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Abstract: In this paper, a compartmental model for the transmission dynamics of the new infectious disease referred 

to as COVID-19 is employed. The model comprises five mutually exclusive compartments (classes) of human 

population sizes viz: susceptible, exposed, infected, recovered, and death, representing the human dynamics; hence, 

the name SEIRD model. In the model, the temporal dynamics of the COVID-19 outbreak in Nigeria and Spain are 

analyzed. The period is between February 15-April 3, 2020 for Spain, and February 27-April 3, 2020, for Nigeria. 

The analysis of the population data is based on the concerned SEIRD model. Graphical representations of the 

obtained results are presented. A connection between the contact rate of the infection and the compartmental human 

population sizes subject to the COVID-19 analysis is revealed. It shows that a decrease in the contact rate of the 

‘susceptible and the infected’ classes is a considerable condition leading to a decline in 'the exposed, infected, and 

death' cases. This decrease is attributed to the control of the possible infecting contacts. The spread patterns for the 
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two considered cases are the same. A lot of measures are needed to be put in place to ensure a corresponding 

increase in the 'recovered class.' The COVID-19 outbreak would remain global and endemic if the infecting contact 

rate is not well controlled. Thus, adherence to strict public and government policies such as social distancing and 

isolation is a plausible requirement. For other aspects of epidemiology with related features, this strategy is highly 

recommended for implementation. 

Keywords: COVID-19; SEIRD model; population modeling; disease spread. 

2010 AMS Subject Classification: 93A30, 81T80. 

 

 

1. LINEAR INTRODUCTION 

The Chinese Center for Disease Control and Prevention (CCDC), on December 31, 2019, 

observed 44 suspected Pneumonia cases in Wuhan, a city located in central China. These were 

presented with clinical symptoms that include dry cough, fever, dyspnea, pain in the throat as a 

result of sore throat, shortness of breath, and breathing difficulties [1-3]. 

The results obtained on January 17, 2020, from the CCDC laboratory, brought about the name of 

the virus as “Severe Acute Respiratory Syndrome Coronavirus 2” (SARS-CoV-2), see (WHO) 

[4]. Since the discovery of the COVID-19, there had been a notable rapid spread of the 

coronavirus within and outside Wuhan city. This pandemic had a total of 282 confirmed cases as 

at the inception, according to the WHO [2]. It later spread to over 206 countries or territories, 

given a total of 750, 890 confirmed cases as of March 31, 2020, with Italy as the currently most 

affected having the highest mortality rate [5].  

The reasons for this massive spread have recently been categorized into different cases. These 

include the presence and increase of asymptomatic infectious cases, as noted by Ebrahim and 

Memish [6]. The second point is the case of a person to person contact, as Bogoch et al., [7] 

and Ghinai et al. [8] have buttressed this point; also a case of inanimate objects to persons is 

remarked in [9]. In a like manner, a matter of high travel volume is reported by [10]. The points 
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mentioned above or cases are valid since the COVID-19 can be contacted via contact with 

respiratory droplets of infected persons, indicating that the entire population is susceptible to 

COVID-19. Owing to the points mentioned earlier, travellers are always at high risk of 

contracting infectious diseases such as Ebola and the likes. Hence, in [10], it was suggested that 

international travel authorities should imbibe restriction and proper health screening once an 

outbreak is noticed. However, these restrictions cannot be enforced for a long time, as many 

other issues affecting the global economy would come up. For instance, there is no doubt that 

China had been known to be Nigeria’s most leading commercial partners in the whole world, and 

as a result, there had been substantial inflows and outflows of traffics between these countries. 

Unexpectedly, the Nigeria Centre for Disease Control (NCDC) reported that one COVID-19 case, 

was imported by an Italian, who arrived Nigeria on February 27, 2020, as stated in [11], he 

further travelled across other states of the country, after which, he was confirmed infected. The 

latest update by the NCDC shows a rise in the figure of infected persons given as 151 confirmed 

cases as of April 1, 2020 [12]. Epidemiology is becoming an increasing necessity for the health 

system of the world today; as such, the situations need good mathematical models to check the 

spread [13, 14]. The recent health situations (hazards) around the world has made it mandatory 

for scientists to study and determine the causes and best possible way to control, reduce, or 

eradicate these hazards [15-18].  

