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Abstract: Firth bias correction originally was applied to correct bias of the variance components estimator that 

obtained by the maximum likelihood method. Extensive research has shown that Firth bias correction is powerful to 

reduce bias for normal distributed response model. Questions have been raised about the use of Firth bias correction 

in binomial distributed response model which has under dispersion problem. The motivation of this study is giving 

contribution to exploring the Firth bias correction for binomial distributed response model. The binomial distributed 

response model which is estimated by the maximum likelihood method obtain an under-dispersion estimator. 

Therefore, the Penalized Quasi-Likelihood (PQL) is used as alternative numerical method to estimate the model.  

This paper aims to investigate whether the Firth method can reduce bias of the variance components using the PQL 

technique in longitudinal data.  

Keywords: logistics linear mixed model; penalized quasi likelihood; Firth-adjusted penalized quasi likelihood; 

unadjusted penalized quasi likelihood; longitudinal data.  
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1. INTRODUCTION 

In Generalized Linear Mixed Models (GLMMs), it is critical to estimate the random effects 

separated of fixed effects. Random effect parameters are known as the variance components [1].  

Both effects are generally estimated by Maximum Likelihood Estimation (MLE). A number of 

studies have begun to examine the impact of MLE method in estimating the fixed effect and 

random effect in GLMMs. MLE is known as an asymptotic method that produces an unbiased 

parameter estimator when the sample size is large or going to infinity. However, there is evidence 

that for a small sample number, the estimation of MLE would be downward biased. The downward 

biased estimator produces an overdispersion estimator described by [2]. Bias estimator defined as 

the difference between an estimator's expected value and the true value of the parameter being 

estimated [3].  

Discussed by [4], the bias of variance components seen clearly in case of binary data. A special 

case of GLMMs that has dichotomous response variable and involves fixed effects and random 

effects is known as Logistics Linear Mixed Model (LLMM). The LLMM usually used to model 

the heterogeneity among subjects and correlations in repeated observations [5]. 

According to [6], the likelihood function of GLMMs is analytically difficult to obtain the 

closed-form solutions.  It happens because the random effects of likelihood function is not 

integrable. Moreover, the LLMM which is estimated by maximum likelihood method obtain an 

overdispersion estimator (Lin). This happens because the variance’s value of dichotomous 

response variables is not the same as the variance assumptions. To overcome this problem, an 

alternative numerical method to estimate the model using Penalized Quasi Likelihood (PQL) 

suggested by [6]. In addition, [4] claims that the PQL in estimating the variance component can 

overcome heterogeneity of random effects from various sources of variance. Other than that, 

Capanu et.al. [7] points out that PQL able to accommodate complex correlation structures for 

dichotomous response variable model. In all the studies reviewed here, this paper attempts to show 

that the PQL technique can be used to estimate the variance components for the LLMM.  

 The estimator of variance components from PQL are downward biased has been proved by 
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[8]. Therefore, the bias of variance components needs to be reduced. Modifying the score function 

from the likelihood function is proposed to reduce bias by [9]. In the previous studies, [1] proved 

that the Firth method can reduce the bias of variance components of GLMMs by maximum 

likelihood estimation (MLE) method.  Several studies have used Firth Method to reduce the bias, 

but none has explained how to reduce the bias in LLMM especially using the PQL techniques.   

 This paper aims to investigate whether the Firth method can reduce bias for the LLMM using 

the PQL technique in longitudinal data. The study is conducted in the form of three issues. This 

paper begins by the analytical studies that carried out to develop the iterative procedures to 

estimate the corrected bias. The second is simulation studies to evaluate the performance of Firth 

method.  The third issue is the application of the longitudinal study using SUSENAS data that 

collected annually. 

   This paper is organized as follows. Section 2 presents the Logistics Linear Mixed Model. In 

section 3, we discuss the Analytical Studies of Firth Bias Correction Method for Logistics Linear 

Mixed Model Via Penalized Quasi Likelihood. Section 4 presents the Bias Simulation Studies.  

In the section 5, we describe the Illustration on longitudinal Study. Finally, the Conclusion is 

presented in section 6. 

