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Abstract. Rift Valley fever is the most terrifying animal disease around the globe, which transfers through

mosquitoes and caused by a virus. This infection is life-threatening and heavily affects the economic sectors.

Therefore, it is valuable to conceptualize the dynamics of Rift Valley fever to understand its transmission pathway

to provide better control policies. Here, we construct an epidemic model for Rift Valley fever with vaccination

through fractional derivatives. Firstly, we present the proposed Rift Valley fever dynamics in the Caputo frame-

work. The basic knowledge of fractional calculus is used to determine the rudimentary properties of the proposed

fractional model, which include positivity, uniqueness, and boundedness of the solutions. We investigate our con-

structed model of Rift Valley fever for equilibria and determined the basic reproduction number of the system

through next-generation technique, indicated by R0. The stability results are established for the infection-fee

steady-state of the system. Numerical simulations are conducted and sensitivity analysis of R0 through partial

rank correlation coefficient (PRCC) method is carried out to show the importance of different parameters in R0.

Then the Rift Valley fever model is analyzed in the Atangana-Baleanu framework, furthermore, we present a nu-

merical scheme for the proposed fractional model to illustrate the solution pathway of the model. We notice that
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the fractional-order dynamics can explain the complex system of Rift Valley fever infection more precisely and

accurately rather than the integer-order dynamics. It is also observed that the Atangana-Baleanu operator provides

more accurate results than the Caputo fractional derivative.

Keywords: rift valley fever; mathematical model; fractional calculus; sensitivity analysis; iterative scheme; nu-

merical simulations.
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1. INTRODUCTION

It is prominent that infectious diseases bring unbelievable damage to humans and animals

life, these infections are produced by parasites, bacteria, fungi, viruses and other microorgan-

isms with the pathogen. To be more specific, these infections transfer to animals and humans

with different direct and indirect route. Number of data is available for Hydrophobia, Dengue

infection, Measles, Plague, and for some other diseases, which transfer through mediums. Rift

Valley Fever (RVF) virus is a significant vector-borne viral zoonosis in Kenya and North Africa,

which spread through mosquitoes and is from the Phlebovirus genus in the Bunyaviridae family.

In the 1930’s [1], it was found in Kenya for the first time. It transfers by drinking the milk of

infected animals, touching the blood of an infected animal, breathing near infected animals, and

by the bite of mosquitoes. RVF may affect animals such as camels goats, sheep and cows [2, 3].

It is eminent that modeling of biological processes and infection diseases explore the dy-

namics of these infections and produce accurate information which is helpful for its prevention

[4, 5, 6]. Several dynamical models for Rift Valley fever has been introduced in the literature to

observe the transmission behavior of Rift Valley fever and to predict better control policies and

better suggestions for the medications of the infection. Some mathematical models are studied

in [7, 8, 9, 10, 11] to visualize the transmission pathway of RVF. Gaff et al. [12] introduced a

dynamical model for Rift Valley fever and investigated the stability of the disease-free equilib-

ria of the system. A Rift Valley fever model was introduced by Saul et al. [13] with the human

host. They determined the threshold parameter R0 of the system and established results for the

local stability of the equilibria of the proposed system. Xue et al. [14] constructed a dynamical

model of RVF in the framework of ODE’s to assess disease spread in space and time. Recently,

a three patch model for Rift Valley fever with spatial assumptions was formulated by Gao et al.
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[15] to conceptualize the transmission of infection. They determined the threshold dynamics

for each patch and visualize the dynamics.

Control through vaccination and treatment play a dominant role to protect from infectious

diseases [16, 17]. Numerous vaccine has been developed to protect from infectious disease in

endemic regions. It is true that all these vaccines are not completely effective and have some

side effects, some are expensive. In the case of Rift Valley fever, the vaccine sometimes bring

abnormalities in the pregnant animals [18]. A vaccinated model was introduced by Farida et al.

[19] to investigate the role of vaccination in ruminant animals and some other models are present

with continuous and impulsive vaccinations [20, 21]. However, the true role of vaccination is

not completely explored in RVF’s transmission to understand the dynamics of RVFV.

It is notorious that fractional-order systems offer more reliable, deeper, precious and accurate

information about the dynamics of a system [22, 23, 24]. Description of memory and heredi-

tary property make it superior to integer-order models [25]. Moreover, fractional-order models

can easily explore and demonstrate the dynamics between two points. Existing studies predict

that various theories and ideas regarding fractional derivatives have been introduced and devel-

oped, for instance, the fundamental notion and idea of FO derivative is introduced in [25]. In

recent years, novel FO derivatives has been developed in [26, 27, 28]. These new ideas have

been effectively utilized in modeling real-world problem in different fields, such as physics,

engineering, biology and several other areas [28, 29, 30]. The classical FO derivative cannot

describe properly the crossover and non-local dynamical structure of several naturalistic prob-

lems due to its singular kernel. The fractional framework can address these issues and produces

accurate results in the modelling of different problem. Therefore, motivated by the accurate

results of the above, we opt to conceptualize and explore the dynamics of RFV with the effect

of vaccination in the framework of fractional derivatives.

The further article is structured as: We put forward a brief summary of the rudimentary con-

cepts of fractional calculus in section two. In the third section, we construct a fractional-order

model for Rift Valley fever with vaccination in the Caputo sense, in addition, we proved basic

results for our proposed fractional-order model. We establish stability results for the steady-

state in the fourth section and carried out sensitivity analysis through the PRCC technique to
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point out the importance of the input parameter on the output of R0. Then, we present the

Rift Valley fever dynamics in Atangana-Baleanu sense in Section 5 and establish the existence

and uniqueness result. Moreover, a numerical scheme is presented to demonstrate the solution

pathway of the proposed fractional dynamics. In the last of the article, ending remarks and

conclusion of the overall analysis is presented.

2. FRACTIONAL CONCEPTS

In this section, we introduce some basic concepts and results of fractional calculus, which

will be used in further analysis of the fractional-order Rift Valley fever model.