Since the beginning of this novel and life-threatening COVID-19, a lot of researches have been 

conducted across the globe. Many of such are still ongoing, all in a bid to proffer a lasting 

solution or to control the spread. This paper, therefore, proposed a mathematical model as an 

extension of the classical SIR model and its modifications for the analysis of the disease spread.  

The whole paper is partitioned as follows. In section 1, a detailed introduction is given. Section 2 

contains the methodology and the derivation of the model; in section 3, the method of solution is 

presented, and the model solutions are obtained and discussed. In section 4, the paper is 

remarkably concluded. 
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2. METHODOLOGY 

Mathematics has been applied in many studies to proffer solutions to epidemic issues [19-26]. In 

mathematical epidemic modeling, the main objective is to determine how fast the disease 

spreads, the number of the population that are being be infected, the effects of migration into and 

out of affected areas, and possible control measures. The first mathematical epidemic model can 

be traced to the mathematician, Daniel Bernoulli, in 1766. His work was on how inoculation 

against smallpox affects the life expectancy of the population [27, 28]. Kermack and 

McKendrick developed the SIR-model, that is, Susceptible-Infectious-Removed (SIR) [29]. They 

investigated the effects of some factors that aid the spread of an infectious disease right from 

when an infected person moves to a susceptible population [29]. There have been many 

extensions of the SIR model, including Susceptible-Infectious-Removed-Susceptible (SIRS), 

Susceptible-Infectious-Susceptible (SIS) and Susceptible-Exposed-Infectious-Removed (SEIR) 

[30-33]. These models have been explored for different health hazards, including the current one, 

coronavirus disease 2019 (COVID-19). So many researchers had published recent results on 

various issues relating to epidemiology, and the novel COVID-19 [18, 20-26, 34-42]. Zhao et al., 

[43] considered how inter-city travels affect the spread of the virus using correlation analysis. 

They employed the Needleman-Wunsch algorithm, an application of dynamic programming to 

identify changes in the DNA sequence of the coronavirus. 

The conventional SIR model or its modified form termed SIRS, claims (by assumption) the 

disease incubation to be negligible. Such that each susceptible individual (S) becomes infectious 

once infected and thus move to the infective class (I), who again will move to the recovered class 

(R) or susceptible class (S), depending on the acquired level of immunity which may be 

permanent or temporary [44, 45].  

Whereas, extensions to these models (SIR and SIRS) have been considered on the ground that 

susceptible individuals, once infected, need to, first of all, go through a latent stage forming 

exposed class (E) before they become infectious. This scenario can, therefore, lead to either 
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SEIR or SEIRS model, depending (still) on the acquired level of immunity [46, 47]. This present 

work captures the COVID-19 global issue by adding a compartmental class of death individuals, 

mainly due to the spread of COVID-19. Hence, the SEIRD model. 

2.1 Fundamental of the SEIRD Model  

In this section, the basic assumptions for the proposed model are presented and the model 

derivation follows. 

2.1.1 Basic assumptions for the SEIRD Model  

For the derivation of the model, with ( )N N t=  as the total population size of the individuals 

(species), the following assumptions are made: 

(i) No natural birth or death is permitted. 

(ii) Infection is not due to level of education, so the infective class is not sub-divided [45]. 

(iii) Exposure to latency period is permitted. 

(iv) Observation period (during isolation) is 14 days. 

(v) Infected individuals are quarantined.  

(vi) The independent variable, ,t  is measured in days, while the dependent variables, say, 

( )S S t= , count the species (susceptible number of individuals) in each group as a function of time 

but not as a susceptible fraction of the population, say,  s S N= . Though, both sets of dependent 

variables give the same information regarding the state of the concern epidemic or pandemic. 

2.2.  COVID-19 Spread Model Formulation 

During epidemics (disease outbreak within a community) or pandemic (global disease outbreak) 

situation, some individuals get infected, while some recover after they have been infected. 

Meanwhile, some fraction dies due to infectious diseases. It can be captured that some of the 

susceptible individuals are exposed to the spread before they are infected. Thus, the population at 

such time can be divided into five compartments resulting in a model herein referred to as SEIRD. 

Here, for a time parameter, ,t  ( )S S t= , denotes the population size of susceptible individuals 

(those who are neither infected nor immune), ( )E E t= , denotes the number of individuals who 

are open to the infection (those who have been infected but are not yet infectious, ( )I I t= , 
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denotes the population size of infective individuals (those that have been infected and can spread 

the disease), ( )R R t= , denotes the population size of recovered individuals (after they have been 

infected), and ( )D D t= , denotes the population size of individuals who died due to the infection. 