 

2. LOGISTIC LINEAR MIXED MODEL (LLMM) 

Mixed model involves fixed effect and random effect in the model. if we assume the response 

variable has the normal distribution, it is known as Linear Mixed Model (LLM). The common 

form of linear mixed model as follow: 

(1)                        𝒚 = 𝑿𝜷 + 𝒁𝒃 + 𝜺                                                             

Where  𝒚  is  N  x 1 column vector, the response variable; 𝑿  is a N x p matrix of the p 

predictor variables; 𝜷 is a p x 1 column vector of the fixed-effects regression coefficients; 𝒁 is 

the N x q design matrix for the q random effects; 𝒃 is a q x 1 vector of the random effects; and 𝜺 

is a N  x 1 column vector of the residuals, that part of 𝒚 that is not explained by the model.  

𝜺 ~𝑁(0, 𝚺), 𝒃~𝑁(0, 𝐃) . b and 𝜺  are independent. The variance matrix 𝚺  and 𝑫  are 
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parameterized by an unknown variance component parameter 𝜽. 𝐃 = diag(𝜎𝑏𝑗
2 ) 

However, when the condition of response variable is non normal, then the model known as 

Generalized Linear Mixed Models (GLMMs). The means of the response variable 𝒚 conditional 

on random effects 𝒃 as follow 

(2)                       𝐸(𝒚|𝒃) = 𝑿𝜷 + 𝒁𝒃                                                            

Where 𝒚~𝑁(𝑿𝜷, 𝑽 = 𝚺 + 𝐙𝛀𝐙′).  The matrix form of GLMMs can be written as: 

(3)                          𝜼 = 𝑿𝜷 + 𝒁𝒃                                                                

 This model has a distribution of 𝒚 population that depend on 𝜼. The special case of GLMMs 

where the response variable has a binomial distribution is called Logistics Linear Mixed Model 

(LLMM).  LLMM can be written as follow: 

(4)                        𝑙𝑜𝑔 (
𝒑

1−𝒑
) = 𝑿𝜷 + 𝒁𝒃                                                             

Log likelihood function of binomial distribution can be written as 

(5)                     𝑙𝑜𝑔𝐿(𝒚; 𝒑) = 𝑙𝑜𝑔 (
𝑛
𝒚) + 𝒚 log (

𝒑

1−𝒑
) + 𝑛 log(1 − 𝒑)                                    

2.1 BEST LINEAR UNBIASED PREDICTOR OF LLMM VIA PENALIZED QUASI LIKELIHOOD  

As mentioned before, this study uses longitudinal data design.  Let 𝒚 = {𝒚𝑘𝑡𝑖} defined as the 

vector if sample values of the variable Y.  The subscripts 𝑘 = 1, 2,⋯ , 𝐾; 𝑡 = 1,2,⋯ , 𝑇; 𝑖 =

1, 2,⋯ , 𝑛𝑘𝑡   denotes area, time and sample unit respectively.  The Best Linear Unbiased 

Predictor (BLUP) procedure consists of maximizing the sum of two component loglikelihoods.  

Let 𝑙1 is the loglikelihood function of the binomial vector 𝒚 conditional on fixed 𝜷 and 𝑙2 is 

the log of probability density function of b. 𝑙 = 𝑙1 + 𝑙2 represents the loglikelihood based on the 

joint distribution of 𝒚 and b. From equation (3) and (4), we find 

(6)                        𝒑𝑘𝑡𝑖 =
𝑒𝜼𝑘𝑡𝑖

1+𝑒𝜼𝑘𝑡𝑖
                                                                         

then 

(7)                   𝑙1 = 𝑐𝑜𝑛𝑠𝑡. +∑ ∑ ∑ [𝒚𝑘𝑡𝑖 𝜼𝑘𝑡𝑖 −𝑛𝑘𝑡𝑖 log(1 + 𝑒
𝜼𝒌𝒕𝒊)]𝐼

𝑖=1
𝑇
𝑡=1

𝐾
𝑘=1  

𝑙2 = −(0.5)[𝑐𝑜𝑛𝑠𝑡. + ln|𝑫| + 𝒃′𝑫
−1𝒃] 

whereas 𝑫 is the variance covariance matrix of 𝒃. 

