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Abstract. Cancer and hepatitis are increasingly becoming a global threat and reducing the total workforce in the

world. Atangana-Baleanu in Caputo sense (ABC) is employed to examine the co-infection model of cancer and

hepatitis dynamics. The Banach space theory is used to establish the existence and uniqueness solutions of the

co-infected model. The stability analysis and reproductive number is investigated. Numerical simulation based

on Adams-Moulton rule is made use to obtain qualitative information on the co-infected model. The numerical

solution results suggest that the fractional order values and the chosen parameter values have influence on the

dynamics of cancer and hepatitis cells in the human body.
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1. INTRODUCTION

Cancer has become very dangerous to human race across the entire world. This disease may

be caused by human and environmental factors. Hepatitis of all types have been identified as

one of the main causes of cancer in the world. It can be stated that large number of people get

infected with cancer related problem through several factors. It is estimated that 90.5 million

people had cancer related disease over the globe leading to 8.8 million human death each year

[1–3]. Studies have shown that about 22% of cancer death may be related to hepatitis disease of

any type [1, 4] . The hepatitis family cause inflammation of the liver tissue which end up being

chronic or acute [3]. Hepatitis A and E are mostly contracted through contaminated food [5,6].

Hepatitis B can be obtained through sexual intercourse or though childbirth [1, 6]. Hepatitis C

is obtained from contaminated blood. For someone to be infected with hepatitis D, the person

must have been then infected with hepatitis B [1, 7].

Quality information about etiology of the co-infection would go a long way to help health

practitioner to make quality decision making [1]. There have been countless number of mathe-

matical models studies on cancer and hepatitis in the quest for providing qualitative information

in the context of integer. In recent times, non-integer models have gained serious attention to

researchers due to its quality predictions. Several fractional derivatives have been developed

and applied in real life problem and Atangana-Beleanu in Caputo sense based on non-local

and non-singular kernel [8–11]. This operator has the ability to shift from one function to one

another when stretched making it more accurate for predictions purposes [11] .

Baleanu et al. [12] used fractional optimal control to examine the best strategy for tumor-

immune surveillance with non-singular operator. The authors in [13] constructed a system

of partial differential equation to explore the dynamics of cancer tumor. Farman et al. [14]

developed a fractional derivative model with sole emphasis on vaccine as a strategy of con-

trolling cancer spread in the cells. Makhlouf et al. [15] investigated the role of CD4+T cells

in tumor-immune interactions. Shi et al. [16] explored the dynamics of hepatitis B virus with

holling II function response. Ahmed and El-Saka [5] developed a mathematical model on frac-

tional dynamics of hepatitis C in order to obtain some qualitative information about the disease.

Alzahrani and Khan [6] developed a hepatitis E mathematical model with optimal control for
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the purpose of establishing the best strategy in minimizing the spread of the disease. Saad et

al. [7] constructed a fractional mathematical model with emphasis on chronic hepatitis C virus

infection model with immune response. Saidalieva and Hidirova [17] presented a hepatitis D

virus mathematical model hinged on co-infection and super-infection with the aim of obtaining

some qualitative information on the disease.

Mtisi et al. [18] constructed a co-infection model of malaria and tuberculosis to investigate

the dynamics of the two diseases. Mukandavire et al. [19] developed a mathematical analy-

sis of a model for HIV-malaria co-infection and obtain some dynamical qualitative informa-

tion. Bonyah and Asiedu [20] used fractional derivative to study the dynamics of filariasis-

schistosomiasis co-infection and presented uniqueness and existence of solutions of the co-

infection model. Sanga et al. [21] developed mathematical model that examined the co-dynamics

of cervical cancer and HIV diseases and obtained reproduction number and numerical results

that presented some useful qualitative information. Moualeu et al. [22] constructed a co-

infection model of HIV and hepatitis and examined the dynamics of these disease and explored

numerical dynamical behavior of these diseases.

The aim of this work is to examine the uniqueness and existence of solution of co-infection of

cancer and hepatitis diseases in the context of Mittag-Leffler function and to present numerical

solution for qualitative information about the co-infection.

2. MATHEMATICAL MODEL FORMULATION

Mathematical modeling as a concept has been widely studied by many researchers [23–25].