Definition 1. Let g : R+→ R , the fractional integral of g is mentioned below

Iϑ
t (g(t)) =

1
Γ(ϑ)

∫ t

0
(t− y)ϑ−1g(y)dy.(1)

where ϑ indicates the order of fractional integral and Γ represents the Gamma function.

Definition 2. Let g be a function, then the fractional derivative of g of order ϑ in the Caputo

form is given by

C
a Dϑ

t (g(t)) = In−ϑ Dng(t) =
1

Γ(n−ϑ)

∫ t

a
(t− y)n−ϑ−1gn(y)dy,(2)

where n−1 < ϑ < n,n ∈ N.

Let η1,η2 be two positive numbers, then the Mittag-Leffler function is as

Eη1,η2(s) =
k=∞

∑
k=0

sk

Γ(η1k+η2)
.(3)

Let C
0 Dϑ

t be the CFD of order ϑ , then its laplace transform is define by

L[C0 Dϑ
t g(t)] = uϑ G(u)−

n−1

∑
k=0

gk(0)uϑ−k−1,(4)

further, for the function tη2−1Eη1,η2(±ωtϑ ), the laplace transform is given by

(5) L[tη2−1Eη1,η2(±ωtϑ )] =
uη1−η2

uη1±ω
.

The following equation hold true by Mittage-Leffler function given in [31]:

Eη1,η2(s) = s.Eη1,η1+η2(s)+
1

Γ(η2)
.
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Lemma 1. [32]. Let us define a function g : R+×R4→ R4, which fulfills the conditions:

• The function g(t,Y (t)) is Lebesgue measurable regarding t in R+;

• The function g(t,Y (t)) is continuous regarding Y (t) on R4 ;

• The function ∂g(t,Y (t))
∂Y is continuous regarding Y (t) on R4;

• and ‖g(t,Y (t))‖ ≤ h̄+ℵ‖Y‖,∀t ∈ R+,Y ∈ R4, where h̄,ℵ are positive constants.

Then the fractional order system

C
a Dϑ

t Y (t) = g(t,Y (t)),

Y (0) = Y0,

where 0 < ϑ ≤ 1, have a unique solution.

Lemma 2. [33]. Let a function g(t) ∈C[r,s] such that C
r Dϑ

t g(t) ∈C[r,s] for ϑ ∈ (0,1], then we

have

g(t) = g(r)+
1

Γ(ϑ)

C

r
Dϑ

t g(ε)(t− r)ϑ , r < ε < t,∀t ∈ (r,s].

Remark 3. Let a function g ∈C[r,s], such that C
r Dϑ

t g(t) ∈C[r,s] for ϑ ∈ (0,1]. Then by Lemma

(2) if C
r Dϑ

t g(t) ≤ 0, ∀ t ∈ (r,s), then g(t) is non-increasing function for all t ∈ [r,s], and if

C
r Dϑ

t g(t)≥ 0, ∀ t ∈ (r,s), then g(t) is non-decreasing function for all t ∈ [r,s].

Definition 3. Assume a function g in a manner that g ∈H1(u,v), v > u, and ϑ ∈ [0,1], then the

fractional derivative through Atangana-Baleanu (AB) is defined as

ABC
u Dϑ

t g(t) =
B(ϑ)

1−ϑ

∫ t

u
g′(κ)Eϑ

(
−ϑ

(t−κ)ϑ

1−ϑ

)
dκ.

Definition 4. The integral of AB derivative for a function g is denoted by ABC
u Iϑ

t g(t) and is

defined as

ABC
u Iϑ

t g(t) =
1−ϑ

B(ϑ)
g(t)+

ϑ

B(ϑ)Γ(ϑ)

∫ t

u
g(κ)(t−κ)ϑ−1dκ.

Evidently, the initial function achieved as the order ϑ tends to 0.

Theorem 4. Assume a function g in a way that g ∈C[u,v], then the below inequality satisfies

[27]:

‖ABC
u Dϑ

t (g(t))‖<
B(ϑ)

1−ϑ
‖g(t)‖,
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where

‖g(t)‖= maxu≤t≤v|g(t)|.

Moreover, the Lipschitz condition in the Atangana-Baleanu Caputo sense is

‖ABC
u Dϑ

t g1(t)− ABC
u Dϑ

t g2(t)‖< σ1‖g1(t)−g2(t)‖.

Theorem 5. [27]. Assume the fractional differential equation of the form

ABC
u Dϑ

t g(t) = w(t),

has a unique solution given by

g(t) =
1−ϑ

B(ϑ)
w(t)+

ϑ

B(ϑ)Γ(ϑ)

∫ t

u
w(κ)(t−κ)ϑ−1dκ.

3. MODEL FORMULATION

In structure of the model, the total vector size M (female mosquitoes) is categorized into (Sm)

susceptible and (Im) infected compartments, while the total population of ruminant Nr is cate-

gorized into (Sr) susceptible, (Vr) vaccinated, (Ir) infected, and (Rr) recovered compartments.

The recruitment rate of the ruminant population and female mosquitoes are indicated by Πr

and Πm, respectively. We denote the natural death rate of ruminant by dr and the natural death

rate of mosquitoes by dm, moreover, the disease-induced death rate is indicated by δ and the

rate of recovery is denoted by γ . We consider that a fraction v of the susceptible population

moves to the vaccination class after vaccination. The transmission probability from animals to

vectors and from vectors to animals are given by βr and βm, respectively, while the efficacy

of vaccination is denoted by α and the biting rate of mosquitoes is represented by b. The

transmission dynamics of Rift Valley fever is given by

(6)



dSr
dt = Πr−bβrSrIm− vSr−drSr,

dVr
dt = vSr− (1−α)bβrVrIm−ρVr−drVr,

dIr
dt = bβrSrIm +(1−α)bβrVrIm− (dr + γ +δ )Ir,

dRr
dt = ρVr + γIr−drRr,

dSm
dt = Πm−bβmSmIr−dmSm,

dIm
dt = bβmSmIr−dmIm,
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with positive initial state values given by

