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Abstract. We have proposed and analyzed an eco-epidemiological predator-prey interaction model having disease

in both the population with ratio-dependent functional response. The total population has been classified into

susceptible prey, infected prey, susceptible predator, and infected predator. The infection propagation is considered

directly proportional to the number of individuals come in to contact with one infected individual. The predation

ability of infected predator is neglected during the disease. The infection is considered to be weak infection in case

of predator. Predator can recover themselves due to their natural immune system or application of external curative

stimulants. Though such weak infections are not generally considered for study but these cannot be completely

ignored. The positivity of the solutions, the existence of various biologically feasible equilibrium points, their

stability are investigated. The numerical analysis is carried out with hypothetical set of parameters to substantiate

the analytical findings that our model exhibits. The oscillatory coexistence of the species which is very common

in nature is observed for disease free as well as coexisting system. The stability nature of the Hopf-bifurcating

periodic solutions of the disease free as well as coexisting equilibrium are determined by computing the Lyapunov

coefficients. Further, the system undergoes the Bogdanov-Takens bifurcation in two-parameter space around the

disease free as well as coexisting equilibrium. It is also observed that the system will be disease free through

proper predational strategies.

Keywords: epidemiological model; ratio-dependent functional response; local and global stability; Lyapunov

coefficient; generalised Hopf; Bogdanov-Taken bifurcation.

∗Corresponding author

E-mail address: ankurjyoti99@gmail.com

Received December 05, 2020
1



2 BHATTACHARJEE, KASHYAP, SARMAH, PAUL

2020 AMS Subject Classification: 92B05, 34A34, 37N25, 37G15, 37C29, 37M05, 37M10, 37M25.

1. INTRODUCTION

The study of the interaction between predator and prey population was first introduced by

Alfred J Lotka [1]. One of the important parts of predator-prey population modeling is the

mathematical formulation of predator-prey interaction, termed as a functional response. There

are several types of functional responses : Holling I-III type [2, 3]; Hassell–Varley type [4];

Beddington–DeAngelis type, introduced independently by Beddington [5] and DeAngelis et

al. [6] ; the Crowley–Martin type [7]; and the recent well-known ratio-dependence type by

Arditi and Ginzburg [8]. The ratio-dependent functional response is a subtype of predator-

dependent functional response. It is assumed that the prey eaten per predator per unit time is a

function of prey to predator ratio. For predator-prey interaction where predation involves serious

searching, the ratio-dependent predator-prey models become more appropriate compared to the

other types, for example, see [9]. The ratio-dependent models are, in fact, more flexible and

versatile for which we are interested in studying the dynamics of the predator-prey system with

this functional response.

The importance of the study of diseases in predator-prey species is essential because of

its effect on both the populations towards extinction. The interaction of the susceptible– in-

fected–recovered population has become an important subject of research after the work of Ker-

mack, and Mc Kendrick [10]. Anderson and May(1986)[11]; Hadeler and Freedman(1989)[12];

Venturino(1995)[13]; Chattopadhyay and Arino(1999)[14] have merged the scenario of epi-

demiology in prey-predator system. After those, diverse predator-prey ecological systems hav-

ing the disease in one or both types of species have been reported. Among them, the authors

find two types of systems.

In the first case, the prey-predator species, one is susceptible or vector to a disease that crosses

the species barrier and the other species become infected. Due to lack of immunity, the disease

becomes fatal to the other species [16, 15]. In the Pelican-Tilapia ecology of Salton sea [16], it

has been reported that tilapia, while dying of Vibrio infections, provides fatal doses of botulism

when Pelicans predate tilapia, which causes the death of pelicans, showing the infection cross-

ing the predator-prey barrier. However, in [16], the dynamic property of the infected predator
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(pelican) has been discussed implicitly. “Cross border” scenario has been considered explicitly

by Hadeler and Freedman[12], Anderson and May(1986)[11], Venturino(1995)[13], Latif et

al.[17], Hsieh and Hsiao[18]. In the article[18], Hsieh and Hsiao considered disease transmis-

sion while predating citing the example of transmission of avian influenza (H5N1) from aves

to human and then the pandemic spread of the disease among humans. In all these cases, the

disease crossing the barrier of species has been fatal for other species.

In the other case, the disease can not cross the species barrier, or one species is not responsible

for the disease spread to the other while predating. One cause may be the predator, say, is not

susceptible to the disease. Some natural examples are a marine planktonic system where both

phytoplankton (such as Cryptophyte) and zooplankton (such as Rotifers) are infected by some

viral disease [19]. Still the disease is not transmitted from one species to another. Many fish

related viral or bacterial disease does not cause any infection in human being. There have been

some initiatives in this category, in literature, having a disease in the prey but not in predator

[14, 20, 21, 22], both in the prey and predator but not “crossing the species-barrier” [19, 24, 23]

and having a disease in the predator species[25, 26] but not in prey. However, there may be a

third scenario in between. The disease is transmitted from one species to another but the disease

is curable in the latter. This kind of system is not discussed in the literature to the best of the

author’s knowledge. Some immunocompromised predators may develop a weak infection due

to high pathogen load, added by the stressed environment (in the case of fish) in some cases, but

ultimately recovered, showing that the predator is not apparently affected by the disease of prey.