The model is a modified version by Abiodun et al. [1] in which the total cells population N(t)

is partitioned into the following sub-populations of susceptible cells (X(t)), infected cancer

cells (Y (t)), infected cells with hepatitis virus (Z(t)), recovered cells from cancer (RY (t)) and

recovered cells from hepatitis virus (RZ(t)). The respective cells growth rate is denoted by ri and

K is the carrying capacity. α and ρ are disease induced death rate for cancer and hepatitis virus

correspondingly. γ and σ are the fractions of recovered cells from cancer and hepatitis virus

respectively that become susceptible cells. ω and φ are proportion of cells that recovered from

cancer and hepatitis virus in that order. The b and d parameters are the fraction of cells that are

infected with cancer and hepatitis virus correspondingly. The following nonlinear differential
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equation represents the interactions among the various compartments.

(1)

dX
dt = r1X

(
1− X

K

)
−bXY −dXZ +σRZ + γRY −µX ,

dY
dt = r2Y

(
1− Y

K

)
+bXY − (α +ω +µ)Y,

dZ
dt = r3Z

(
1− Z

K

)
+dXZ− (ρ +φ +µ)Z,

dRY
dt = ωY − (γ +µ)RY ,

dRZ
dt = φZ− (σ +µ)RZ.

with the following initial conditions

X0 = X(0),Y0 = Y (0),Z0 = Z(0),RY 0 = RY (0),RZ0 = RZ(0).

Definition 1. [8] The integral operator under the Atangana Baleanu-Caputo Sense is defined by

the following expression:

(2) ABCDχ

0,t [ f (t)] =
1−χ

B(χ)
f (t)+

χ

B(χ)Γ(χ)

∫ t

0
f (s)(t− s)χ−1ds.

Governing equations of the model. Taking into account the equation (2) to system (1) and

applying the ABC operator, we obtain the following:

(3)



ABCDχ

0,t [X(t)] = rχ

1 X
(

1− X
K

)
−bχXY −dχXZ +σ

χRZ + γ
χRY −µ

χX ,

ABCDχ

0,t [Y (t)] = rχ

2 Y
(

1− Y
K

)
+bχXY − (αχ +ω

χ +µ
χ)Y,

ABCDχ

0,t [Z(t)] = rχ

3 Z
(

1− Z
K

)
+dχXZ− (ρχ +φ

χ +µ
χ)Z,

ABCDχ

0,t [RY (t)] = ω
χY − (γχ +µ

χ)RY ,

ABCDχ

0,t [RZ(t)] = φ
χZ− (σ χ +µ

χ)RZ.

with

X(t),Y (t),Z(t),RY (t),RZ(t)≥ 0.
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2.1. Invariant Region. Let the total population at time t is represented by N(t), which satis-

fied,

N(t) = X(t)+Y (t)+Z(t)+RY (t)+RZ(t).

The equation (3) gives

dN
dt

= rχ

1 X
(

1− X
K

)
+ rχ

2 Y
(

1− Y
K

)
+ rχ

3 Z
(

1− Z
K

)
−α

χY −ρ
χZ−µ

χN(t).

Now, assuming that there is no disease induced death rate, i.e., αχ = 0 and ρχ = 0,

so that

dN
dt

= rχ

1 X
(

1− X
K

)
+ rχ

2 Y
(

1− Y
K

)
+ rχ

3 Z
(

1− Z
K

)
−µ

χN(t),

≤ rχ

1 X + rχ

2 Y + rχ

3 Z−µ
χN(t)

Now as t→ ∞, we obtain N ≤ rχ

1 X+rχ

2 Y+rχ

3 Z
µχ . We study (3) in the following closed set

∆ =

{
(X ,Y,Z,RY ,RZ) ∈ R5

+ : 0 < X ,Y,Z,RY ,RZ ≤
rχ

1 X + rχ

2 Y + rχ

3 Z
µχ

}
.

3. EXISTENCE AND UNIQUENESS CRITERIA

In this part, the existence of solutions of the cancer and hepatitis model (3) is considered

using fixed point techniques. In this regard, applying the ABC fractional integral operator on

Eq. (3), we obtain

(4)

X(t)−X(0) =
1−χ

B(χ)
K1(χ, t,X(t))+

χ

B(χ)Γ(χ)
×
∫ t

0
(t−ϑ)χ−1K1(χ,ϑ ,X(ϑ))dϑ ,

Y (t)−Y (0) =
1−χ

B(χ)
K2(χ, t,Y (t))+

χ

B(χ)Γ(χ)
×
∫ t

0
(t−ϑ)χ−1K2(χ,ϑ ,Y (ϑ))dϑ ,

Z(t)−Z(0) =
1−χ

B(χ)
K3(χ, t,Z(t))+

χ

B(χ)Γ(χ)
×
∫ t

0
(t−ϑ)χ−1K3(χ,ϑ ,Z(ϑ))dϑ ,
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RY (t)−RY (0) =
1−χ

