by the other derived thresholds: ρ = 0.188 >

0, f |(1) = 1.887 > 1 and a probability of a major outbreak (P) = 0.9998. This outcome is

consistent with that of Obuasi Municipal when tuberculosis was modeled in Ashanti region

of Ghana [3]. In scenario two the basic reproduction number was in contrast to that of the

first scenario that is RO < 1 as a result disease free equilibrium point is stable(meaning the

infection will not persist in the population but die out) and was confirmed by the other stochastic

thresholds. This was also in line with a study by Affi [9]. Also from Fig3 we present Table 3

to reflect Table 2 so as to validate the alternative theory deduced for the transition probabilities.

This was done for only scenario one.

Table 3: Number of individuals at any state of scenario one at the end of the study period

Class Total Susceptible State Infected State Recovery/Remove

Susceptible individuals 503 43 420 40

Infected individual 420 19 326 75
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From the maximum likelihood method derived in equation (4) the transition probabilities for

scenario one are presented below. Table 4 displays the transition probabilities estimates and

their corresponding standard error.

Table 4: ML-estimates of transition probabilities for scenario one

Parameters Estimate S.E

P00 0.09 0.0413

P01 0.83 0.0183

P02 0.08 0.0429

P10 0.04 0.0450

P11 0.78 0.0229

P12 0.18 0.0444

Hence, it can be concluded from the above estimates that the transition probability matrices

for scenario one is presented as;

Pscenario1 =

0 1 2


0 0.09 0.83 0.08

1 0.04 0.78 0.18

2 0 0 1

5. CONCLUSION

We have shown that the stochastic SIR model equivalent of the deterministic SIR is devel-

oped using the Continuous Time Markov Chains. Two ways of estimating the state transition

probability have been deduced. Unlike the deterministic model where the next generation ma-

trix is very popular in deriving the basic reproduction number, this paper revealed that basic

reproduction number also can be deduced together with some stochastic thresholds such as the

Malthusian parameter, the average number of infections produced by an infectious individual

in a single generation, the probability of major outbreak and minor outbreak (extinction proba-

bility) through the branching process approximation. Finally all the theoretical results obtained

have been validated through numerical simulations.
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