Sm(0), Im(0),Sr(0),Vr(0), Ir(0),Rr(0),

where the fraction (bβrIv) indicates the infection rate per susceptible ruminant, while (bβmIm)

denotes the infection rate of per susceptible mosquitoes. As fractional-order models describe the

non-local behavior of biological systems and posses hereditary property, moreover, it provides

information about its past and present state for the future, therefore, we represent the dynamical

system (6) of RVF in the framework of fractional order Caputo’s derivative to conceptualize the

transmission of RVF in a better way. Then, the system of the fractional system is presented by

(7)



C
0 Dϑ

t Sr = Πr−bβrSrIm− vSr−drSr,

C
0 Dϑ

t Vr = vSr− (1−α)bβrVrIm−ρVr−drVr,

C
0 Dϑ

t Ir = bβrSrIm +(1−α)bβrVrIm− (dr + γ +δ )Ir,

C
0 Dϑ

t Rr = ρVr + γIr−drRr,

C
0 Dϑ

t Sm = Πm−bβmSmIr−dmSm,

C
0 Dϑ

t Im = bβmSmIr−dmIm,

where C
0 Dϑ

t indicates Caputo’s fractional derivative of order ϑ , the order ϑ indicates the index

of memory in the system. Moreover, the total size of both the species are given by M = Sm+ Im

and N = Sr +Vr + Ir +Rr. Adding the last two equations, we get

C
0 Dϑ

t (Sm + Im)≤Πm−dm(Sm + Im),

solving this inequality, we get

(
Sm(t)+ Im(t)

)
≤ (Sm(0)+ Im(0))Eϑ ,1(−dmtϑ )+Πmtϑ Eϑ ,ϑ+1(−dmtϑ ),

by asymptotic behaviour of Mittag-Leffler function [34], we obtain

(
Sm(t)+ Im(t)

)
≤ Πm

dm
.
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As a result, Nm(t)→ Πm
dm

= N̂m(t) as time approaches ∞. Then the fractional order systems (7)

of Rift Valley fever takes the form

(8)



C
0 Dϑ

t Sr = Πr−bβrSrIm− vSr−drSr,

C
0 Dϑ

t Vr = vSr− (1−α)bβrVrIm−ρVr−drVr,

C
0 Dϑ

t Ir = bβrSrIm +(1−α)bβrVrIm− (dr + γ +δ )Ir,

C
0 Dϑ

t Im = bβm(N̂m− Im)Ir−dmIm.

In Caputo’s form, the derivative of constant is equal to zero which is another advantage to

make the system more reliable and flexible for analysis. Next, we will analyze the biologically

feasible region of the fractional-order dengue model (8).

Theorem 6. The closed set Ω = {(Sr,Vr, Ir, Im) ∈ R4
+ : 0≤ Sr +Vr + Ir ≤ K1,0≤ Im ≤ K2} is a

positive invariant set for the proposed fractional-order system (8).

Proof 6 To prove that the system of equations (8) has a non-negative solution, the system of

equations (8) implies

(9)



C
0 Dϑ

t Sr |Sr=0 = Πm > 0,
C
0 Dϑ

t Vr |Vr=0 = vSr > 0,
C
0 Dϑ

t Ir |Ir=0 = bβrSrIm +(1−α)bβrVrIm ≥ 0,
C
0 Dϑ

t Im |Im=0 = bβmSmIr ≥ 0.

Thus, the fractional system (8) has non-negative solutions. In the end, from the first three

equations of the fractional system (8), we obtain

C
0 Dϑ

t (Sr +Vr + Ir) ≤ Πr−drSr−drVr− Ir(dr +δ ),

≤ Πr−W (Sr +Vr + Ir)(10)

where W = min(dr,δ +dr). Solving the above inequality, we obtain(
Sr(t)+Vr(t)+ Ir(t)

)
≤
(

Sr(0)+Vr(0)+ Ir(0)−
Πr

W

)
Eϑ (−W tϑ )+

Πr

W
,

so by the asymptotic behaviour of Mittag-Leffler function [34], we obtain

(Sr(t)+Vr(t)+ Ir(t)
)
≤ Πr

W
∼= K1,
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taking the same steps for the last equation of system (8), we get Im ≤ Πr
dm
∼= K2. Hence, the

closed set Ω is a positive invariant region for the fractional-order Rift Valley Fever model (8).

Theorem 7. The proposed fractional-order Rift Valley Fever system of equations (8) has a

unique solution.

Proof 7 For the required statement of the theorem, we first prove that the fractional system

(8) has a unique solution for all initial conditions in R4. We consider z = (z1,z2,z3,z4), where

z1 = Sr,z2 = Vr,z3 = Ir, and z4 = Im. Clearly, the first three conditions of Lemma (1) are hold

true by the vector function g of the system (8). Next, to prove the last condition of Lemma (1),

we rewrite system (8) as

C
0 Dϑ

t z(t) = L+E1z(t)+E2z1(t)z(t)+E3z2(t)z(t)+E4z3(t)z(t)+E5z4(t)z(t),

where

L =


Πr

0

0

0

 ,E1 =


−(v+dr) 0 0 0

v −(ρ +dr) 0 0

0 0 −(dr + γ +δ ) 0

0 0 bβmN̂m −dm

 ,

E2 =


0 0 0 −bβr

0 0 0 0

0 0 0 0

0 0 0 0

 ,E3 =


0 0 0 0

0 0 0 −(1−α)bβr

0 0 0 0

0 0 0 0

 ,

E4 =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −bβm

 ,E5 =


0 0 0 0

0 0 0 0

bβr (1−α)bβr 0 0

0 0 0 0

 .