In some cases, ( )R D+ , that is, R  and D , are referred to as removed individuals. This will be 

denoted as 
mR  (if need be). Therefore, if ( )N N t=  is as defined earlier, then: 

   ( ) ( ) ( ) ( ) ( ) ( )N t S t E t I t R t D t= + + + + .                   (1.1) 

The detail partition is shown in the compartmental diagram (Fig. 1):  

 

Fig. 1: The COVID-19 Dynamical Pattern 

where the parameter c  is the rate of infection (probability of S  contracting the disease when in 

contact with ,I    signifies the latency rate of migration,   signifies recovery rate and   is the 

death rate.  By considering Figure 1 via the application of conservation principle, the following 

dynamics represent a set of a system of differential equations that models the situation: 

( )

dS
cSI

dt

dE
cSI E

dt

dI
E I

dt

dR
I

dt

dD
I

dt



  






= −


 = −




= − +



=

 =


                                               (1.2) 

subject to the following initial conditions: 

( ) ( ) ( ) ( ) ( )( ) ( )0 0 0 0 0, , , , , , , ,S o E o I o R o D o S E I R D= .                         (1.3) 
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The present model (1.2) with its initial data (1.3) extends or complements some vital 

epidemiological models in literature, such as the researches of [40, 45, 47, 48]. Apart from other 

parameters considered in [45], the infective class was comprehensively sub-divided into two 

classes viz: educated and uneducated infected individuals with meaningful results.  

Remark 1: The proposed SEIRD model (1.2) deals with human population sizes. Hence, all the 

corresponding parameters are supposed positive. This leads to the following result(s). 

Theorem 2.1: The basic variables in the SEIRD model (1.2) are positive at all time, 0.t   This 

implies that the solution set of the system in (1.2) at any time, 0,t   maintain non-negativity 

condition(s). 

Proof: Let  0,t t , such that   sup 0 : 0 , , , , .t t S E I R D=     Then, from (1.2), we can 

write: 

dS
cSI

dt
= −   

as follows: 

dS
cIdt

S
= − . 

      
0 0

 

t t
dS

c Id
S

 = −   

( )
0

0

 ln .

t
t

S c Id  = −    

Hence, for ( ) 00S S= , we have: 

( ) ( )0

0

exp 0

t

S t S c I d 
 

= −  
 
  

since ( ) 00 0S S=    and ( )exp 0  . 

The same procedure can be followed to show that ( ) ( ) ( )0,  0,  0,E t I t R t    and 

( ) 0,  0.D t t                                                     Q.E.D. 
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3. METHOD OF SOLUTION [49-51] 

We suppose the projected transform of ( ) ( ) ( ) ( ) ( ),  ,  ,  ,  and S E I R D      to be 

( ) ( ) ( ) ( ) ( ),  ,  ,  ,  and S E I R D      respectively, then for 1,2, ,   1j j= = , at projection, the 

model dynamics in system (2) is transformed as follows: 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) 

( ) ( ) 

( ) ( ) 

1

0

1

0

1

1 1

1 1

1

1

j

n

j

n

S j c S n I j n

E j c S n I j n E j

I j E j I j

R j I j

D j I j



 

   

 

 

−

=

−

=

 
= − − − 

 

 
= − − − − 

 

= − − + −

= −

= −





                  (3.1) 

such that: 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

0

0

0

0

0

i

i

i

i

i

i

i

i

i

i

S t S i t

E t E i t

I t I i t

R t R i t

D t D i t



=



=



=



=



=


=




=



=



=



=












                       (3.2)  

For the sake of simplicity and model analysis, we refer to the following Tables (1 and 2). 

Note: Table 1 is for Spain COVID-19 data between February 15-April 3, 2020. As of April 3, 

2020, Spain cases read, Confirmed: 117,710C = , Death: 10,935D =  and Recovered: 

30,513R = . 
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Table 1: Spain-Case Parameters 

Initial Data Value Scaled Value (SV) Sources/References 

0N  46,754,778 - Worldometer [52] 

0S  ( )00.9 N  1 Scaled/Assumed 

0E  ( )00.1 S  31.0 10−  Scaled/Assumed 

0I  2 
84.76 10−  Worldometer/scaled [52] 

0R  0 0 (scaled) WHO/Worldometer [4] 

0D  0 0 (scaled) WHO/Worldmeter [52] 

Model Parameters/Rates 

Parameters Value Remark Sources/References 

c   Varied -  

  0.1 Observation period is 

 2,14  days 

NCNC [11] 

  0.26 computed WHO/Worldometer/scaled 

   0.093 computed WHO/Worldometer/scaled 

 

Table 2 is for Nigeria COVID-19 data between February 27-April 3, 2020. As of April 3, 2020, 

Nigeria cases read, Confirmed: 210C = , Death: 4D =  and Recovered: 25R = . 