 To estimate 𝜷 and 𝒃, different method has been proposed by Saei and McGilchrist [10]. This 
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method is one of the practical ways of estimating 𝜷 and 𝒃 because it involves the log-likelihood 

function directly.  In this paper, this method is extended to be applied in LLMM.  The method 

requires the first and second derivatives of 𝑙1 with respect to 𝜼, 𝜷, and 𝒃 and 𝑙2 with respect 

to 𝜷 and 𝒃 as follows: 

𝜕𝑙1
𝜕𝜼
= 𝒚𝑘𝑡𝑖 −

𝑛𝑘𝑡𝑖𝑒
𝜼𝒌𝒕𝒊

𝑒𝜼𝒌𝒕𝒊 + 1
= 𝒚𝑘𝑡𝑖 − 𝑛𝑘𝑡𝑖𝒑𝑘𝑡𝑖;  

𝜕2𝑙1
𝜕𝜼𝑘𝑡𝑖𝜕𝜼𝑘𝑡𝑖

′ = diag[−𝑛𝑘𝑡𝑖𝒑𝒌𝑡𝑖(1 − 𝒑𝑘𝑡𝑖)] 

𝜕𝑙1

𝜕𝜷
=
𝜕𝑙1

𝜕𝜼
.
𝜕𝜼

𝜕𝜷
= (𝒚𝑘𝑡𝑖 − 𝑛𝑘𝑡𝑖𝒑𝑘𝑡𝑖)𝑿𝑘𝑡𝑖; 

𝜕𝑙1

𝜕𝒃
=
𝜕𝑙1

𝜕𝜼
.
𝜕𝜼

𝜕𝒃
= (𝒚𝑘𝑡𝑖 − 𝑛𝑘𝑡𝑖𝒑𝑘𝑡𝑖)𝒁𝑘𝑡𝑖 

since 𝑙2 does not consist of parameter 𝜷, then derivatives with respect to 𝜷 are equal to zero 

𝜕𝑙2

𝜕𝒃
= 𝑫−1𝒃; 

𝜕2𝑙2

𝜕𝒃𝜕𝒃′
= 𝑫−1𝒃𝒃′ = 𝑫−1 

Assumed H is a Hessian matrix which is known as the derivative matrix of the log likelihood 

function. Let 𝑽 is a minus of Hessian matrix, then V can be written as follows: 

𝑽 =

(

 
 
−(

𝜕2𝑙1
𝜕𝜷𝜕𝜷′

+
𝜕2𝑙2
𝜕𝜷𝜕𝜷′

) −(
𝜕2𝑙1
𝜕𝜷𝜕𝒃′

+
𝜕2𝑙2
𝜕𝜷𝜕𝒃′

)

−(
𝜕2𝑙1
𝜕𝒃𝜕𝜷′

+
𝜕2𝑙2
𝜕𝒃𝜕𝜷′

) −
𝜕2𝑙1
𝜕𝒃𝜕𝒃′

+
𝜕2𝑙2
𝜕𝒃𝜕𝒃′ )

 
 

 

then 

𝑽 = [𝑿′
𝒁′
] (

−𝜕2𝑙1

𝜼𝑘𝑡𝑖𝜼𝑘𝑡𝑖
′ ) [𝑿 𝒁] + [

𝟎 𝟎
𝟎 𝑫−1

]  or 

𝑽 = [
𝑿′

𝒁′
] [diag[𝑛𝑘𝑡𝑖𝒑𝑘𝑡𝑖(1 − 𝒑𝑘𝑡𝑖)]][𝑿 𝒁] + [

𝟎 𝟎
𝟎 𝑫−1

] 

If 𝑽 is evaluated at 𝜷0 and 𝒃0, then the procedure for estimating 𝜷 and 𝒃 is 

(8)                                           [
�̂�

�̂�
] = [

𝜷0
𝒃0
] + 𝑽−1 [

𝑿′

𝒁′
] (

𝜕𝑙1

𝜼𝑘𝑡𝑖
) − 𝑽−1 (

𝟎
𝑫−1𝒃0

)                                     

Let 𝑽 = [
𝑽11 𝑽12
𝑽21 𝑽22

] and 𝑽−1 = [
𝑸11 𝑸12
𝑸21 𝑸22

] as the partitioning of the matrix 𝑽.  

Define  𝑷 = −(𝜕2𝑙/𝜼𝑘𝑡𝑖𝜼𝑘𝑡𝑖
′ )  and 𝑸∗ = 𝑸𝑗𝑗

∗ = (𝒁′𝑩𝒁 + 𝑫−1)−1 .  Then the variance 

components of 𝒃 can be defined as  

(9)               �̂�𝑏(𝑗)𝑀𝐿
2 = 𝑟𝑗

−1(𝑡𝑟(𝑸𝑗𝑗
∗ 𝑫𝑗

−1) + 𝜎−2𝒃′𝑗𝑫𝑗
−1𝒃𝑗)                                             

where the 𝑟𝑗 is the rank of the matrix 𝒁𝑗.   