This type of scenario is difficult to detect but cannot be ruled out. The recovery may be due

to natural immunity or the application of external curative stimulants. For example, Herring

(prey) can be infected with and carry the kidney disease bacterium Renibacterium Salmoni-

narum, which can cause a threat to Salmon (predator)[27]. The infection of this bacteria can

be cured through proper antibiotic therapy [28] in cultured aquatics or fish farm or laboratory.

Transmission of VHS virus Genotype IV is horizontal from fish to fish and likely by ingestion

of infected fish [29]. In the Japanese flounder (Paralichthys olivaceus: predator)-Japanese sand

lance (Ammodytes personatus: prey) ecosystem [30], both are susceptible to VHS virus [31].

Even fish has variable morbidity due to this deadly virus. Experimentally it is shown in [32]
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that shifting of water temperature to 200C immediately after VHS infection or maintaining the

water temperature at 200C can be considered as a control measure reducing the mortality to

0%. However, the virus can grow at that temperature. At 200C, the infection shows less clin-

ical sign [32] showing higher and quicker immunity response of Japanese flounder. We have

considered a prey-predator system as having a disease in prey, and the disease is transmitted

horizontally both in prey and predator but not vertically. The disease is also transmitted during

prey-predator interaction. Ratio dependent functional response has been considered in prey-

predator interaction. Although it creates a weak infection, the disease is not fatal, creating a

temporal reduction of survival ability in the case of a predator. We also assume that predator,

after recovery, does not become immune to the disease. This scenario may be seen in cultured

aquatics, fish farms, etc., where proper care of infected fish is done. The model is also applica-

ble to the scenario where an infected prey is a vector to the predator’s infectious disease. The

model is only comparable with the other eco epidemiological models having disease transmis-

sion while predating. Only a few models have been discussed in this case as per the author’s

knowledge [12, 13, 17, 18, 33]. Our model is different from the comparable models in terms of

functional response and disease-related mortality in predators.

The paper is organized as follows: In section 2, the model formulation has been discussed.

The proposed system’s boundedness, condition for the existence of equilibrium has been dis-

cussed in section 3. In section 4, the vanishing equilibrium’s nature and the stability condition of

other equilibrium have been discussed. In section 5, numerical simulation verifying the analyt-

ical results so obtained has been discussed. Besides these, some numerical bifurcation scenario

has been put forward in this section. A few comparisons of the considered system have been

made with the numerically simulated trajectory of its corresponding counterpart having time

delay (section 6). Finally, in section 7, a brief description of the outcomes obtained from the

current study is provided. For analytical computation, numerical simulation, etc., advanced

software like Mathematica, Matlab, MatCont have been used.

2. MODEL FORMULATION

To formulate the model we make the following assumptions:
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(1) Both the populations are divided into two categories, susceptible and infected. Total

prey population density is denoted by N, total predator population density is denoted

by P, the susceptible prey X , infected prey Y , the susceptible predator P1 and infected

predator P2. N = X +Y and P = P1 +P2.

(2) The susceptible prey population can reproduce in a logistic fashion while the infected

ones cannot reproduce. But the infected prey growth is due to the law of mass action.

Both the populations coexist with a carrying capacity K.

(3) Susceptible prey becomes infected when they interact with the infected one. The in-

fection propagation is directly proportional to the number of individuals coming in to

contact one infected individual due to horizontal transmission of the disease or preda-

tion. The susceptible population of both predator and prey is sufficiently large. The time

span for the existence of the model is relatively small, the disease transmission rate is

constant and assumed to be λ1,λ2, respectively. The infected predator population does

not breed, but this population’s growth factor is from the law of mass action.

(4) Both prey and predator population follow ratio-dependent functional response. This

functional response considers the fact that if P1 +P2→ ∞ then the functional response

value tends to pX
m (p = p′ case), i.e. if the predators become very large then the con-

sumption rate of the susceptible prey is pX
m , i.e. the prey will not vanish. This is because

there will be competition among predators to consume prey. The infected prey is unable

to recover while the infected predators are capable of recover or become immune with

a rate γ ′.

(5) The mortality due to infection in the prey population has been considered. The natural

mortality of the prey and predator has been viewed as dependent on respective carrying

capacity. The growth rate of susceptible predators P1 is proportional to their predation

of susceptible prey.