 

Table 2: Nigeria-Case Parameters 

Initial Data Value Scaled Value (SV) Sources/References 

0N  206,139,589 - Worldmeter [52] 

0S  ( )00.97 N  1 Scaled/Assumed 

0E  100  
75.0 10−  Scaled/Assumed 

0I  1 
95.0 10−  Worldmeter/scaled 

0R  0 0 WHO/Worldometer/scaled 

0D  0 0 WHO/Worldometer/scaled 

Model Parameters/Rates 

Parameters Value Remark Sources/References 

c   Varied -  

  0.07   Observation period is 

 2,14  days 

NCNC [11] 

  0.12 Computed (scaled) WHO/Worldometer [52] 

   0.02 Computed (scaled) WHO/Worldometer [52] 
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Fig. 1: Nigeria-regions with COVID-19 as at 03/04/2020 (Source: www.ncdc.gov.ng) [11] 

 

3.1 THE ASSOCIATED MODEL SOLUTIONS 

This section presents the solution associated with the proposed model via the method of solution 

earlier presented. The data in Tables 1 and 2 are used accordingly. For clarity of presentation, we 

denote the obtained solutions for Spain and Nigeria cases with subscripts SPN  and NIG , 

respectively. Thus, the following solutions: 

 

( ) ( )8 3 4 4 12 2

4 2 4 2 4

3 4 2 12 12 3

19 2

1 4.76 10 0.5 10 0.476 10 0.476 10 2.27 10

0.476 10 0.476 10 0.952 10

          0.167 10 0.476 10 6.8 10 6.8 10

1.08 10

 

SPNS t c c c t

c

c c c t

c

  

    

   

− − − − −

− − −

− − − −

−

= −  +  − +  +  + 

  − − +  + 
 

−  − +  +  +  
 
+  

8 15 8 4 3

31 3 15 2 15 2 22 2

22 2 15 2 4 2 4

8 2 4

1.59 10 5.3 10 1.59 10 1.67 10

8.59 10 2.65 10 2.65 10 1.08 10

        0.250 1.08 10 1.89 10 1.66 10  3.33 10

2.38 10 1.67 10

c c c

c c c c

c c c c

   

  

   

 

− − − −

− − − −

− − − −

− −

 +  +  − 

+  +  +  + 

+ +  +  −  − 

+  − 

4

2 4 2 4 2

4 2 8 2 9 3 9 3

1.67 10 1.67 10

1.67 10 2.38 10 7.93 10 7.93 10

t

  

     

− −

− − − −

 
 
 
 

+
 
 −  − 
 
 −  +  +  +     

http://www.ncdc.gov.ng/
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( ) ( )

( )

2 8 2

3 8 8 15 2 3 2 2

9 2 3 2 3 9 2

9 3

 0.1 10 4.76 10 0.1 10

          0.5 10 2.38 10 2.38 10 1.14 10 0.5 10

7.93 10 0.334 10 0.167 10 7.93 10

           1.59 10 0.167 10

SPNE t c t

c c c c t

c c c c

c c



   

   

 

− − −

− − − − −

− − − −

− −

=  +  − 

+  −  −  −  + 

 −  −  + 

+ +  −  9 2 15 2 3

15 2 23 3 3 3

5 5 2 5 2 5 2

5 2 9 2 9 2 15

7.93 10 1.13 10

1.13 10 1.8 10 0.167 10

8.32 10 8.36 10 4.18 10 8.36 10

4.18 10 5.95 10 3.98 10 1.32 10

           

c c t

c c

c a c c c

c c c c

 

 

     

    

− −

− − −

− − − −

− − − −

 
 