B(χ)
K4(χ, t,RY (t))+

χ

B(χ)Γ(χ)
×
∫ t

0
(t−ϑ)χ−1K4(χ,ϑ ,RY (ϑ))dϑ ,

RZ(t)−RZ(0) =
1−χ

B(χ)
K5(χ, t,RZ(t))+

χ

B(χ)Γ(χ)
×
∫ t

0
(t−ϑ)χ−1K5(χ,ϑ ,RZ(ϑ))dϑ ,

For simplicity, we define functions Ki, and some constants ηi, i ∈ N5
1, below:

(5)

K1(χ, t,S(t)) = rχ

1 X
(
1− X

K

)
−bχXY −dχXZ +σ χRZ + γχRY −µχX ,

K2(χ, t,Y (t)) = rχ

2 Y
(
1− Y

K

)
+bχXY − (αχ +ωχ +µχ)Y,

K3 (χ, t,Z(t)) = rχ

3 Z
(
1− Z

K

)
+dχXZ− (ρχ +φ χ +µχ)Z,

K4 (χ, t,RY (t)) = ωχY − (γχ +µχ)RY ,

K5(χ, t,RZ(t)) = φ χZ− (σ χ +µχ)RZ,

and

η1 =

∥∥∥∥(rχ

1

(
1− X

K

)
+bχY +dχZ +µ

χ

)∥∥∥∥

η2 =

∥∥∥∥(rχ

2

(
1− Y

K

)
+bχX− (αχ +ω

χ +µ
χ)

)∥∥∥∥

η3 =

∥∥∥∥(rχ

3

(
1− Z

K

)
+dχX− (ρχ +φ

χ +µ
χ)

)∥∥∥∥
η4 =‖((γχ +µ

χ))‖

η5 =‖((σ χ +µ
χ))‖ .
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For proving our results, we assume the following assumption: (B) For the following con-

tinuous functions X ,X∗,Y,Y ∗,Z,Z∗,RY ,R∗Y ,RZ,R∗Z ∈ L[0,1], such that ‖X(t)‖ ≤L1,‖Y (t)‖ ≤

L2,‖Z(t)‖ ≤L3,‖RY (t)‖ ≤L4,‖RY (t)‖ ≤L5.

Theorem 1. The kernels ki, i ∈ N5 are satisfying the Lipschitz condition if the assumption B is

true and are contractions provided that ηi < 1 for every i ∈ N5.

Proof. First, we prove that K1(χ, t,S(t)) satisfies Lipschitz condition. For X(t) and X∗(t)

using the first Eq. (5), we have

‖K1(χ, t,X(t))−K1 (χ, t,X∗(t))‖= ‖rχ

1 X
(

1− X
K

)
−bχXY −dχXZ +σ

χRZ + γ
χRY −µ

χX

−
(

rχ

1 X∗
(

1− X∗

K

)
−bχX∗Y −dχX∗Z +σ

χRZ + γ
χRY −µ

χX∗
)
‖

≤
[

rχ

1

(
1− X

K

)
+bχY +dχZ +µ

χ

]
‖X−X∗‖

= η1‖X−X∗‖.

Second, we prove that K2(χ, t,Y (t)) satisfies Lipschitz condition. For Y (t) and Y ∗(t) using the

second Eq. (5), we have

‖K2(χ, t,Y (t))−K2 (χ, t,Y ∗(t))‖= ‖rχ

2 Y
(

1− Y
K

)
+bχXY − (αχ +ω

χ +µ
χ)Y

−
(

rχ

2 Y
(

1− Y
K

)
+bχXY ∗− (αχ +ω

χ +µ
χ)Y ∗

)
‖

≤
[

rχ

2

(
1− Y

K

)
+bχX +(αχ +ω

χ +µ
χ)

]
‖Y −Y ∗‖

= η2‖Y −Y ∗‖.

(6)

Third, we prove that K3(χ, t,Z(t)) satisfies Lipschitz condition. For Z(t) and Z∗(t) using the

third Eq. (5), we have
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‖K3(χ, t,Z(t))−K3 (χ, t,Z∗(t))‖= ‖rχ

3 Z
(

1− Z
K

)
+dχXZ− (ρχ +φ

χ +µ
χ)Z

−
(

rχ

3 Z∗
(

1− Z
K

)
+dχXZ∗− (ρχ +φ

χ +µ
χ)Z∗

)
‖

≤
[

rχ

3

(
1− Z

K

)
+dχX +(ρχ +φ

χ +µ
χ)

]
‖Z−Z∗‖

= η3‖Z−Z∗‖

(7)