Symbolize the above

g(t,z(t)) = L+E1z(t)+E2z1(t)z(t)+E3z2(t)z(t)+E4z3(t)z(t)+E5z4(t)z(t),
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and taking norm, we get

‖h(t,z(t))‖

= ‖L+E1z(t)+E2z1(t)z(t)+E3z2(t)z(t)+E4z3(t)z(t)+E5z4(t)z(t)‖

≤ ‖L‖+‖E1‖‖z(t)‖+‖E2‖‖z1(t)‖‖z(t)‖+‖E3‖‖z2(t)‖‖z(t)‖+‖E4‖‖z3(t)‖‖z(t)‖

+‖E5‖‖z4(t)‖‖z(t)‖

≤ ‖L‖+‖E1‖‖z(t)‖+‖E2‖‖z(t)‖+‖E3‖‖z(t)‖+‖E4‖‖z(t)‖+‖E5‖‖z(t)‖

= ‖L‖+
(
‖E1‖+‖E2‖+‖E3‖+‖E4‖+‖E5‖+‖E6‖

)
‖z(t)‖

= L+ h̄‖z(t)‖.

Hence, the requirements of Lemma (1) are fulfilled, therefore the system of equations (8) of

Rift Valley fever has a unique solution.

4. ANALYSIS OF THE MODEL

Here, we will investigate the fractional-order system of Rift Valley fever for disease-free and

endemic steady-state. To obtain the infection-free steady-state, we set the fractional derivative
C
0 Dϑ

t Sr,
C
0 Dϑ

t Vr,
C
0 Dϑ

t Ir, and C
0 Dϑ

t Im to zero of the fractional system (8) without infection, and get

E0(S0
r ,V

0
r , I

0
r , I

0
m) =

(
Πr

v+dr
,

vΠr

(v+dr)(ρ +dr)
,0,0

)
.

Further, we will use the technique presented presented in [35, 36] for the reproduction number,

which is calculated as

F =

 bβrSrIm +(1−α)bβrVrIm

bβm(N̂m− Im)Ir

and V =

 (dr + γ +δ )Ir

dmIm

 ,
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because there are two infected compartments in the system, which further implies

F =

 0 bβrS0
r +(1−α)bβrV 0

r

bβmN̂m 0

and V =

 (dr + γ +δ ) 0

0 dm

 ,
which gives

FV−1 =

 0
(

bβrS0
r+(1−α)bβrV 0

r
dm

)
bβmN̂m

(dr+γ+δ ) 0

 .
We denote the basic reproduction number of the fractional RVF model by R0, and is obtained

through next-generation technique as

ρ(FV−1) =

√
bβmN̂m

(dr + γ +δ )

(
bβrS0

r +(1−α)bβrV 0
r

dm

)
,

R0 =

√
bβmN̂m

dm

(
bβrS0

r +(1−α)bβrV 0
r

(dr + γ +δ )

)
.

Next, we assume a fractional-order linear homogenous system of the following form

(11)
C
0 Dϑ

t y(t) = By(t),

y(0) = y0,

where B ∈ Mm×m(R) and 0 < ϑ ≤ 1. The following theorems are on the stability of linear

homogenous system (11).

Theorem 8. [42]. The origin of the fractional dynamical system (11) is asymptotically stable if

and only if | arg(λi) |> ϑπ

2 is fulfilled for all eigenvalues λi of matrix B.

Let us consider a general fractional order system

(12)
C
0 Dϑ

t y(t) = g(y),

y(0) = y0,

where 0 < ϑ ≤ 1 and g : D→ Rm with D⊂ Rm.

Theorem 9. [43]. The steady-state of fractional system (12) is locally asymptotically stable

(LAS) if | arg(λi) |> ϑπ

2 for all eigenvalues λi’s of g(y) at steady state, otherwise unstable.

Theorem 10. The infection-free steady-state of the fractional-order system (8) is LAS if R0 < 1,

and is unstable in the other circumstances.
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Proof 10 To obtain the demanded result for the fractional system (8), we take the Jacobian

matrix of the system at infection-free steady-state as

J(E0) =


−(v+dr) 0 0 −bβrS0

r

v −(ρ +dr) 0 −(1−α)bβrV 0
r

0 0 −(dr + γ +δ ) bβrS0
r +(1−α)bβrV 0

r

0 0 bβmN̂m −dm

 .

We can easily determine that λ = −(ρ + dr) is the first eigenvalue of the above J(E0) and the

remanning eigenvalues are the eigenvalues of the following

J1(E0) =


−(v+dr) 0 −bβrS0

r

0 −(dr + γ +δ ) bβrS0
r +(1−α)bβrV 0

r

0 bβmN̂m −dm

 ,
the second eigenvalue is λ = −(v+ dr) and the remaining are the eigenvalues of the below

Jacobian matrix

J2(E0) =

 −(dr + γ +δ ) bβrS0
r +(1−α)bβrV 0

r

bβmN̂m −dm

 .
To prove that the remaining eigenvalues of the Jacobian have negative real parts, we will prove

that Tr(J2)< 0 and DetJ2 > 1 for R0 less than one. It is obvious that Tr(J2)< 0, next we have

to check the second case

DetJ2 = (dr + γ +δ )dm−bβmN̂m

(
bβrS0

r +(1−α)bβrV 0
r

)
this implies that

DetJ2 = (dr + γ +δ )dm

[
1− bβmN̂m

dm

(
bβrS0

r +(1−α)bβrV 0
r

(dr + γ +δ )

)]
.

Thus the DetJ2 > 0 for R0 less than one, and hence the infection-free equilibrium is locally

asymptomatically stable.

Theorem 11. The infection-free equilibrium of the fractional-order system (8) is GAS without

vaccination, if R0 < 1.



FRACTIONAL-ORDER DYNAMICS OF RVFV IN RUMINANT HOST WITH VACCINATION 13

Proof 11 Let υ = 0, and (Sr,Vr, Ir, Im) be the solution of system (8) with suitable initial

conditions (Sr(0),Vr(0), Ir(0), Im(0)) in Ω. Here, it is clear that our proposed system has only

one equilibrium E0 on the boundary of Ω. Therefore, to achieve the target, it is enough to prove

that the solution (Sr,Vr, Ir, Im) tends to the infection-free equilibrium as time tends to infinity.

Then the dynamical system of Rift Valley fever implies that

(13)

 C
0 Dϑ

t Ir ≤ bβrS0
r Im +(1−α)bβrV 0

r Im− (dr + γ +δ )Ir,

C
0 Dϑ

t Im ≤ bβm(N̂m− Im)Ir−dmIm.