 The variance components of  𝒃  also can be obtained using the restricted estimation 
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maximum likelihood (REML) method [11].   For the REML estimator’s method, the 𝑸∗ using 

the 𝑸22 submatrix of the 𝑸∗ matrix.  This matrix can be expressly determined by utilizing the 

formula as below: 

(10)                    𝑸22 = 𝑸
∗ + 𝑸∗𝒁′𝑷𝑿𝑸11𝑿

′𝑩′𝒁𝑸∗                                                   

while 𝑸11 = (𝑿
′𝑩𝑿− 𝑿′𝑩𝒁𝑸∗𝒁′𝑩𝑿)−1.  Therefore, the variance components of 𝒃 that using 

REML method can be written as 

(11)               �̂�𝑏(𝑗)𝑅𝐸𝑀𝐿
2 = 𝑟𝑗

−1(𝑡𝑟(𝑸22𝑫𝑗
−1) + 𝝈−2𝒃′𝑗𝑫𝑗

−1𝒃𝑗)                                      

where the 𝑟𝑗 is the rank of the matrix 𝒁𝑗. 

 

3. ANALYTICAL STUDIES OF FIRTH BIAS CORRECTION METHOD FOR LLMM VIA 

PENALIZED QUASI LIKELIHOOD 

The Basic idea of the Firth method to reduce bias is substituting the smaller bias to the score 

function (Firth 1993). Here is the illustration 

 

FIGURE 1.  Modification of Score Function 

Based on Figure-1 above, if  �̂� is the subject of positive bias b(θ), then the score function is 

shifted at each value of θ equal to i(θ)b(θ), where -i (θ) = U '(θ) is local gradient. The modified 

score function is 

(12)                            𝑈∗(𝜽) = 𝑈(𝜽) − 𝑖(𝜽)𝑏(𝜽)                                                                

So that the modified estimator is obtained �̂� with the solution 𝑈∗(𝛉)= 0, where i (θ) is the 

Fisher information matrix.  Firth’s Method is using Jeffrey prior penalty to reduce bias.  

Common form of modified score function for LLMM can be written as: 
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𝑈∗(𝒑) = 𝑈(𝒑) − 𝐴𝑟(𝒑) 

𝐴𝑟(𝒑) =
1

2
𝑡𝑟 {𝑖−1 (

𝜕𝑖

𝜕𝑝𝑟
)} 

                               =
𝜕𝑖

𝜕𝑝𝑟
{
1

2
 𝑙𝑜𝑔 [𝑖(𝒑)]}  

because 𝑈𝑟
∗ = 𝑈𝑟 + 𝐴𝑟 = 0, then the location stationer point is 

(13)                    𝑙∗(𝒑) = 𝑙(𝒑) +
1

2
 𝑙𝑜𝑔 [𝑖(𝒑)]                                                                  

or similar with penalized likelihood functions 

           𝐿∗(𝒑) = 𝐿(𝒑)  [𝑖(𝒑)]1/2 

Penalty function  |𝑖(𝒑)|1/2 is known as Jeffrey Invarian prior. 

 To modified the loglikelihood function, we begin from binomial distribution as the basic 

distribution of the LLMM.  The likelihood function of binomial distribution as follow 

𝐿(𝒑|𝑛, 𝒚) = (
𝑛
𝒚)𝒑

𝒚(1 − 𝒑)𝑛−𝒚 

the loglikelihood function is 

𝑙(𝒑) = 𝒚 𝑙𝑜𝑔 (
𝒑

1 − 𝒑
) + 𝑛 log(1 − 𝒑) + 𝑙𝑜𝑔 (

𝑛
𝒚) 

Then we obtain Fisher information matrix 

(14)                     𝑖(𝒑) = −𝐸𝑝 (
𝜕2𝑙

𝜕𝒑𝟐
) =

1

𝒑(1−𝒑)
                                                      

Based on (13) and (14) then the penalized likelihood function which is known as Firth penalty:  

(15)                   
1

2
𝑙𝑜𝑔[𝑖(𝒑)] =

1

2
𝑙𝑜𝑔 (

1

𝒑(1−𝒑)
)                                                   