Fourth, we prove that K4(χ, t,RY (t)) satisfies Lipschitz condition. For RY (t) and R∗Y (t) using

the fourth Eq. (5), we have

‖K4(χ, t,RY (t))−K4 (χ, t,R∗Y (t))‖= ‖ωχY − (γχ +µ
χ)RY

− (ωχY − (γχ +µ
χ)R∗Y )‖

≤ [(γχ +µ
χ)]‖RY −R∗Y‖

= η4‖RY −R∗Y‖

(8)

Fifth, we prove that K5(χ, t,RZ(t)) satisfies Lipschitz condition. For RZ(t) and R∗Z(t) using the

fifth Eq. (5), we have

‖K5(χ, t,RZ(t))−K5 (χ, t,Z∗(t))‖= ‖φ χZ− (σ χ +µ
χ)RZ

− (φ χZ− (σ χ +µ
χ)R∗Z)‖

≤ [(σ χ +µ
χ)]‖RZ−R∗Z‖

= η5‖RZ−R∗Z‖

(9)

Hence, all the kernels Ki, i ∈ N5 are satisfying Lipschitz condition, and they are contractions

with ηi < 1, i ∈ N5. This completes the proof.

Going in a recursive manner, the expressions in (4) yields
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(10)

Xn(t)−X(0) =
1−χ

B(χ)
K1(χ, t,Xn−1(t))+

χ

B(χ)Γ(χ)
×
∫ t

0
(t−ϑ)χ−1K1(χ,ϑ ,Xn−1(ϑ))dϑ ,

Yn(t)−Y (0) =
1−χ

B(χ)
K2(χ, t,Yn−1(t))+

χ

B(χ)Γ(χ)
×
∫ t

0
(t−ϑ)χ−1K2(χ,ϑ ,Yn−1(ϑ))dϑ ,

Zn(t)−Z(0) =
1−χ

B(χ)
K3(χ, t,Zn−1(t))+

χ

B(χ)Γ(χ)
×
∫ t

0
(t−ϑ)χ−1K3(χ,ϑ ,Zn−1(ϑ))dϑ ,

RYn(t)−RY (0) =
1−χ

B(χ)
K4(χ, t,RYn−1(t))+

χ

B(χ)Γ(χ)
×
∫ t

0
(t−ϑ)χ−1K4(χ,ϑ ,RYn−1(ϑ))dϑ ,

RZn(t)−RZ(0) =
1−χ

B(χ)
K5(χ, t,RZn−1(t))+

χ

B(χ)Γ(χ)
×
∫ t

0
(t−ϑ)χ−1K5(χ,ϑ ,RZn−1(ϑ))dϑ ,

together with X0(t) = X(0),Y0(t) = Y (0),Z0(t) = Z(0),RY0(t) = RY (0) and RZ0(t) = RZ(0).

When the successive terms difference is taken, we get

(11)

ΞX ,n(t) =Xn(t)−Xn−1(t) =
1−χ

B(χ)
(K1(χ, t,Xn−1(t))−K1(χ, t,Xn−2(t)))

+
χ

B(χ)Γ(χ)

∫ t

0
(t−ϑ)χ−1 (K1 (χ,ϑ ,Xn−1(ϑ)) −K1 (χ,ϑ ,Xn−2(ϑ)))dϑ

ΞY,n(t) =Yn(t)−Yn−1(t) =
1−χ

B(χ)
(K2(χ, t,Yn−1(t))−K2(χ, t,Yn−2(t)))

+
χ

B(χ)Γ(χ)

∫ l

0
(t−ϑ)χ−1 (K2 (χ,ϑ ,Yn−1(ϑ)) −K2 (χ,ϑ ,Yn−2(ϑ)))dϑ

ΞZ,n(t) =Zn(t)−Zn−1(t) =
1−χ

B(χ)
(K3(χ, t,Zn−1(t))−K3(χ, t,Zn−2(t)))

+
χ

B(χ)Γ(χ)

∫ t

0
(t−ϑ)χ−1 (K3 (χ,ϑ ,Zn−1(ϑ)) −K3 (χ,ϑ ,Zn−2(ϑ)))dϑ

ΞRY ,n(t) =RYn(t)−RYn−1(t) =
1−χ

B(χ)
(K4(χ, t,RYn−1(t))−K4(χ, t,RYn−2(t)))

+
χ

B(χ)Γ(χ)

∫ t

0
(t−ϑ)χ−1 (K4

(
χ,ϑ ,RYn−1(ϑ)

)
−K4

(
χ,ϑ ,RYn−2(ϑ)

))
dϑ

ΞRZ ,n(t) =Fn(t)−RZn−1(t) =
1−χ

B(χ)
(K5(χ, t,RZn−1(t))−K5(χ, t,RZn−2(t)))