Taking the auxiliary system

(14)

 C
0 Dϑ

t x1 ≤ bβrS0
r x2 +(1−α)bβrV 0

r x2− (dr + γ +δ )x1,

C
0 Dϑ

t x2 ≤ bβm(N̂m− x2)x1−dmx2.

this further implies

C
0 Dϑ

t X = (F−V )X

the coefficient matrix of the above fractional system is F−V , and if R0 = ρ(FV−1)< 1, then

the eigenvalues of F−V lies in the left half-plane. As a result of this each positive solution of

the fractional system (13) fulfills lim
t→∞

x1 = 0, and lim
t→∞

x2 = 0 by Theorem 8. By the comparison

theory of fractional differential equations [44], we have lim
t→∞

Ir = 0 and lim
t→∞

Im = 0. Then from

the system (8), we have

(15)
C
0 Dϑ

t Ir = Πr− vSr−drSr,

C
0 Dϑ

t Im = vSr−ρVr−drVr,

let X = (Sr, Ir), then the above can be further converted into

C
0 Dϑ

t X = A−BX ,

having the solution

(16) X(t) = tϑ Eϑ ,ϑ+1(−Btϑ )A+Eϑ ,1(−Btϑ )X0,

taking the asymptotic behavior of Mittag-Leffler function [34] as

Eϑ ,1(−ωtϑ )≈t→∞

tϑ

ωΓ(1−ϑ)
; 0 < ϑ < 1 and ω > 0,
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also, the real parts of the eigenvalues of −B are negative, so it can be observed that X(t)→ X0

as t tends to infinity. Hence, the infection-free equilibrium of the system (8) is GAS without

vaccination.

Next, we will demonstrate the persistence of infection in the fractional-order system. It

describes the level of endemicity of infection in the system. Biologically speaking, the infection

persists in the system if the level of infected fraction stays at a higher level for t large enough.

4.1. Sensitivity analysis and numerical results. Sensitivity analysis is used for measuring

unpredictability in intricate models developed from real world-problems. The main goal of

this analysis is to detect and measure the influence of input parameters on the output of the

system [45]. To be more specific, it is used to know how the input parameters and initial

values contribute to the output of a system. Mostly, when there is a little uncertainty in initial

conditions and input parameters partial derivative of output functions are computed with respect

to the input factors around the base values. This method is named as the local sensitivity analysis

and relies on the variations of parameters close to the base values. This technique is not most

suitable for epidemiological models due to the uncertainty in the input of the system. Therefore,

global sensitivity analysis is preferred to perform this analysis and to provide more accurate

results.
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FIGURE 1. Sensitivity test for input factors of R0 with PRCC outcomes.
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Here, we used the PRCC method [46] for sensitivity analysis to point out the input parameters

that highly influence the results of R0. It is an effective method and can successfully measure

the monotonic, nonlinear relationship between input and output values of the system. PRCC

analysis provides PRCC and p values for each factor involve therein, with which we can measure

the contribution of each factor. More specifically, the input factors with sizeable PRCC and

negligible p-values are considered to be highly effective factors in the system. In our analysis,

we investigate all the parameters presented in Table 1 to know their contribution to the outcomes

of R0 and listed all the associated PRCC and p-values provided by the PRCC significance test.

Figure 1 and Table 1 demonstrate that the parameters b and dm are highly influential input

factors with PRCC values 0.8790 and -0.7919, respectively. After that, the parameters βr and

βm are greatly affecting the outcomes of basic reproduction number with PRCC values 0.6727

and 0.5433, respectively. It implies that if we decrease the value b and increase the value

dm through control policies, we can highly control Rift Valley fever. To be more specific, by

controlling these factors, we can greatly decrease and prevent the level of new Rift Valley fever

cases. In Figure 2 and Figure 3, the effect of input factors on the threshold parameter R0 of the

proposed system is demonstrated numerically. We have shown the transmission probabilities

βr, βm and the biting rate of mosquitoes are critical factors which increase the level of infection

while the increase of input factor v decrease the threshold parameter which means that infection

can controlled through vaccination.

4.2. Numerical scheme for Caputo operator. Here in this part of the article, we will intro-

duce a numerical technique to illustrate the solution of the system in the Caputo sense (7). This

numerical technique has been presented in [47] and is given as follows

C
0 Dρ

t y(t) = g(t,y(t)),(17)

the above system (17) can be written in the following by applying the basic theory

y(t)− y(0) =
1

Γ(ρ)

∫ t

0
g(ζ ,y(ζ ))(t−ζ )ρ−1dζ ,(18)

which can be further converted into

y(tn+1)− y(0) =
1

Γ(ρ)

∫ tn+1

0
(tn+1− t)ρ−1g(t,y(t))dt,(19)
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Parameter Interpretation PRCC values p values

βr Transmission from mosquitoes to susceptible ruminants +0.6727 0.0000

βm Transmission from ruminants to susceptible mosquitoes +0.5433 0.0000

dr Host ruminants natural death rate -0.4841 0.0000

γ Recovery rate of host individuals -0.2101 0.0000

δ Disease induced death rate -0.2444 0.0000

α Efficacy of vaccine or strength of vaccine -0.1119 0.0004

v Vaccinated fraction of susceptible ruminants -0.2541 0.0000

ρ Recovery rate through vaccination +0.0726 0.0223

dm Vector mosquitoes natural death rate -0.7919 0.0000

b Biting rate of vector mosquitoes +0.8790 0.0000

TABLE 1. Sensitivity results of R0 with PRCC and corresponding p values.
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FIGURE 2. Illustration of the reproduction parameter R0 (a) with the variation

of biting rate b and transmission probability βr, (b) and with the variation of

vaccination rate v and transmission probability βm.

where t = tn+1, n ∈ N, and

y(tn)− y(0) =
1

Γ(ρ)

∫ tn

0
(tn− t)ρ−1g(t,y(t))dt.(20)

Equation (20) and (19) further implies that

y(tn+1) = y(tn)+
1

Γ(ρ)

∫ tn+1

0
(tn+1− t)ρ−1g(t,y(t))dt
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FIGURE 3. Illustration of basic reproduction number R0 (a) with the variation

transmission probability βr and ρ , (b) and with the variation of transmission

probability βr and βm.