                                     =
1

2
𝑙𝑜𝑔 (

(1+𝑒𝜼)2

𝑒𝜼
)  

 Let 𝒚 = {𝒚𝑘𝑡𝑖} defined as the vector if sample values of the variable Y.  The subscripts   

𝑘 = 1, 2,⋯ , 𝐾; 𝑡 = 1,2,⋯ , 𝑇; 𝑖 = 1, 2,⋯ , 𝑛𝑘𝑡  denotes area, time and sample unit respectively. Let 

𝑙∗ = 𝑙1   + 𝑙2+ penalty represents the modification of loglikelihood based on the joint distribution 

of 𝒚 and b. Let 𝑙1
∗ is the loglikelihood function of the binomial vector 𝒚 conditional on fixed 

𝜷 and penalized likelihood function of Firth method, 𝑙2is the log of probability density function 

b.    Then the modification of loglikelihood function for binomial distribution is 
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𝑙1
∗ = 𝑐𝑜𝑛𝑠𝑡. +∑∑∑[(𝒚𝑘𝑡𝑖 − 0.5) 𝜼𝑘𝑡𝑖 −(1 − 𝑛𝑘𝑡𝑖) log(1 +𝑒

𝜼𝒌𝒕𝒊)]

𝐼

𝑖=1

𝑇

𝑡=1

𝐾

𝑘=1

 

𝑙2 = −(0.5)[𝑐𝑜𝑛𝑠𝑡. + ln|𝛀| + 𝒃′𝐃
−1𝒃] 

The matrix 𝑽 is the matrix of second-order derivatives 

𝑽 =

(

 
 
−(

𝜕2𝑙1
∗

𝜕𝜷𝜕𝜷′
+
𝜕2𝑙2
𝜕𝜷𝜕𝜷′

) −(
𝜕2𝑙1

∗

𝜕𝜷𝜕𝒃′
+
𝜕2𝑙2
𝜕𝜷𝜕𝒃′

)

−(
𝜕2𝑙1

∗

𝜕𝒃𝜕𝜷′
+
𝜕2𝑙2
𝜕𝒃𝜕𝜷′

) −(
𝜕2𝑙1

∗

𝜕𝒃𝜕𝒃′
+
𝜕2𝑙2
𝜕𝒃𝜕𝒃′

)
)

 
 

 

𝑽 = [𝑿′
𝒁′
] (
−𝜕2𝑙1

∗

𝜕𝜼𝜕𝜼′
) [𝑿 𝒁] + [

𝟎 𝟎
𝟎 𝑫−1

]  or 

𝑽 = [
𝑿′

𝒁′
] [diag[(𝑛𝑘𝑡𝑖 − 1)𝒑𝑘𝑡𝑖/(1 + 𝑒

𝜼𝒌𝒕𝒊)]][𝑿 𝒁] + [
𝟎 𝟎
𝟎 𝑫−1

] 

If 𝑽 is evaluated at 𝜷0 and 𝒃0, then the procedure for estimating 𝜷 and 𝒃 is 

(16)               [
�̂�

�̂�
] = [

𝜷𝟎
𝒃𝟎
] + 𝑽−1 [

𝑿′

𝒁′
] (
𝜕𝑙1
∗

𝜕𝜼
|𝜷0,𝒃0) − 𝑽

−1 (
𝟎

𝑫−1𝒃
)                                             

Let 𝑽 = [
𝑽11 𝑽12
𝑽21 𝑽22

] and 𝑽−1 = [
𝑸11 𝑸12
𝑸21 𝑸22

] as the partitioning of the matrix 𝑽. Define  

𝑷 = −(𝜕2𝑙/𝜼𝑘𝑡𝑖𝜼𝑘𝑡𝑖
′ ) and 𝑸∗ = 𝑸𝑗𝑗

∗ = (𝒁′𝑩𝒁 + 𝑫−1)−1.  Then the variance components of 𝒃 

can be defined as  

(17)                 �̂�𝑏(𝑗)𝑀𝐿
2 = 𝑟𝑗

−1(𝑡𝑟(𝑸𝑗𝑗
∗ 𝛀𝑗

−1) + 𝜎−2𝒃′𝑗𝑫𝑗
−1𝒃𝑗)                                             

where the 𝑟𝑗 is the rank of the matrix 𝒁𝑗.   