+
χ

B(χ)Γ(χ)

∫ t

0
(t−ϑ)χ−1 (K5 (χ,ϑ ,Rn−1(ϑ)) −K5

(
χ,ϑ ,RZn−2(ϑ)

))
dϑ

It is vital to observe that Xn(t) = ∑
n
i=0 ΞX ,i(t), Yn(t) = ∑

n
i=0 ΞY,i(t), Zn(t) = ∑

n
i=0 ΞZ,i(t),

RYn(t) = ∑
n
i=0 ΞRY ,i(t), RZn(t) = ∑

n
i=0 ΞRZ ,i(t). Additionally, by using Eqs. (10)-(11) and

considering that ΞX ,n−1(t) = Xn−1(t)−Xn−2(t), ΞY,n−1(t) =Yn−1(t)−Yn−2(t), ΞZ,n−1(t) =
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Zn−1(t)− Zn−2(t), ΞRY ,n−1(t) = RYn−1(t)−RYn−2(t), ΞRZ ,n−1(t) = RZn−1(t)−RZn−2(t), we

reach

(12)

‖ΞX ,n(t)‖ ≤ 1−χ

B(χ)η1
∥∥ΞX ,n−1(t)

∥∥ χ

B(χ)Γ(χ)η1×
∫ t

0(t−ϑ)χ−1
∥∥ΞX ,n−1(ϑ)

∥∥dϑ

‖ΞY,n(t)‖ ≤ 1−χ

B(χ)η2
∥∥ΞY,n−1(t)

∥∥ χ

B(χ)Γ(χ)η2×
∫ t

0(t−ϑ)χ−1
∥∥ΞY,n−1(ϑ)

∥∥dϑ

‖ΞZ,n(t)‖ ≤ 1−χ

B(χ)η3
∥∥ΞZ,n−1(t)

∥∥ χ

B(χ)Γ(χ)η3×
∫ t

0(t−ϑ)χ−1
∥∥ΞZ,n−1(ϑ)

∥∥dϑ

‖ΞRY ,n(t)‖ ≤
1−χ

B(χ)η4
∥∥ΞRY ,n−1(t)

∥∥ χ

B(χ)Γ(χ)η4×
∫ t

0(t−ϑ)χ−1
∥∥ΞRY ,n−1(ϑ)

∥∥dϑ

‖ΞRZ ,n(t)‖ ≤
1−χ

B(χ)η5
∥∥ΞRZ ,n−1(t)

∥∥ χ

B(χ)Γ(χ)η5×
∫ t

0(t−ϑ)χ−1
∥∥ΞRZ ,n−1(ϑ)

∥∥dϑ

Now, the following theorem will be proved.

Theorem 2. Surmising that the following condition holds

(13)
1−χ

B(χ)
ηi +

χ

B(χ)Γ(χ)
bχ

ηi < 1, i = 1,2, . . . ,5.

Then, (3) has a unique solution for t ∈ [0,b].

Proof. It is shown X(t),Y (t),Z(t),RY (t) and RZ(t) are bounded functions. In addition, the

symbols K1,K2,K3,K4 and K5 hold for Lipchitz condition. Therefore, utilizing Eq. (12) together

with a recursive hypothesis, we arrive at

(14)

‖ΞX ,n(t)‖ ≤ ‖X0(t)‖
(

1−χ

B(χ)η1 +
χbχ

B(χ)Γ(χ)η1

)n

‖ΞY,n(t)‖ ≤ ‖Y0(t)‖
(

1−χ

B(χ)η3 +
χbχ

B(χ)Γ(χ)η2

)n

‖ΞZ,n(t)‖ ≤ ‖Z0(t)‖
(

1−χ

B(χ)η3 +
χbχ

B(χ)Γ(χ)η3

)n

‖ΞRY ,n(t)‖ ≤ ‖RY0(t)‖
(

1−χ

B(χ)η4 +
χbχ

B(χ)Γ(χ)η4

)n

‖ΞRZ ,n(t)‖ ≤ ‖RZ0(t)‖
(

1−χ

B(χ)η5 +
χbχ

B(χ)Γ(χ)η5

)n
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Thus, one can see that sequences satisfy and exist

‖ΞX ,n(t)‖→ 0, ‖ΞY,n(t)‖→ 0, ‖ΞZ,n(t)‖→ 0, ‖ΞRY ,n(t)‖→ 0, ‖ΞRZ ,n(t)‖→ 0

as n→ ∞. Moreover, from Eq. (14) and imposing the triangle inequality, for any k, we have