(6) Due to the self-recovery of the predators, the amount of susceptible species increases

by the law of mass action.

(7) Predation rates of both susceptible and infected species are different towards both the

prey species.
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(8) Both the susceptible and infected predators have different growth rates, say, δ and δ ′.

The disease transmission is not vertical.

Under the above assumptions, we have the following model equations:

dX
dT

= rX
(

1− X +Y
K

)
−λXY − (pP1 + p′P2)X

m(P1 +P2)+X +Y

dY
dT

= λXY − γY − (cP1 + c′P2)Y
m(P1 +P2)+X +Y

dP1

dT
= (δP1 +δ

′P2)

(
1− P1 +P2

X

)
−λ

′P1P2−
cαP1Y

m(P1 +P2)+X +Y
+ γ
′P2

dP2

dT
= λ

′P1P2 +
cαP1Y

m(P1 +P2)+X +Y
− γ
′P2

(1)

r = species growth rate of prey in the susceptible population.

K = carrying capacity of the ecosystem.

λ = disease transmission coefficient of prey.

p, p′ = searching rate of susceptible and infected predator towards susceptible prey.

c,c′ = searching rate of susceptible and infected predator towards infected prey.

m = a positive constant. γ = per capita death rate of infected prey(e.g say 10%)

δ =species growth rate of susceptible predator .

δ ′ =species growth rate of infected predator .

λ ′ = disease transmission coefficient of predator.

γ ′=conversion rate of infected to susceptible predator. ( if one predator takes f days to recover,

so in one day 1/ f = γ ′ of the pradator recovers.)

α = Infection transmission proportionality due to predation.

The system (1) is to be analyzed with the following conditions: X(0) > 0;Y (0) > 0;P1(0) >

0;P2(0)> 0

We further simplify the model by assuming that the disease affects both the predation and the

reproduction rate of infected predators temporarily till recovery. Hence for our model p′ = 0,

c′ = 0 and δ ′ = 0.
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Under the above assumptions our model becomes,

dX
dT

= rX
(

1− X +Y
K

)
−λXY − pP1X

m(P1 +P2)+X +Y

dY
dT

= λXY − γY − cP1Y
m(P1 +P2)+X +Y

dP1

dT
= δP1

(
1− P1 +P2

X

)
−λ

′P1P2−
cαP1Y

m(P1 +P2)+X +Y
+ γ
′P2

dP2

dT
= λ

′P1P2 +
cαP1Y

m(P1 +P2)+X +Y
− γ
′P2

(2)

with conditions: X(0)> 0;Y (0)> 0;P1(0)> 0;P2(0)> 0

In order to simplify the system we use the following variables,

t = rT,x = X/K,y = Y/K,z = P1/K,w = P2/K

Thus we obtain,

dx
dt

= x(−x− y+1)−a1xy− a2xz
m(w+ z)+ x+ y

dy
dt

= a1xy−b1y− b2yz
m(w+ z)+ x+ y

dz
dt

= u1z
(

1− z
x

)
−u3wz− u4zy

m(w+ z)+ x+ y
+u5w

dw
dt

= u3wz+
u4zy

m(w+ z)+ x+ y
−u5w

where, a1 = λK/r;a2 = p/r;b1 = γ/r;b2 = c/r

u1 = δ/r;u3 = λ ′k/r;u4 = cα/r;u5 = γ ′/r

with conditions: x(0)> 0;y(0)> 0;z(0)> 0;w(0)> 0.

3. MODEL ANALYSIS

Theorem 1. All the solutions of the system (2),which initiate in R+
4 are uniformly bounded.

Proof. From the first equation of system (2) we obtain, dx
dt ≤ x(1− x). By solving the differen-

tial inequality we get, limsup
t→∞

x(t)≤ 1 or x(t)≤ 1.

Now define a function, G(t) = x(t)+ y(t)+ z(t)+w(t) and then by taking the derivative along

the solution of system (2),we get
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dG
dt
≤ x(1− x)−b1y+u1z−u5w≤ x− (b1y−u1 +u5w)

where η = min{b1,u1,u5} then we get

dG
dt

= (1+η)x−ηG≤ (1+η)−ηG

Now, by using Gronwall lemma,

0 < G(t)≤ 1+η

η

(
e−ηt−1

)
−G(0)e−ηt

Thus G(t)≤ 1+η

η
as t→ ∞ that is independent of initial conditions and hence the system (2) is

bounded. Thus all the solutions of the system (2) are confined in the region.

Ω =

{
(x,y,z,w) : 0≤ x(t)+ y(t)+ z(t)+w(t)≤ 1+η

η
+ ε,∀ε > 0

}
�

3.1. EXISTENCE OF EQUILIBRIUM POINTS. The system (2) has equilibrium points

namely Ei, i = 0,1,2,3,4,5,6.....