 The variance components of  𝒃  also can be obtained using the restricted estimation 

maximum likelihood (REML) method [11].   For the REML estimator’s method, the 𝑸∗ using 

the 𝑸22 submatrix of the 𝑸∗ matrix.  This matrix can be expressly determined by utilizing the 

formula as below: 

(18)                    𝑸22 = 𝑸
∗ + 𝑸∗𝒁′𝑷𝑿𝑸11𝑿

′𝑩′𝒁𝑸∗                                                   

while 𝑸11 = (𝑿
′𝑩𝑿− 𝑿′𝑩𝒁𝑸∗𝒁′𝑩𝑿)−1.  Therefore, the variance components of 𝒃 that using 

REML method can be written as 

(19)                 �̂�𝑏(𝑗)𝑅𝐸𝑀𝐿
2 = 𝑟𝑗

−1(𝑡𝑟(𝑸22𝑫𝑗
−1) + 𝜎−2𝒃′𝑗𝑫𝑗

−1𝒃𝑗)                                      

where the 𝑟𝑗 is the rank of the matrix 𝒁𝑗.    
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4. BIAS SIMULATION STUDIES 

The simulations conducted to determine the behavior of the Firth-adjusted PQL (Firth method 

which is applied to the PQL). The purpose of the simulation is to assess and compare the 

performance of the Firth method in reducing bias of variance components.  Specifically, the data 

generation model can be written as follows: 

𝑙𝑜𝑔 (
𝒑𝑘𝑡𝑖

1 − 𝒑𝑘𝑡𝑖
) = 𝒙𝑘𝑡𝑖

′ 𝜷 + 𝒃0𝑘 + 𝒃1𝑡 

[
𝑏0𝑘
𝑏1𝑡
] ~𝑀𝑉𝑁(𝟎, [

𝜎𝑏0𝑘
2 0

0 𝜎𝑏1𝑡
2 ]) 

where log (
𝒑𝑘𝑡𝑖

1−𝒑𝑘𝑡𝑖
)  is the canonical parameter for the binomial distribution for linear models.  

𝒑𝑖𝑘𝑡 is the probability that 𝑦𝑘𝑡𝑖 = 1 for the kth area, at the tth time and ith sample unit. 

 The estimation of the binomial parameter is interesting to be a research question.  For 

example, such as estimating the proportion of an individual population with a particular scope, that 

the researcher randomizes the location where the individual lives.  The comparison between 

unadjusted PQL method and the Firth-adjusted PQL method can be shown from the two tables and 

figures below. 

TABLE 1.  Mean of random effects estimates of Firth-adjusted PQL and unadjusted PQL 

Methods 

True Variances 

(V(�̂�0𝑘), 𝑉(�̂�1𝑡)) 

  

Unadjusted PQL Firth-Adjusted PQL 

  �̂�𝑏0𝑘
2  Mean est. 

(rmse) 

�̂�𝑏1𝑡
2  Mean est. 

(rmse) 

�̂�𝑏0𝑘
2  Mean est. 

(rmse) 

�̂�𝑏1𝑡
2  Mean est. 

(rmse) 

(1,2) 

0.42476 

(0.57526) 

1.51092 

(1.48962) 

0.43014 (0.56985) 

1.54077 

(1.45954) 

(1,4) 0.58698 (0.413) 

2.7203  

(1.28) 

0.5888 

(0.4111) 

3.7432 (1.257) 

(4,4) 

2.0777 

(1.922) 

3.1684 (1.833) 

3.13257 

(1.885) 

3.2465 (1.773) 
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Table 1 compares the results which is obtained from the analysis of variance components from 

unadjusted PQL and Firth-adjusted PQL. One interesting finding is for the homogenous variances, 

the variance components in the Firth-adjusted PQL obtain the variances that are close to the true 

variances. Similarly, for the heterogenous variances, it can be seen from the data in the results of 

this study in Table 1 indicate that the variance components in Firth-adjusted PQL obtain better 

variances than unadjusted PQL. 