(15)

‖Xn+k(t)−Xn(t)‖ ≤ ∑
n+k
j=n+1 Z j

1 =
Zn+1

1 −Zn+k+1
1

1−Z1

‖Yn+k(t)−Yn(t)‖ ≤ ∑
n+k
j=n+1 Z j

2 =
Zn+1

2 −Zn+k+1
2

1−Z2

‖Zn+k(t)−Zn(t)‖ ≤ ∑
n+k
j=n+1 Z j

3 =
Zn+1

3 −Zn+k+1
3

1−Z3

∥∥RYn+k(t)−RYn(t)
∥∥≤ ∑

n+k
j=n+1 Z j

4 =
Zn+1

4 −Zn+k+1
4

1−Z4

∥∥RZn+k(t)−RZn(t)
∥∥≤ ∑

n+k
i=n+1 Z j

5 =
Zn+1

5 −Zn+k+1
5

1−Z5
,

with Zi =
1−χ

B(χ)ηi +
χ

B(χ)Γ(χ)b
χηi < 1 by hypothesis. Therefore, Xn,Yn,Zn,RYn and RZn can be

seen as a Cauchy sequences in the Banach space B. This has demonstrated that they are uni-

formly convergent [26]. Imposing the limit theorem in Eq. (11) as n→ ∞ affirms that the

limit of these sequences is the unique solution of (3). This establishes the existence of a unique

solution for Eq. (3) under the condition (13).

3.1. Basic reproductive number R0. The disease free equilibrium point of system (3) is de-

noted by E0, i.e

(16) E0 = (X0,Y 0,Z0,R0
Y ,R

0
Z) =

(
K(rχ

1 −µχ)

rχ

1
,0,0,0,0

)
.

The spread of diseases are simply associated with the basic reproduction number (R0). This

quantity presents an indication of the nature of the spread. If this threshold quantity is R0 < 1,

the disease will die out of the population. But if the threshold quantity is R0 > 1 then the disease

will persist in the population in the long run. To compute the basic reproduction number for
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this model, let (Y,Z) be the infected compartment, then it follows from system (3):

(17)


ABCDχ

0,t [Y (t)] = rχ

2 Y
(

1− Y
K

)
+bχXY − (αχ +ω

χ +µ
χ)Y,

ABCDχ

0,t [Z(t)] = rχ

3 Z
(

1− Z
K

)
+dχXZ− (ρχ +φ

χ +µ
χ)Z.

Using the next Generation Matrix Approach, the Jacobian matrix J for the above system at

the disease free equilibrium point E0 is given by

J =

rχ

2 +bχX0− (αχ +ωχ +µχ) 0

0 rχ

3 +dχX0− (ρχ +φ χ +µχ)

 .

Now decomposing the matrix J in the term of F and V i.e J = F−V we get

F =

rχ

2 +bχX0 0

0 rχ

3 +dχX0

 ,

and

V =

(αχ +ωχ +µχ) 0

0 (ρχ +φ χ +µχ)

 .

The basic reproduction number (R0) is the spectral radius of the of the matrix (FV−1) and

for the present model it is given by

R0Can =
rχ

1 rχ

2 +K(rχ

1 −µχ)bχ

rχ

1 (α
χ +ωχ +µχ)

,

and

R0Hep =
rχ

1 rχ

3 +K(rχ

1 −µχ)dχ

rχ

1 (ρ
χ +φ χ +µχ)

.

Also, the reproduction number cancer-hepatitis co-infection model denoted by R0CH , is given

by

R0CH = max{R0Can,R0Hep},

where R0Can and R0Hep are the two spectral radii indicating the R0 for cancer and hepatitis disease

in that order. Practically, R0Cen and R0Hep are the average rates of new infections caused by one

infected individual in a given period.
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3.2. Endemic equilibrium point. The endemic equilibrium point for the system (3) is de-

noted by E∗ = (X∗,Y ∗,Z∗,R∗Y ,R
∗
Z) for which the disease is endemic in the population (i.e. at

least one of Y ∗ and Z∗ is nonzero). The system (3) are rearranged to get X∗,Y ∗,Z∗,R∗Y and R∗Z .