+  +  
 
+  +  −  

 +  +  + 

+  −  −  − 

+

2

9 2 9 2 4 3 16 2 2

16 2 2 23 3 2 23 3 16 3

5 2 2 9 3 9 3 31 4

5 4

3.98 10 5.95 10 1.25 10  6.62 10

6.62 10 2.7 10 2.7 10 10 4.72 10

4.15 10 1.98 10 1.98 10 2.15 10

4.18 10

c c c c

c c c c

c c c c



   

   

  



− − − −

− − − −

− − − −

−

 
 
 
 
−  −  +  − 
 
−  −  −  − 

+  −  −  − 

+  

4 t +





  

 

( ) ( )8 2 8 8

8 3 2 3 8 2

2

8 3 8 2

3 2 8 8

4.76 10 0.1 10 4.76 10 4.76 10

2.38 10 0.5 10 0.5 10 2.38 10
       

4.76 10 0.5 10 2.38 10

0.167 10 1.59 10 1.59 10 3.8 10

       

SPNI t t

c
t

c c c

  

   

  

  

− − − −

− − − −

− − −

− − −

=  +  −  − 

  −  −  + 
+   +  −  +  

 −  −  − 

+

16 2

3 3 3 2 3 2 9 3

3

8 2 3 8 2

3 2 2 3 2 9 3

8 4 2 5

0.167 10 0.167 10 0.167 10 7.93 10

2.38 10 0.333 10 - 2.38 10

0.167 10 0.167 10 7.93 10

1.19 10 1.25 10 8.35 10

      

c

t

c



    

   

    

  

−

− − − −

− − −

− − −

− − −

 
 
+  +  +  −  
 
−  +  
 
 +  +  −  

 −  − 

+

2 5 2

5 2 9 2 5 2 9 2

16 2 16 2 5 3 24 3

9 2 2 8 2 2 9 3 5 3 2

5 3

1.25 10

8.36 10 5.96 10 8.36 10 5.96 10

3.77 10  3.77 10 8.35 10 4.50 10

1.98 10 1.19 10 7.92 10 4.18 10

4.18 10

c c c c

c c c c

c

  

     

   

      

 

−

− − − −

− − − −

− − − −

−

− 

−  +  −  + 

+  +  −  + 

+  +  +  − 

− 

4

5 2 2 5 3 9 3

9 4 9 4 5 2 2 5 3

5 4

 

4.18 10 4.18 10 7.92 10

1.98 10 1.98 10 4.18 10 4.18 10

4.18 10

t

   

    



− − −

− − − −

−

 
 
 
 
 
  +
 

−  −  +  
 
+  +  −  −  
 −  

  

 

( ) ( ) ( )8 3 4 4 2

4 2 4 2

3 3

4 2 4 2

2 1

7
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0.476 10 0.476 10
            0.167 10

0.952 10 0.476 10

167. 0.159 10 0.15

           2.5 10

SPNR t t t

c
t

c c

    

   


   

 


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−

− −

−

−

=  −  − +  + 
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+    +  − +  

− +  +

− 

1

10 3 2 2

4

2 3 1 2 2 2

1 2 2 2 2 2 3

9 10

3.8 10 ^ 2 167. 167. 167.

0.793 10 0.238 10 333.

0.238 10 167. 167. 0.793 10

c

c
t



    

     

     

−

−

− −

− −

 
 
+  − − − 

+ +  +  −
 
 +  − − +  
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4 2 4 2

3 3

4 2 4 2

2 1 2

7

 4.76 10 0.50 10 0.476 10 0.476 10

0.476 10 0.476 10
         0.167 10

0.952 10 0.476 10

167 0.159 10 0.159 10

        2.5 10

SPND t t t

c xi
t

c c

    

   


   

  


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− −

−

− −

− −

−
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− +  + 

− 
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t

 
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−

− −

− −

 + 
 
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1 2 1 2 1

8 1 2 10 10 3

19 2
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               8.33 10 0.1 10 1.50 10 1.5 10
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NIGS t ct c c t

c

c c c t

c

  

    

   
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− − −

− − − −

−

= −   − +  +  + 
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 

−  − +  +  +  
 
+  

9 17 17

17 2 17 2 25 2
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  0.250 8.33 10 8.33 10 2.50 10

2.50 10 8.33 10 8.
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c c c

c c c

c

  

  

  

   

 
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 +  + 

+  +  + 
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4
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8 2 8 2 8 3

34 3 7 2

33 10
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t

c

 

   

 

−

− − −

− −

 
 
 
 
 
  +
 

 
 