TABLE 2.  Biases of variance components estimates of Firth-adjusted PQL and unadjusted 

PQL Methods 

True Variances 

 (V(�̂�0𝑘), 𝑉(�̂�1𝑡)) 

Unadjusted PQL  Firth-Adjusted PQL 

  �̂�𝑏0𝑘
2  Mean bias est.  �̂�𝑏1𝑡

2  Mean bias est. �̂�𝑏0𝑘
2 Mean bias est. �̂�𝑏1𝑡

2  Mean bias est. 

(1,2) 0.57523 1.48907 0.56985 1.45923 

(1,4) 0.41301 3.27969 0.41117 3.25679 

(4,4) 2.9222 2.83153 2.86743 2.75348 

 

Table 2 shows the biases of variance component estimates of the unadjusted PQL and the Firth-

adjusted PQL.  These results reflect those the result from Table 1 which also found that there is a 

significant difference between the two conditions.  The bias of variance components is shown 

that Firth-adjusted PQL obtain lower biases of variance components than unadjusted PQL method.  

The comparison of the result from the two method is clearly seen in the figures below. 

             

FIGURE 2. Comparison of Variance Estimation’s bias for 𝑏0𝑘~𝑁(0,1) and 𝑏1𝑡~𝑁(0,4)   
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(�̂�𝑏0𝑘
2  on the left side and �̂�𝑏1𝑡

2 on the right side) 

              

FIGURE 3. Comparison of Variance Estimation’s bias for 𝑏0𝑘~𝑁(0,1) and 𝑏1𝑡~𝑁(0,2)  

 (�̂�𝑏0𝑘
2  on the left side and �̂�𝑏1𝑡

2 on the right side) 

                   

FIGURE 4. Comparison of Variance Estimation’s bias for 𝑏1~𝑁(0,4) and 𝑏2~𝑁(0,4)  

 (�̂�𝑏0𝑘
2  on the left side and �̂�𝑏1𝑡

2 on the right side) 

In summary, comparing the two methods, it can be seen that the firth-adjusted PQL having less 

biases of variance component estimates leads to have better random effect’s variability estimates. 

 

5. ILLUSTRATION ON LONGITUDINAL STUDY 

To make this more concrete, let’s consider the illustration from the poverty dataset.  The Poverty 

is still one of the complicated problems in every country, especially for developing countries like 

Indonesia.  To measure poverty, the Statistics of Indonesia (BPS) uses the concept of ability to 

meet the basic needs (basic needs approach).  With this approach, poverty is seen as an inability 

on the economic side to meet the basic needs of food and non-food measured from the expenditure 
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side.  So, the poor population means the population that has an average monthly per capita 

expenditure under the poverty line.  

 The analysis of the illustration is focused on estimating using LLMM via PQL.  We assumed 

that 𝑦𝑖𝑘𝑡 , whether poor or not for the kth household on the ith block and tth time, was 

(conditionally) binomial-distributed with mean 𝜇𝑖𝑗
𝑏 .  In equation form, the model can be written 

as follow: 

𝑙𝑜𝑔 (
𝒑𝑘𝑡𝑖

1 − 𝒑𝑘𝑡𝑖
) = 𝒙𝑘𝑡𝑖

′ 𝜷 + 𝒃0𝑘 + 𝒃1𝑡 

[
𝑏0𝑘
𝑏1𝑡
] ~𝑀𝑉𝑁(𝟎, [

𝜎𝑏0𝑘
2 0

0 𝜎𝑏1𝑡
2 ]) 

𝒑𝑘𝑡𝑖 is the probability of the ith household in poverty. 𝛽1 and 𝛽2 are the coefficient of the fixed 

effects.  To illustrate how the Firth method, reduce the bias of variance components in the 

LLMM, we will use an illustration of longitudinal data (SUSENAS) from the Statistics of 

Indonesia (BPS).  Data is taken from 2011-2013.   

 The responses in longitudinal data are usually correlated.  The head of household as 

respondents was taken from 38 cities and districts of East Java province.  There are 2910 census 

blocks with 10 households for each census block. The response variable is determination whether 

the household is categorized as poor or not.  Further, suppose we had two fixed effects predictors, 

the household predictors are floor area of the house (X1) and number of the household members 

(X2).   

The random effects for each household’s block (𝑏0𝑘) and for each household’s time in 

block (𝑏1𝑡) are including into the model.  Assumed that block household’s random effects are 

i.i.d draws from 𝑁~(𝟎, �̂�𝑏0𝑘
2 ), where �̂�𝑏0𝑘

2  is an unknown parameter to be estimated.  Similarly, 

for the household’s time in block random effects are i.i.d. draws from 𝑁~(𝟎, �̂�𝑏1𝑡
2 ), where �̂�𝑏1𝑡

2  

is an unknown parameter to be estimated.  Finally, the block and time random effects are assumed 

independent of one another.  The reason in choosing the random effects in this study is because 

we expect that the variation within block may be correlated. There are many reasons why this 
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could be.  For example, the determination of the block is taken from the same region that have 

the same poverty line, such that within a block, the households are more homogeneous than they 

are between blocks. 