This gives

(18)



X∗ =
(−L+Π)Krχ

2 rχ

2

2(γχrχ

2 rχ

3 +b2χK2rχ

3 +d2χK2rχ

2
),

Y ∗ =
K(rχ

2 +dχX∗− (αχ +ωχ +µχ)

rχ

2
,

Z∗ =
K(rχ

3 +dχX∗− (ρχ +φ χ +µχ)

rχ

3
,

R∗Y =
ωχK(rχ

2 +dχX∗− (αχ +ωχ +µχ)

rχ

2 (γ
χ +µχ)

,

R∗Z =
φK(rχ

3 +dχX∗− (ρχ +φ χ +µχ)

rχ

3 (σ
χ +µχ)

,

where

L =
bK(rχ

2 − (αχ +ωχ +µχ)

rχ

2
+

dK(rχ

3 − (ρχ +φ χ +µχ)

rχ

3
+µ

χ − σ χφ χdχK
rχ

3 (σ
χ +µχ)

− ωχγχbχK
rχ

2 (γ
χ +µχ)

and

Π =
√

A

A = L2 +4

(
γχrχ

2 rχ

3 +b2χK2rχ

3 +d2χK2rχ

2

Krχ

2 rχ

2

)(
σ χφ χK(rχ

3 − (ρχ +φ χ +µχ

rχ

3 (σ
χ +µχ)

+

ωχγχK(rχ

2 − (αχ +ωχ +µχ)

rχ

2 (γ
χ +µχ)

)
.

For

bχKrχ

2 +dχKrχ

3 + rχ

2 rχ

3 µ
χ <

rχ

2 σ χφ χdχK
(σ χ +µχ)

+
rχ

3 ωχγχbχK
(γχ +µχ)

+Kbχ(αχ +ω
χ +µ

χ)+Kdχ(ρχ +π
χ +µ

χ)

the positivity of the above equilibrium point (18) is assured.

4. LOCAL STABILITY

We prove the local stability of the system (3) of the disease free equilibrium state E0.
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4.1. Disease free equilibrium local stability.

Theorem 3. The disease free equilibrium (DFE) point E0 of the system (3) is locally asymptot-

ically stable if R0 < 1.

proof. Jacobian matrix of the system (3) at E0 is

J(E0) =



rχ

1 −
2X0

K −µχ −bχX0 −dχX0 γχ σ χ

0 a22 0 0 0

0 0 a33 0 0

0 ωχ 0 −(γχ +µχ) 0

0 0 φ χ 0 −(σ χ +µχ)


.(19)

where a22 = rχ

2 − (αχ +ωχ +µχ)+bX0,a33 = rχ

3 +dX0− (ρχ +φ χ +µχ).

The characteristic equation of J(E0) takes the following form:

[λ1 +(rχ

1 −
2X0

K
−µ

χ)][λ2 +(σ χ +µ
χ)][λ3 +(γχ +µ

χ)][λ4 +(rχ

2 − (αχ +ω
χ +µ

χ)+bX0)]

[λ5 +(rχ

3 +dX0− (ρχ +φ
χ +µ

χ))] = 0,

Since the three eigenvalues of the characteristic equation of J(E0) is negative.

i.e λ1 = (rχ

1 −
2(rχ

1−µχ )

rχ

1
−µχ), λ2 =−(σ χ +µχ) and λ3 =−(γχ +µχ).

Similarly λ4 = (rχ

2 − (αχ +ωχ +µχ)+bX0) is negative if

rχ

2 − (αχ +ωχ +µχ)+bK(rχ

1−µχ )

rχ

1
< 0, implies that

rχ

2 rχ

1 +bK(rχ

1 −µ
χ)< rχ

1 (α
χ +ω

χ +µ
χ), or

rχ

1 rχ

2 +K(rχ

1 −µχ)b
rχ

1 (α
χ +ωχ +µχ)

< 1.

By definition of

R0Can =
rχ

1 rχ

2 +K(rχ

1 −µχ)b
rχ

1 (α
χ +ωχ +µχ)

< 1.

Similarly λ5 = (rχ

3 +dX0− (ρχ +φ χ +µχ)) is negative

if (rχ

3 +d K(rχ

1−µχ )

rχ

1
− (ρχ +φ χ +µχ))< 0, implies that

(rχ

3 rχ

1 +dK(rχ

1 −µ
χ))< rχ

1 (ρ
χ +φ

χ +µ
χ), or

rχ

1 rχ

3 +K(rχ

1 −µχ)d

rχ

1 (ρ
χ +φ χ +µχ)

< 1.
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By definition

R0Hep =
rχ

1 rχ

3 +K(rχ

1 −µχ)d

rχ

1 (ρ
χ +φ χ +µχ)

< 1.

So R0 = max(R0Can,RHep) implies that R0 < 1.

This shows that the DFE point asymptotically stable if R0 < 1.