(a) The vanishing equilibrium E0(0,0,0,0)

(b) The axial equilibrium point E1(1,0,0,0), which always exist

(c) The predator free equilibrium E2 =
(

b1
a1
,− b1−a1

a1(a1+1) ,0,0
)

.

which exists under the sufficient condition: a1 > b1

(d) The disease free equilibrium E3(x3,0,z3,0), where, x3 =
m+1−a2

m+1 ;z3 =
m+1−a2

m+1 .

E3 exist under the sufficient condition: m+1 > a2.

(e)The Infected prey free equilibrium: E4(x4,0,z4,w4) ,where

x4 =
u5

u3

z4 =
u5

u3

w4 =
u5 (u3 (a2−m−1)+(m+1)u5)

mu3 (u3−u5)

(3)
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3.1.1. Existence of the coexisting equilibrium point. Solving infected prey nullcline for w

and applying it to solve infected predator nulcline for y, one can obtain

(4) w =
−a1mxz−a1x2 +a1x(−y)+b1mz+b1x+b1y+b2z

m(a1x−b1)

(5) y =
b2 (u3z−u5)

(
a1(−m)xz−a1x2 +b1mz+b1x+b2z

)
(a1x−b1)(−a1mu4x+b1mu4 +b2u3z−b2u5)

Again using (4) and (5) and solving steady state equation of susceptible predator, for z, one may

obtain

(6) z = x

x can be obtained applying (4),(5),(6) from the equation

(7) A0x3 +A1x2 +A2x+A3 = 0

where, A0 = a1
(
−a1b2 (−a2u3 +b2(m+1)u3 +mu4)+a2a2

1(−m)u4−b2
2mu3

)
A1 = a2

1 (a2 (3b1mu4−b2u5)+b2 (b2(m+1)u5 +mu4))

+a1b2
(
−2a2b1u3 +b2 (u3 (b1(m+1)−1)+mu5)+2b1mu4 +b2

2u3
)
+b2

2u3 (b1m+b2)

A2 = a2b1 (b1 (b2u3−3a1mu4)+2a1b2u5)

−b2
(
b1 (b2 (u5 (a1(m+1)+m)−u3)+2a1mu4)+b2u5 (a1 (b2−1)+b2)+b2

1mu4
)

A3 = b1 (a2b1 +b2)(b1mu4−b2u5)

Theorem 2. The coexisting equilibrium point exists if

(a) 0 < x < 1,0 < b1 < a1x,0 < u3 <
u5
x ,

b2(x−1)
a1x−b1

+a2 < 0,b2 ≥ (a1x+1)(a1x−b1)
(a1+1)x

Or,

(b) 0 < x < 1,0 < b1 < a1x,0 < u3 <
u5
x ,

b2(x−1)
a1x−b1

+a2 < 0,a1x < b1 +b2,

b2 <
(a1x+1)(a1x−b1)

(a1+1)x ,
b2(a1(b1+b2−1)x+a2

1(−x2)+b2x+b1)
(b1−a1x)2 +a2 > 0

Proof. We show the existence of the tuple x = (x,y,z,w,a1,a2,b1,b2,m,u1,u3,u4,u5)> 0, satis-

fying ψ(x)= 0, ψ(x)= (− a2xz
m(w+z)+x+y−a1xy+x(−x−y+1),a1xy− b2yz

m(w+z)+x+y−b1y,− u4yz
m(w+z)+x+y

−u3wz+u5w+u1z
(
1− z

x

)
, u4yz

m(w+z)+x+y +u3wz−u5)
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x is made free to choose, shifting the dependency to m, we have, from (7), for m,

(8)

m =
b2 (u3x−u5)

(
a2

1x2 (a2−b2)+a1x(b2 (b1 +b2−1)−2a2b1)+a2b2
1 +b2 (b2x+b1)

)
(a1x−b1)

(
a2u4 (b1−a1x)2 +b2u4(x−1)(a1x−b1)+(a1 +1)b2

2x(u3x−u5)
)

Applying (8) and (6) on (4) and (5), we have,

(9) y =
a2b1 +a1a2(−x)−b2(x−1)

(a1 +1)b2

(10) w =
u4 (a1x−b1)(−a2b1 +a1a2x+b2(x−1))

(a1 +1)b2
2 (u3x−u5)

It is sufficient to show the positiveness of m, y, w so obtained, when x and other parameters are

chosen positive so that x > 0 satisfying ψ(x) = 0.