− 1
Γ(ρ)

∫ tn

0
(tn− t)ρ−1g(t,y(t))dt.(21)

Let us assume the following

Bρ,1 =
1

Γ(ρ)

∫ tn+1

0
(tn+1− t)ρ−1g(t,y(t))dt,(22)

and

Bρ,2 =
1

Γ(ρ)

∫ tn

0
(tn− t)ρ−1g(t,y(t))dt.(23)

Here, we utilized lagrange approximation on the g(t,y(t)), the following is obtained

P(t) ' g(tn,yn)
t− tn−1

tn− tn−1
+g(tn−1,yn−1)

t− tn
tn−1− tn

=
g(tn,yn)

h
(t− tn−1)−

g(tn−1,yn−1)

h
(t− tn).(24)

By applying the above, we get the following

Bρ,1 =
g(tn,yn)

hΓ(ρ)

∫ tn+1

0
(t− tn−1)(tn+1− t)ρ−1dt

−g(tn−1,yn−1)

hΓ(ρ)

∫ tn+1

0
(t− tn)(tn+1− t)ρ−1dt.(25)
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After simplification, we obtain

Bρ,1 =
(2h

α
tα
n+1−

tρ+1
n+1

ρ +1

)g(tn,yn)

hΓ(ρ)

−
( h

ρ
tρ

n+1−
1

ρ +1
tρ+1
n+1

)g(tn−1,yn−1)

hΓ(ρ)
.(26)

In the same way

Bρ,2 =
1

Γ(ρ)

∫ tn

0
(tn− t)ρ−1

(g(tn,yn)

h
(t− tn−1)

−g(tn−1,yn−1)

h
(t− tn)

)
dt.(27)

This further implies that

Bρ,2 =
( h

ρ
tρ
n −

tρ+1
n

ρ +1

)g(tn,yn)

hΓ(ρ)

+
( 1

ρ +1
tρ+1
n

)g(tn−1,yn−1)

hΓ(ρ)
.(28)

To obtain the required approximate solution of the proposed Rift Valley fever fractional model

in Caputo framework, we substitute (27) and (28) in (21), and get the following

y(tn+1) = y(tn)+
g(tn,yn)

hΓ(ρ)

(2htρ

n+1

ρ
−

tρ+1
n+1

ρ +1
+

h
ρ

tρ
n −

tρ+1
n+1

ρ +1

)

+
g(tn−1,yn−1)

hΓ(ρ)

(
− h

ρ
tρ

n+1 +
tρ+1
n+1

ρ +1
+

tρ+1
n

ρ +1

)
.(29)

For the required approximate solution of the proposed fractional model, we use the above tech-

nique for the solution of our Rift Valley fever model in Caputo sense (7). In our numerical

simulations, we represent the dynamics of Rift Valley fever with the variation of fractional-

order ϑ in Figure. 4 and Figure. 5 in the Caputo framework. We observed that the infected

individuals can be controlled by controlling the fractional-order of the system. This means

that the fractional-order is a significant parameter for the control of Rift Valley fever and the

infection can be prevented through this parameter.
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Symbol Interpretation Values Reference

dr Ruminants natural death rate 0.000481 [37]

v Vaccination factor of susceptible ruminants to Vr 0.7 Assumed

γ Recovery rate of infected ruminants 0.0875 [38]

ϑ Fractional order or index of memory variable Assumed

b Biting rate of vectors 0.701 [39]

βr Transmission from mosquitoes to susceptible ruminants 0.14 [40]

α Efficacy of vaccine or strength of vaccine 0.6 Assumed

ρ Recovery through vaccination of ruminants host 0.5 Assumed

βm Transmission from ruminants to susceptible mosquitoes 0.35 [40]

dm Mosquitoes natural death rate 0.0166 [41]

Πr Recruitment rate of ruminant hosts Variable Assumed

Πr Recruitment rate of mosquitoes vectors Variable Assumed

TABLE 2. Description with values of input factors for Rift Valley fever

5. ATANGANA-BALEANU STRUCTURE OF THE MODEL

Here in this part of the paper, we will investigate the proposed dynamical model of Rift Valley

fever in Atangana-Baleanu fractional framework. The system of equation (6) in Atangana-

Baleanu framework can be represented as

(30)



ABC
0 Dϑ

t Sr = Πr−bβrSrIm− vSr−drSr,

ABC
0 Dϑ

t Vr = vSr− (1−α)bβrVrIm−ρVr−drVr,

ABC
0 Dϑ

t Ir = bβrSrIm +(1−α)bβrVrIm− (dr + γ +δ )Ir,

ABC
0 Dϑ

t Rr = ρVr + γIr−drRr,

ABC
0 Dϑ

t Sm = Πm−bβmSmIr−dmSm,

ABC
0 Dϑ

t Im = bβmSmIr−dmIm.

After this, fixed point theory is used to present the existence and uniqueness of the RVF model

(30) solution. Then the fractional model (30) can be written in the following way

ABC
0 Dϑ

t r(t) = U (t,r(t)),

r(0) = r0, 0 < t < T < ∞.
(31)
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In the above system (31), the vector function U is continuous and assume that z1 = Sr,z2 =

Vr,z3 = Ir,z4 = Rr,z5 = Sm and z6 = Im, moreover, the state variables are denoted by r(t) =

(z1,z2,z3,z4,z5,z6) and the vector function U is given in the following form

U =



U1

U2

U3

U4

U5

U6


=



Πr−bβrSrIm− vSr−drSr

vSr− (1−α)bβrVrIm−ρVr−drVr

bβrSrIm +(1−α)bβrVrIm− (dr + γ +δ )Ir

ρVr + γIr−drRr

Πm−bβmSmIr−dmSm

bβm(N̂m− Im)Ir−dmIm


,

with suitable conditions are given by r0(t) = (Sr(0),Vr(0), Ir(0), Iv(0)). In addition, the Lips-

chitz condition is fulfilled by U , and is given as

‖U (t,r1(t))−U (t,r2(t))‖ ≤ H ‖r1(t)− r2(t)‖.(32)

In the next step, the existence and uniqueness of the proposed Rift Valley fever system (30)

will be presented.