4.2. Numerical Scheme for Cancer and Hepatitis Model. The numerical scheme for the

model (2) based on the Adams-Moulton rule is given by [27]

(20) AB
0 I α

t [ f (tx+1)] =
1−α

B(α)

[
f (tx+1)− f (tx)

2

]
+

α

Γ(α)

∞

∑
z=0

[
f (tz+1)− f (tz)

2

]
ξ

α
z

where ξ α
z = (z+1)1−α − (z)1−α .

Using the above numerical scheme, we have

X(x+1)(t)−X(x)(t) = X(0)n(t)+ [
1−χ

B(χ)
[rχ

1 {
X(x+1)(t)−X(x)(t)

2
}{1−

X(x+1)(t)−X(x)(t)
2K

}

−bχ{{
X(x+1)(t)−X(x)(t)

2
}{

Y(x+1)(t)−Y(x)(t)
2

}}−dχ{{
X(x+1)(t)−X(x)(t)

2
}{

Z(x+1)(t)−Z(x)(t)
2

}}

+σ
χ{{

RZ(x+1)(t)−RZ(x)(t)
2

}}+ γ
χ{(

RY (x+1)(t)−RY (x)(t)
2

}}−µ
χ{{

X(x+1)(t)−X(x)(t)
2

}}]]

+
χ

B(χ)

∞

∑
z=0

ξ
χ
z [r

χ

1 {
X(z+1)(t)−X(z)(t)

2
}{1−

X(z+1)(t)−X(z)(t)
2K

}

−bχ{{
X(z+1)(t)−X(z)(t)

2
}{

Y(z+1)(t)−Y(z)(t)
2

}}−dχ{{
X(z+1)(t)−X(z)(t)

2
}{

Z(z+1)(t)−Z(z)(t)
2

}}

+σ
χ{{

RZ(z+1)(t)−RZ(z)(t)
2

}+ γ{
RY (z+1)(t)−RY (z)(t)

2
}}−µ

χ{{
X(z+1)(t)−X(z)(t)

2
}}].

...

RZ(x+1)(t)−RZ(x)(t) = RZ(0)n(t)+ [
1−χ

B(χ)
[φ χ{

Z(x+1)(t)−Z(x)(t)
2

}− (σ χ +µ
χ){

RZ(x+1)(t)−RZ(x)(t)
2

}]

+
χ

B(χ)

∞

∑
z=0

ξ
χ
z {φ χ{

Z(z+1)(t)−Z(z)(t)
2

}− (σ χ +µ
χ){

RZ(z+1)(t)−RZ(z)(t)
2

}}]
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4.3. Numerical results and discussions. This section examines the numerical simulation re-

sults based on numerical scheme as Section 4.2 for cancer and hepatitis cells model (3). The nu-

merical method employed on equation (3) hinged on Adams-Moulton Rule. The numerical sim-

ulation is undertaken making use of following parameter values as in [1], r1 = 0.4,r2 = 0.3,r3 =

0.00004,b= 0.01,d = 0.885,σ = 0.03,µ = 0.0002,α = 0.003,ρ = 0.0141,ω = 0.2,φ = 0.001.
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FIGURE 1. Numerical simulation for cancer and hepatitis cells co-infection

model (3) at χ = 1,0.9,0.80,0.75
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Figure 1 represents the numerical simulation results based on Mittag-Leffler Generalized

Function which is characterized by crossover property when stretched from one operator to one

another. The operator has a statistical representation making it more viable. Figure 1(a) is the

susceptible cells and as the fractional order χ derivative increases the number of susceptible

cells reduces. In Figure 1(b), the number of infected cancer cells increase as the fractional order

χ value increase. Figure 1(c) depicts hepatitis infected cells and the number of infected cells

increase as the fractional order derivative values. Figure 1(d) is the recovered cancer cells and

as the fractional order values increase more infected cancer cells are recovered. Figure 1(e) is

the recovered hepatitis cells and generally the number of recovered cells increase, however, as

the fractional order increase the number of recovered cells from hepatitis decrease. It is can be

seen that the fractional order derivative has influence on the dynamics of the spread of cancer

and hepatitis cells in the human body.

5. CONCLUSION

This paper explored the dynamics of cancer and hepatitis cells co-infection model in the

context of Mittag-Leffler Function. The uniqueness and existence of solutions were proved.

The stability analysis and reproductive number of the co-infection model were carried out.

Numerical solution based on parameter values in [1] employed to obtain qualitative information

about the co-infection. The graphical results indicated that the order of fractional derivative

and the chosen parameter have effect on the dynamics of the disease. The numerical results

obtained does not affect the artificial singularities as in Caputo operator. The crossover property

of Mittag-Leffler kernel enable the numerical results to be predicted accurately. The operator

can be employed to investigate other complex biological models.
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