−  −  −  
 +  −  

  

( ) ( )7 9 7

7 9 9

2

17 2 7 2

10 2 7 2 8 2
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 5.0 10 5.0 10 5.0 10
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1.25 10 2.50 10

8.33 10 1.66 10 8.25 10

8.33 10 1.67 10
            

8

NIGE t c t

c c c
t

c

c c c

c c



  



   

 

− − −

− − −

− −

− − −

− −

=  +  − 

  −  − 
+   −  +  

 −  − 

+  + 
+

−

3

8 10 2 17 2

17 2 26 3 8 3

8 10 2 17 2

10 2 10 2 10 2

.25 10 8.33 10 1.25 10

1.25 10 2.08 10 8.33 10

4.14 10 4.18 10 1.46 10

4.18 10 6.25 10 6.25 10

4.14

            

t
c c c

c c

c c c

c c c

  

 

  

   

− − −

− − −

− − −

− − −

 
 
 
 

 +  + 
 
 +  +  −  

 −  − 

−  −  − 

+

+

8 2 8 2 8 2

8 2 18 2 2 18 2 2

26 3 26 3 18 3

8 2 2 10 3 10 3

8 3 35 4 8

10 2.06 10 4.14 10

2.06 10 7.30 10 7.30 10

3.12 10 3.12 10 5.22 10

2.05 10 2.08 10 2.08 10

6.23 10 2.60 10 2.08 10

c c c

c c c

c c c

c c c

c c

   

   

  

  



− − −

− − −

− − −

− − −

− − −

 +  + 

+  −  − 

−  −  − 

+  −  − 

+  −  + 

4

4

t



 
 
 
 
 
  +
 
 
 
 
 
 
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( ) ( )9 7 9 9

9 7 2 7 9 2

2

9 7 9 2

8 2 9 9

 5.00 10 5.0 10 5.0 10 5.0 10

2.5 10 2.50 10 2.50 10 2.5 10
           

5.00 10 2.50 10 2.5 10

8.27 10 1.67 10 1.67 10

           

NIGI t t

c
t

c c c

  

   

  

  

− − − −

− − − −

− − −

− − −

=  +  −  − 

  −  −  + 
+   +  −  +  

 −  − 

−

+

18 2 8 3 8 2

8 2 10 3 9 2 3

7 9 2 8 2

8 2 10 3

8 3 27 3

4.17 10 8.33 10 8.33 10

8.33 10 8.33 10 2.50 10

1.67 10 2.50 10 8.33 10

8.33 10 -8.33 10

2.08 10 5.20 10

          

c

xi t

c

  

   

  

  

 

− − −

− − −

− − −

− −

− −

 
 

 +  +  
 
+  −  − 
 
 +  −  + 
 
 +   

−  + 

+

10 2 2

8 3 18 2 8 2

10 2 8 2 8 2

8 2 18 2 2

10 2 8 2 10 3

9 2 2 10
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4.15 10 4.16 10 4.13 10
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6.25 10 4.16 10
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c
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c

c
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 

  
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   

   

  

−

− − −

− − −

− −

− − −

− −

+ 

−  +  − 

+  −  − 

−  + 

+  −  + 

+  + 

4

3 8 2 3

8 2 2 8 3 8 3
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10 4 8 4

2.08 10

2.08 10 2.08 10 2.08 10

2.08 10 1.25 10 2.08 10

2.08 10 2.08 10

t

c

  

    

   

 

−

− − −

− − −

− −

 
 
 
 
 
 
 

+ 
 

−  
 −  −  − 
 
−  +  +  
  +  −    

( ) ( )9 7 1 1 2

1 2 1 2

8 3

1 1 2

8 2 9

 5.0 10 2.50 10 0.10 10 0.10 10

0.10 10 0.1 10
              8.33 10

0.20 10 0.10 10

8.27 10 1.67 10 1.67 10

              0.250

NIGR t t t

c
t

c c

    

   


  

 



− − − −

− −

−

− −

− − −

=  −  − +  + 

  − − + 
+    +  − +  

−  +  + 

−

9

18 2 8 3 8 2

8 2 10 3 9 2 4

7 9 2 8 2

8 2 10 3

4.17 10 8.33 10 8.33 10

8.33 10 8.33 10 2.50 10

1.67 10 2.50 10 8.33 10

8.33 10 8.33 10

c

c

t



  

    

  

  