Theorem 12. The solution of Rift Valley fever system (30) in Atangana Baleanu(AB) framework

will be unique if the following condition holds true

(33)
(1−ϑ)H

ABC(ϑ)
+

ϑT ϑ
maxH

ABC(ϑ)Γ(ϑ)
< 1.

Proof 12 To prove the target, we use Definition (4) of fractional integral to the system (31),

and obtain the integral equation of the structure

r(t) = r0 +
(1−ϑ)U (t,r(t))

ABC(ϑ)
+

ϑ

ABC(ϑ)Γ(ϑ)

∫ t

0
(t−κ)ϑ−1U (κ,r(κ))dκ.(34)

Further, we take I = (0,T ), and Θ : C(I,R4)→ C(I,R4) is given by

Θ[r(t)] = r0 +
(1−ϑ)U (t,r(t))

ABC(ϑ)
+

ϑ

ABC(ϑ)Γ(ϑ)

∫ t

0
(t−κ)ϑ−1U (κ,r(κ))dκ,(35)

then (34) can be expressed in the following form

r(t) = Θ[r(t)].(36)
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Here, the norm ‖.‖I on I indicates the supremum norm and is given as

‖r(t)‖I = sup
t∈I
‖r(t)‖, r(t) ∈ C.(37)

It is evident that the ‖.‖I on C(I,R4) make a Banach space, moreover, the inequality mentioned

below can be smoothly realized that∥∥∥∥∫ t

0
K (t,κ)r(κ)dκ

∥∥∥∥≤ T‖K (t,κ)‖I‖r(t)‖I,(38)

in which K (t,κ) ∈ C(I2,R),r(t) ∈ C(I,R4) in order to enable

‖K (t,κ)‖I = sup
t,κ∈I
|K (t,κ)|.(39)

Applying the operator Θ defined in (36), we get the following

‖Θ[r1(t)]−Θ[r2(t)]‖I ≤
∥∥∥∥ (1−ϑ)

ABC(ϑ)
(U (t,r1(t))−U (t,r2(t))+

ϑ

ABC(ϑ)Γ(ϑ)

×
∫ t

0
(t−κ)ϑ−1(U (κ,r1(κ))−U (κ,r2(κ)))dκ

∥∥∥∥
I
.(40)

Furthermore, using Lipschitz condition (32) with the result in (38), the below is obtained after

calculations

‖Θ[r1(t)]−Θ[r1(t)]‖I ≤
[
(1−ϑ)H

ABC(ϑ)
+

ϑH

ABC(ϑ)Γ(ϑ)
T ϑ

max

]
‖r1(t)− r2(t)‖I.(41)

As a consequence of this, we get the following

‖Θ[r1(t)]−Θ[r1(t)]‖I ≤ D‖r1(t)− r2(t)‖I,(42)

in which

D =
(1−ϑ)H

ABC(ϑ)
+

ϑH

ABC(ϑ)Γ(ϑ)
T ϑ

max.

It is clear that if the condition in (33) holds true then the operator Θ will be contraction. This

implies that the fractional system (30) of Rift Valley fever has a unique solution.
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5.1. Numerical scheme for AB operator. In this section, we will propose a numerical scheme

for the numerical solution of the Rift Valley fever system (30). To do this, we first present a

numerical method for the proposed fractional model with the non-local and non-singular ker-

nel to illustrate the solution pathway. The recent developed iterative scheme [48] is used for

the fractional Rift Valley fever system (30). This iterative method is applied to our system in

the following way to obtain the approximate solution of AB operator. The proposed fractional

system (31) can be converted into the below integral form

r(t)− r(0) =
(1−ϑ)

ABC(ϑ)
U (t,r(t))+

ϑ

ABC(ϑ)×Γ(ϑ)

∫ t

0
U (κ,x(κ))(t−κ)κ−1dκ,(43)

where the time t = tl+1, l = 0,1,2, ..., we get the following

r(tl+1)− r(0) =
1−ϑ

ABC(ϑ)
U (tl,r(tl))+

ϑ

ABC(ϑ)×Γ(ϑ)

×
∫ tl+1

0
U (κ,r(κ))(tl+1−κ)ϑ−1dϑ ,

=
1−ϑ

ABC(ϑ)
U (tl,r(tl))+

ϑ

ABC(ϑ)×Γ(ϑ)

×
l

∑
j=0

∫ t j+1

t j

U (κ,r(κ))(tl+1−κ)ϑ−1dϑ .(44)

In the next step, we estimate U (κ,r(κ)) over the time interval [t j, t j+1], and use the following

interpolation

U (κ,r(κ)) ∼= U (t j,r(t j))
(t− t j−1)

h
−U (t j−1,r(t j−1))

(t− t j)

h
.(45)

putting in equation (44), we obtain the following

r(tl+1) = r(0)+
1−ϑ

ABC(ϑ)
U (tl,r(tl))+

ϑ

ABC(ϑ)×Γ(ϑ)

×
l

∑
j=0

(U (t j,r(t j))

h

∫ t j+1

t j

(t− t j−1)(tl+1− t)ϑ−1dt

−
U (t j−1,r(t j−1))

h

∫ t j+1

t j

(t− t j)(tl+1− t)ϑ−1dt
)
.(46)
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Finally, we obtain the approximate solution after simplification of the integral as

r(tl+1) = r(t0)+
1−ϑ

ABC(ϑ)
U (tl,e(tl))+

ϑ

ABC(ϑ)

l

∑
j=0[hϑU (t j,r(t j))