We consider,

∆1 = b2
(
a2

1x2 (a2−b2)+a1x(b2 (b1 +b2−1)−2a2b1)+a2b2
1 +b2 (b2x+b1)

)
∆2 = a2u4 (b1−a1x)2 +b2u4(x−1)(a1x−b1)+(a1 +1)b2

2x(u3x−u5)

φ1 = a2b1 +a1a2(−x)−b2(x−1), ∆ = ∆1
∆2

, φ2 =
a1x−b1
u3x−u5

then y = φ1
(1+a1)b2

, w = −φ2y
b2

, m = ∆

φ2

It is sufficient to show that φ1 > 0;φ2,∆ < 0

φ2 < 0 implies,

Case 1: u3 <
u5
x ,x >

b1
a1

a2 > 0,φ1 > 0 implies b2(x−1)
a1x−b1

+a2 < 0 and 0 < x < 1.

Now ∆2
(xa1−b1)2u4

= b2(x−1)
a1x−b1

+ a2 +
(a1+1)b2

2(u3x−u5)

(xa1−b1)2u4
< 0⇒ ∆2 < 0. So, for a feasible region, we

must have ∆1 > 0.

⇒ a2 >
a2

1b2x2−a1b2
2x+a1b2x−a1b1b2x−b2

2x−b1b2

−2a1b1x+a2
1x2 +b2

1

if

a2
1b2x2−a1b2

2x+a1b2x−a1b1b2x−b2
2x−b1b2 > 0

then for feasibility, one must have,

a2
1b2x2−a1b2

2x+a1b2x−a1b1b2x−b2
2x−b1b2

−2a1b1x+a2
1x2 +b2

1
< a2 <

b2−b2x
a1x−b1

a2
1b2x2−a1b2

2x+a1b2x−a1b1b2x−b2
2x−b1b2 > 0
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⇐⇒ b2 <
−a1b1x+a2

1x2 +a1x−b1

a1x+ x

Further,

a2
1b2x2−a1b2

2x+a1b2x−a1b1b2x−b2
2x−b1b2

−2a1b1x+a2
1x2 +b2

1
<

b2−b2x
a1x−b1

⇐⇒ a1x−b1 < b2

(a) is obtained.

If

a2
1b2x2−a1b2

2x+a1b2x−a1b1b2x−b2
2x−b1b2 < 0

then

b2 ≥
−a1b1x+a2

1x2 +a1x−b1

a1x+ x
,0 < a2 <

b2−b2x
a1x−b1

Hence (b).

Case 2: u3 >
u5
x ,x <

b1
a1

∆1 = a1b2
2xε +a1b3

2x+a2b2ε2 +b3
2x+b2

2ε > 0 considering b1 = a1x+ ε for some ε > 0

as well as,

∆2

u4 (a1x−b1)2 =
b2(x−1)
a1x−b1

+a2
(a1 +1)b2

2x(u3x−u5)

u4 (a1x−b1)2 > 0,

�

4. LOCAL STABILITY ANALYSIS OF EQUILIBRIUM POINTS

4.1. Nature of system around E0(0,0,0,0): As the community matrix is not defined at the

equilibrium point (0,0,0,0), we apply technique developed by Arino et al [34].

Let,

(11)
dX
dt

= H (X)+Q(X) ,X = (x,y,z,w)
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where,

H (X) = (H1(X),H2(X),H3(X),H4(X)) ;Q(X) = (Q1(X),Q2(X),Q3(X),Q4(X))

H1(X) = x− x(a2z)
m(w+ z)+ x+ y

;H2(X) =−b1y− y(b2z)
m(w+ z)+ x+ y

H3(X) =− u4yz
m(w+ z)+ x+ y

+u5w+(u1z)
(

1− z
x

)
H4(X) =

u4yz
m(w+ z)+ x+ y

−u5w;Q1(X) =−x(x+ y)−a1xy

Q2(X) = a1xy;Q3(X) =−u3wz;Q4(X) = u3wz

Then H(X) is C1 function and continuous outside the origin and H(sX) = sH(X) ∀s ≥ 0 and

Q is a C1 function such that Q(X) = o(X) in the neighbourhood of the origin. If X(t) is a

solution of (11) and limt→+∞ inf‖X(t)‖ = 0 and X is bounded then ∃ X(tn + .), tn → ∞ such

that X(tn + .)→ 0 locally uniformly on s ∈ R

Let

yn(s) =
x(tn + s)
‖x(tn + s)‖

It can be checked as shown in [34] that yn converges to some function y locally uniformly on R

such that

(12)
dy
dt

= H(y(t))− (y(t),H(y(t)))y(t), |y(t)|= 1 ∀ t

where ‖.‖ is the Euclidean norm and 〈.〉 is the Euclidean inner product.