− − −

− − −

− − −

− −

 
 
+  −  −  
 
−  +  +  +
 
 −  +  − 
 
 −  +    
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1 2 1 2

8 3
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0.20 10 0.10 10
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             0.25

NIGD t t t

c
t
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    

   


  

 



− − − −

− −

−

− −

− − −

=  −  − +  + 
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+    +  − +  

−  +  + 

−

9
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t
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 
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 
−  +  +  +
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 
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3.2   NUMERICAL AND GRAPHICAL PRESENTATION OF RESULTS 

The above solutions are approximate analytical solutions to the proposed SEIRD model. The 

plots of the resulting solutions are presented in the following figures. Other possible methods of 

solutions include those of [53-62]. For the Spain model cases, we consider Fig.2, Fig.3, Fig.4, 

and Fig.5 based the set of parameter values: ( )1,  & 0.1c = = , and ( )1 3,  & 0.1c − = = .   

Similarly, for the Nigeria model cases, we consider Fig.6, Fig.7, Fig.8 and Fig.9, based on the set 

of parameter values: ( )1,  & 0.07c = =  and ( )1 5,  & 0.07c − = = .  

 

Fig. 2: Spain model exposed cases for 11,  3,  & 0.1c c −= = =  

 

Fig. 3: Spain model infected cases for 11,  3,  & 0.1c c −= = =  
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Fig. 4: Spain model recovered cases for 11,  3,  & 0.1c c −= = =  

 

 

Fig. 5: Spain model death cases for 11,  3,  & 0.1c c −= = =  
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Fig. 6: Nigeria model exposed cases for 11,  5,  & 0.07c c −= =  

 

 

Fig. 7: Nigeria model infected cases for 11,  5,  & 0.07c c −= =  
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Fig. 8: Nigeria model recovered cases for 11,  5,  & 0.07c c −= =  

 

 

 

Fig. 9: Nigeria model exposed cases for 11,  5,  & 0.07c c −= =  
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3.1 PARAMETER VALUES AND IMPLICATIONS 

From the results above, the set values 1,  & 0.1c = = imply a situation where each infected 

person makes one (1) possible infecting contact per day on the average of 10 days of observation 

period (say latency). This for the Spain case model is depicted in Fig.2, Fig. 3, Fig. 4 and Fig. 5. 

Similarly, the parameters 1 3,  & 0.1c − = =  were considered to reflect a situation where each 

infected person makes one (1) possible infecting contact every three (3) days on the average of 

10 days of observation period. The results in the two scenarios show a drastic decrease in the 

‘exposed, infected and death’ classes (Fig.2-Fig.5 compared).  

For universality and comparison, the Nigeria case is also considered via the parameters, 

1,  & 0.07c = =  to imply a situation where each infected person makes one (1) possible 

infecting contact per day on the average of 14 days of observation period (see Fig. 6-Fig. 9). 

Similarly, the parameter values 1 5,  & 0.07c − = =  imply a situation where each infected 

person makes one (1) possible infecting contact every five (5) days on the average of 14 days of 

observation period. 

 

4. CONCLUDING REMARKS 

This paper has successfully considered the implementation of a simple mathematical model for 

the analysis of the global COVID-19 spread. The model compartments partition the population 

into Susceptible, Exposed, Infected, Recovered, and Deaths individuals; hence SEIRD model. 

The pandemic cases analyzed via the SEIRD model were based on data made available by 

worldometer and WHO between 15/03-03/04/2020 for the case of Spain, and 27/02-03/04/2020 

for the case of Nigeria. The reported results of the two countries indicated the same spread 

patterns for the two considered instances, even though different parameters were used. Due to the 

considered level of the possible infecting contacts, a reasonable decrease in the ‘exposed and 

infected’ likewise the ‘infected and death’ classes was recorded conditionally, as shown via the 

graphical representations. Remarkably, more cases would be confirmed at an exponential rate if 
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the possible infecting contact is not properly controlled. Government measures such as social 

distancing and isolation are complemented, thereby reducing the rate of the infection to a large 

extent. Though recording an increase in the ‘recovered class’ is anticipated. Thus, the analyses, 

approaches, and the proposed method can be extended to other countries for possible adoption 

during this global and threatening COVID-19 outbreak. For further research, it will be essential 

to include the age factor in the COVID-19 pandemic consideration; this would lead to a model 

with two independent variables (age, and time). 
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