Γ(ϑ +2)
((l +1− j)ϑ (l− j+2+ϑ)− (l− j)ϑ (l− j+2+2ϑ))

−
hϑU (t j−1,r(t j−1))

Γ(ϑ +2)
((l +1− j)ϑ+1− (ϑ − j)ϑ (l− j+1+ϑ))

]
.(47)

As a result, we get the following approximate solution for our proposed fractional system

Atangana-Beleanu framework

Sr(tl+1) = Sr(t0)+
1−ϑ

ABC(ϑ)
U1(tl,r(tl))+

ϑ

ABC(ϑ)

l

∑
j=0[hϑU1(t j,r(t j))

Γ(ϑ +2)
((l +1− j)ϑ (l− j+2+ϑ)− (l− j)ϑ (l− j+2+2ϑ))

−
hϑU1(t j−1,r(t j−1))

Γ(ϑ +2)
((l +1− j)ϑ+1− (l− j)ϑ (l− j+1+ϑ))

]
,

Vr(tl+1) = Vr(t0)+
1−ϑ

ABC(ϑ)
U2(tl,r(tl))+

ϑ

ABC(ϑ)

l

∑
j=0[ f ϑU2(t j,r(t j))

Γ(ϑ +2)
((l +1− j)ϑ (l− j+2+ϑ)− (l− j)ϑ (l− j+2+2ϑ))

−
hϑU2(t j−1,r(t j−1))

Γ(ϑ +2)
((l +1− j)ϑ+1− (l− j)ϑ (l− j+1+ϑ))

]
,

Ir(tκ+1) = Ir(t0)+
1−ϑ

ABC(ϑ)
U3(tl,r(tl))+

ϑ

ABC(ϑ)

l

∑
j=0[hϑU3(t j,r(t j))

Γ(ϑ +2)
((l +1− j)ϑ (l− j+2+ϑ)− (l− j)ϑ (l− j+2+2ϑ))

−
hϑU3(t j−1,r(t j−1))

Γ(ϑ +2)
((l +1− j)ϑ+1− (l− j)ϑ (l− j+1+ϑ))

]
,

Rr(tl+1) = Rr(t0)+
1−ϑ

ABC(ϑ)
U4(tl,r(tl))+

ϑ

ABC(ϑ)

l

∑
j=0
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Γ(ϑ +2)
((l +1− j)ϑ (l− j+2+ϑ)− (l− j)ϑ (l− j+2+2ϑ))

−
f ϑU4(t j−1,r(t j−1))

Γ(ϑ +2)
((l +1− j)ϑ+1− (l− j)ϑ (l− j+1+ϑ))

]
,

Sm(tl+1) = Sm(t0)+
1−ϑ

ABC(ϑ)
U5(tl,r(tl))+

ϑ

ABC(ϑ)

l

∑
j=0[ f ϑU5(t j,r(t j))

Γ(ϑ +2)
((l +1− j)ϑ (l− j+2+ϑ)− (l− j)ϑ (l− j+2+2ϑ))

−
f ϑU5(t j−1,r(t j−1))

Γ(ϑ +2)
((l +1− j)ϑ+1− (l− j)ϑ (l− j+1+ϑ))

]
,

Im(tl+1) = Im(t0)+
1−ϑ

ABC(ϑ)
U6(tl,r(tl))+

ϑ

ABC(ϑ)

l

∑
j=0[ f ϑU6(t j,r(t j))

Γ(ϑ +2)
((l +1− j)ϑ (l− j+2+ϑ)− (l− j)ϑ (l− j+2+2ϑ))

−
f ϑU6(t j−1,r(t j−1))

Γ(ϑ +2)
((l +1− j)ϑ+1− (l− j)ϑ (l− j+1+ϑ))

]
.(48)

We will use the above numerical scheme (48) to investigate the results of the proposed AB frac-

tional model to illustrate the transmission pathway of Rift Valley fever. First, we demonstrate

the influence of fractional-order ϑ on the dynamics of dengue in the Figure. 6 and then compare

the results of fractional operators in the Figure. 7. In Figure. 6, we observed the influence of ϑ

on the system in Atangana-Baleanu framework, furthermore, we illustrated that the numerical

results of Atangana-Beleanu operator more accurate as compared to the other operator.

6. CONCLUSION

In this article, we structured an epidemic model for Rift Valley fever with vaccination through

the fractional derivative. We determined the essential properties of the proposed fractional-order

Rift Valley fever model through the basic knowledge of fractional calculus, which includes pos-

itivity, uniqueness, and boundedness of the solution. We investigate the our model of RVF for

equilibria and determined the basic reproduction number of the system through next-generation
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FIGURE 4. Illustration of the transmission pathway of hosts and vectors popu-

lation in Caputo’s framework with fractional-order ϑ = 1.0,0.8,0.6.
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FIGURE 5. Illustration of the transmission pathway of hosts and vectors popu-

lation in Caputo’s framework with fractional-order ϑ = 0.6,0.4,0.2.
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FIGURE 6. Illustration of the transmission pathway of hosts and vectors popu-

lation in Atangana-Baleanu framework with fractional-order ϑ = 0.3,0.6,0.9.
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FIGURE 7. Illustration of the time series of hosts and vectors populations with

Caputo and Atangana-Baleanu fractional derivatives, where the blue lines repre-

sents the dynamics of Rift Valley fever with Caputo and the red lines represents

with Atangana-Baleanu fractional derivatives.
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technique, indicated by R0. The stability results are established for the infection-fee steady-

state of the system. Moreover, the sensitivity of R0 is analyzed through the partial rank correla-

tion coefficient (PRCC) technique to show the importance of different input factors in R0. Then

the Rift Valley fever model is investigated in Atangana-Baleanu sense, in addition, a numerical

scheme for the mentioned fractional operators presented to demonstrate the solution pathway

of the model. We noticed that the fractional-order dynamics can explain the complex system of

Rift Valley fever infection more precisely and accurately rather than the integer-order dynamics.

It is also observed that the Atangana-Baleanu operator provides more accurate results than the

Caputo fractional operator.
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