The steady states of H are vectors v satisfying

H(v) = (v,H(v))v

Alternatively,

(13) H(v) = µv

where ‖v‖= 1 and µ = (v,H(v)). The solutions of (13) correspond to fixed directions through

which the trajectory may meet the origin asymptotically. In our case,we have where,
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Direction Eigenvalue

(0,0,0,w) −u5

(0,y,0,0) −b1

(x,0,0,0) 1

(wx11,0,wz11,w) −u5

(wx12,0,wz12,w) −u5

(x21z,0,z,0) −a2+l1+mu1+m+u1
2m

(x22z,0,z,0) −a2−l1+mu1+m+u1
2m

(x31z,0,z,w31z) −u5

(x32z,0,z,w32z) −u5

(x,0,xz31,0) −a2+l1+mu1+m+u1
2m

(x,0,xz32,0) −a2−l1+mu1+m+u1
2m

(x,0,xx32,w41x) −u5

(x,0,xz33,xw42 −u5

l1 =
√

(a2 +(m−1)u1−m)2 +4m(u1−1)u1; l2 =
√

(a2u5 +mu1 (u5 +1))2−4mu1u5 (u5 +1)2

θ = (m+2)(u5 +1)−a2;x11 =
θ(−m)u1 (u5 +1)− (a2u5− l2)(−a2 +mu5 +m)

2(u5 +1)(u5 (−a2 +mu5 +m)+u1 ((m+1)(u5 +1)−a2))

x12 =−
(a2u5 + l2)(−a2 +mu5 +m)+θmu1 (u5 +1)

2(u5 +1)(u5 (−a2 +mu5 +m)+u1 ((m+1)(u5 +1)−a2))

z11 =−
−a2u5 + l2+m(u5 +1)(u1 +2u5)

2(u5 (−a2 +mu5 +m)+u1 ((m+1)(u5 +1)−a2))

z12 =
a2u5 + l2−m(u5 +1)(u1 +2u5)

2(u5 (−a2 +mu5 +m)+u1 ((m+1)(u5 +1)−a2))
;x21 =−

a2 + l1 +m(u1−1)−u1

2(u1−1)

x22 =
−a2 + l1−mu1 +m+u1

2(u1−1)
;x31 =

a2u5− l2 +mu1 (u5 +1)
2u5 (u5 +1)

;x32 =
a2u5 + l2 +mu1 (u5 +1)

2u5 (u5 +1)

w31 =
a2u5 + l2−m(u5 +1)(u1 +2u5)

2mu5 (u5 +1)
;w32 =−

−a2u5 + l2 +m(u5 +1)(u1 +2u5)

2mu5 (u5 +1)

z31 =−
−a2 + l1−mu1 +m+u1

2mu1
;z32 =

a2 + l1 +m(u1−1)−u1

2mu1

z33 =
a2u5− l2 +mu1 (u5 +1)

2mu1 (u5 +1)
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w41 =−
(a2u5 + l2)(−a2 +mu5 +m)+mu1 (u5 +1)((m+2)(u5 +1)−a2)

2m2u1 (u5 +1)2

w42 =
((a2u5− l2)(−(−a2 +mu5 +m))−mu1 (u5 +1)((m+2)(u5 +1)−a2))

2m2u1 (u5 +1)2 )

Therefore, the origin can be reached along the directions where the eigen values become nega-

tive.

4.2. Stability of the equilibrium points E1,E2 and E3:

Theorem 3. The equillibrium points

(i) E1(1,0,0,0),E2

(
b1
a1
,− b1−a1

a1(a1+1) ,0,0
)

are saddle.

(ii) E3(x3,0,z3,0) is locally asymptotically stable in R+
4 under the conditions s1 < 0; b2 +

(1+m)b1 > a1(1+m−a2) and u5 >
(−a2+m+1)u3

1+m

Proof. (i) Clearly, the Jacobian at E1 has two negative values and one positive eigenvalues,

−1,a1−b1,u1,−u5. Threrefore, the equilibrium point E1 is a saddle point. In fact, E1 may

be achieved when there is no predator and infected prey. Also, E1 is achieved when a1 < b1.

But once predator comes in to existence, the axial equilibrium can not be achieved.

Clearly, Jacobian matrix of the system (2) at E2 has the following eigenvalues,

Λ1 =−
b1 +
√

φ1

2a1

Λ2 =

√
φ1−b1

2a1

Λ3,4 =
1

2a1 (b1 +1)

{
a1 ((b1 +1)u1− (b1 +1)u5−u4)+b1u4±

√
∆1

}
where, φ1 = b1

(
4a1b1−4a2

1 +b1
)

and

∆1 =(a1 (b1 +1)u1 +u4 (b1−a1))
2+a2

1 (b1 +1)2u2
5+2a1 (b1 +1)u5 (a1 (b1 +1)u1 +u4 (a1−b1))

As a1 > b1, φ1 < b1, so , Λ1,2 < 0. Since

a2
1 (b1 +1)2u2

5 +2a1 (b1 +1)u5 (a1 (b1 +1)u1 +u4 (a1−b1))> 0

so, ∆1 > a1 ((b1 +1)u1− (b1 +1)u5−u4)+ b1u4 which results Λ1,2,3 < 0. But Λ4 > 0.