TABLE 3.  Summary result of LLMM  

Parameter Unadjusted PQL Firth adjusted PQL 

Estimate Odds Ratio Estimate Estimate Odds Ratio Estimate 

Intercept 0.0214 

(< 0.001) 

1.021 0.1684 

(< 0.001) 

1.183 

Floor Area of the house -0.8223 

(< 0.001) 

0.439 -0.3994 

(< 0.001) 

0.671 

Number of the Household Members 1.1397 

(< 0.001) 

3.125 0.5663 

(< 0.001) 

1.761 

�̂�𝑏0𝑘
2  0.283  0.4201  

�̂�1𝑡
2  0.335  0.4759  

  

The table above illustrates the result of unadjusted PQL and Firth adjusted PQL method.  Firth 

adjusted PQL explain that for floor area of the house, a one-unit increase in floor area of the house 

is associated with 0.671 unit decrease in the expected log odds of poverty.  Similarly, the 

household who are has bigger number of household members are expected to have 1.761 higher 

log odds of being in poverty than household who has smaller number of the household members.  

 Turning to the odds ratio here is the conditional odds ratio for the household with the floor 

area of the house and number of the household members constant as well as for the household with 

either the same block, or blocks with identical random effects. When there is large variability 

between blocks, the relative impact of the fixed effects may be small.   

To proof whether there are the differences between the two variances from the two kinds 

of random effects, there are two hypotheses: 

Hypothesis 1: 
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H0: �̂�𝑏0𝑘 (𝑃𝑄𝐿)
2 = �̂�𝑏0𝑘 (𝑃𝑄𝐿𝐹)

2  (two variances are equal) 

H1: �̂�𝑏0𝑘 (𝑃𝑄𝐿)
2 ≠ �̂�𝑏0𝑘 (𝑃𝑄𝐿𝐹)

2  

Hypothesis 2: 

 H0: �̂�𝑏1𝑡 (𝑃𝑄𝐿)
2 = �̂�𝑏1𝑡 (𝑃𝑄𝐿𝐹)

2  (two variances are equal) 

H1: �̂�𝑏1𝑡 (𝑃𝑄𝐿)
2 ≠ �̂�𝑏1𝑡 (𝑃𝑄𝐿𝐹)

2  

the F-ratio: 

𝐹1-tests=
�̂�𝑏0𝑘 (𝑃𝑄𝐿𝐹)
2

�̂�𝑏0𝑘 (𝑃𝑄𝐿)
2 =

0.4201

0.2883
= 1.457 

𝐹2-tests=
�̂�𝑏0𝑘 (𝑃𝑄𝐿𝐹)
2

�̂�𝑏0𝑘 (𝑃𝑄𝐿)
2 =

0.4759

0.335
= 1.421 

F-table from the two kinds of variances are 𝐹0.05(87299,87229) = 1.  If the two population have 

equal variances, then the F-test is close to one, but if F-test is more than one, then the evidence is 

against the null hypothesis.  Therefore, we can conclude that the variances between unadjusted 

PQL and Firth adjusted PQL are different.  Comparing the two results, it can be seen that the 

firth-adjusted PQL obtain greater of variance components estimate leads to better estimates of the 

variability of the random effects estimates. 

 

6. CONCLUSION 

The aim of the present study is to examine whether the Firth method can reduce bias for the 

LLMM using the PQL technique in longitudinal data.  On the LLMM with multiple random 

effects, the simulation of this study shows that the Firth-adjusted PQL improves the bias of the 

variance components estimate.  In general, the result of the simulation from this study indicate 

that the variance components of Firth adjusted PQL are leads to the true value. 

 The limitation of this study is the assumption of independent between 𝜎𝑏0𝑘
2 and 𝜎𝑏1𝑡

2 , but in 

practice the assumption may not be realistic. For future research more complicated models need 
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to be investigated especially in the case where the random effects are correlated. These random 

effects also require estimation. Based on the result of this study, the Firth-adjusted PQL is 

preferable to the unadjusted PQL for the model studied.  Future work will determine whether the 

Firth-adjusted PQL is a suitable choice for other models. 
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