Hence E2 is saddle. It may be observed that predation free equillibrium point is a stable

fixed point when there is no predator, but when predator comes in to existence due to their
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density dependent death, the species can not be extinct unless their food is extinct, so, the

predator free equillibrium can not be reached from a coexisting situation.

(ii) Jacobian at E3 has the following eigenvalues,

Λ1 =−
a1 (a2−m−1)+b1(m+1)+b2

m+1

Λ2,3 = s1±−
(m+1)2

2(−a2 +m+1)4
√

s2

where,

s1 =
a2(m+2)− (m+1)2 (u1 +1)

2(m+1)2

s2 =
(−a2 +m+1)8 (2a2(m+1)2 (mu1−m−2)+a2

2(m+2)2 +(m+1)4 (u1−1)2)
(m+1)8

Λ4 =
u3 (−a2 +m+1)

m+1
−u5

All the real parts of characteristic roots of E3 are negative in R+
4 under the conditions

s1 < 0; b2+(1+m)b1 > a1(1+m−a2) and u5 >
(−a2+m+1)u3

1+m . Hence E3 is asymptotically

stable under the said parametric region.

�

4.3. Direction of Hopf-bifurcation at disease free equilibrium (DFE) E3:

Theorem 4. The system undergoes a hopf bifurcation along the parametric surface

(m+1)2 (u1 +1)−a2(m+2) = 0 at the equilibrium point E3

Proof. The characteristic roots are

Λ1 =−
a1 (a2−m−1)+b1(m+1)+b2

m+1

Λ2,3 = s1±−
(m+1)2

2(−a2 +m+1)4
√

s2
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where,

s1 =
a2(m+2)− (m+1)2 (u1 +1)

2(m+1)2

s2 =
(−a2 +m+1)8 (2a2(m+1)2 (mu1−m−2)+a2

2(m+2)2 +(m+1)4 (u1−1)2)
(m+1)8

Λ4 =
u3 (−a2 +m+1)

m+1
−u5

The given parametric surface is obtained for s1 = 0.

If u1 is the control parameter then,

u∗1(say) =
a2(m+2)− (m+1)2

(m+1)2

∴ s2 = 4(−a2 +m+1)9 ((m+1)2−a2(m+2)
)
< 0 at u∗1

provided,

(m+1)2−a2(m+2)< 0

The region where Λ1,4 < 0, (m+1)2−a2(m+2)< 0 is

(m+1)2

(m+2)
< a2 < m+1

u5 >
(−a2 +m+1)u3

1+m

b2 > a1(1+m−a2)− (1+m)b1

The transversality condition ∂ s1
∂u1
|u∗1 =−

1
2 < 0. Hence hopf bifurcation occurs.

One may set the control parameter as a2, then,

a2 =
(m+1)2(u1+1)

m+2 along with u1 <
1

1+m will make the characteristic roots Λ3,4 purely imaginary.

The other conditions for hopf bifurcation are

m > a2−1

b2 > a1(1+m−a2)− (1+m)b1

u5 >
(−a2 +m+1)u3

1+m

�
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Theorem 5. There exists a locally defined smooth two dimensional parameter dependent at-

tracting center manifold W c
loc(0) of system which is locally tangent to Tc at the Disease free

equilibrium (x3,0,z3,0). The restriction to W c
loc(0) exhibits Hopf bifurcation with negative first

Lyapunov coefficient.

Proof. The characteristic polynomial of the Jacobian matrix of the system at the DFE has a pair

of purely imaginary roots λ1,2 =±iω , ω > 0 for

u1 = 1+
(2+m)a2

(1+m)2 ;a2,m > 0

Now we investigate the asymptotic dynamics on the existing center manifold of the system as

well as the stability of the resulting Hopf bifurcation by computing the first lyapunov coefficient

of the restricted dynamics on the center manifold using the method outlined in [39].

Let q be a complex eigenvalue corresponding to λ1which satisfies Aq = iωq (A=Jacobian ma-

trix of the system at the DFE). Aq̄ = −iω q̄. We choose adjoint eigen vector p which satisfies

AT p̄ =−iω p, AT p̄ = iwp and 〈p,q〉= 1 where 〈p,q〉= ∑
n
i=1 p̄iqi is the standard scaler product

in Cn. We choose,

q =



−a2(m+2)+(m+1)2(1−iω)
(m+1)2−a2(m+2)

0

1

0



p̄ =


p11

p21

p31

1


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where

p11 =−
(
a2(m+2)+ iρ2ω−ρ2

)(
−ρu3 (ρ−a2)+ iρ2ω +ρ2u5

)
a2 (a2 (ρu3−m(m+2))− imρ2ω +mρ2−ρ2u3 +ρ2u5)

p21 =
a2

2u3
(
(m+1)2 +ρ

)
−a1ρ (ρ−a2)

(
−ρu3 (ρ−a2)+ iρ2ω +ρ2u5

)
+ρ2

(
−
(
iρ2ω−ρ2u3 +ρ2u5

))
a2m(a1(−m−1)(ρ−a2)+b2m+b1ρ2 +b2 + iρ2ω)

+
a2
(
(m+2)

(
ρ2u5 + iρ2ω

)
− (2m+3)ρ2u3 +mρu4

)
a2m(a1(−m−1)(ρ−a2)+b2m+b1ρ2 +b2 + iρ2ω)

−
ρ
(
−ρu3 (ρ−a2)+ iρ2ω +ρ2u5

)
a2 (ρu3−m(m+2))+m3 +2m2− imρ2ω +m−ρ2u3 +ρ2u5

×
u3 (ρ−a2)

(
−a2(m+2)+a1ρ (ρ−a2)+ρ2

)
+a2 (ρu5 (a1ρ +m+2)+mu4)− (a1 +1)ρ3u5

a2m(a1(−m−1)(ρ−a2)+b2m+b1ρ2 +b2 + iρ2ω)

p31 =−
ρu3 (ρ−a2)− iρ2ω−ρ2u5

a2 (ρu3−m(m+2))− imρ2ω +mρ2−ρ2u3 +ρ2u5

ω =

√
a2 (2m2 +5m+3)−a2

2(m+2)− (m+1)3

(m+1)3

ρ = (1+m)

In order to satisfy normalization condition. We choose v1 = 〈p̄,q〉 such that 〈p,q〉= 1.

Hence we take p = 1
v1

p̄. System at the equilibrium point E3 can be written as

ẋ = Ax+F(x,u1)+O(H)4

where x = (x,y,z,w)T ,

F(x,u1) =
B(x,x)

2
+

C(x,x,x)
2

B and C are multilinear functions where,

Bi =
3

∑
j,k=1

∂ 2Fi(ξ )

∂ξi∂ξk

∣∣∣∣
ξ=0

x jyk

Ci(x,y,z) =
3

∑
j,k,l=1

∂ 3Fi(ξ )

∂xi j∂xik∂xil

∣∣∣∣x jykzl

Solving the corresponding linear system gives s = A−1B(q, q̄) and r = (2iωE−A)−1B(q,q).

Finally we get the Lyapunov coefficient

(14) l1(0) =
1

2ω
Re[〈p,c(q,q, q̄)〉−2〈p,B(q,s)〉+ 〈p,B(q̄,r)〉]
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�

Theorem 6. The system undergoes a saddle-node (fold) bifurcation along the parametric sur-

face

a1 (a2−m−1)−b1(m+1)−b2 = 0

and
u3 (−a2 +m+1)

m+1
−u5 = 0

respectively at the equilibrium point E3.

Proof. The first parametric surface is obtained when the characteristic root λ1 at E3 is equal

to zero. If the control parameter is considered as a1. Let ā1 = b1m+b1+b2
−a2+m+1 . The transversality

condition is satisfied and if a2(m+2)−(m+1)2

(m+1)2 < u1,u5 >
u3(−a2+m+1)

m+1 , then the other characteristic

roots are negative. Hence there is a saddle node bifurcation in this region.

Similarly, the second parametric surface is obtained by λ4 = 0 and considering the other

parametric region as

a1 <
b1(m+1)+b2

−a2 +m+1
,
a2(m+2)− (m+1)2

(m+1)2 < u1

and setting the control parameter as u5, we obtain a saddle node bifurcation in this region . �

Theorem 7. The equilibrium point

E4

(
u5

u3
,0,

u5

u3
,
u5 (u3 (a2−m−1)+(m+1)u5)

mu3 (u3−u5)

)
is not locally asymptotically stable

Proof. One of the eigen values of the system (2) at the equilibrium point E4 is−a2(b1mu3−a1mu5)+b2m(u3−u5)
a2mu3

.

We consider the remaining part of the characteristic polynomial

λ
3− c1λ

2 + c2λ − c3 = 0

c1 =
u3

3(a2(mu1−(m+1)u5)+a2
2u5−m)+u5u2

3(a2(m(−u1)+(m+1)u5+m)+3m)−(a2+3)mu2
5u3+mu3

5
a2mu2

3(u3−u5)

c2 =−
u2

5(a2mu3+m2u1+mu1+2mu3+2u3)
a2mu2

3
− u5(a2

2u3+a2u3−2m2u1−2mu1−mu3−u3)
a2mu3

− −a2mu1+a2
2u3+m2u1+mu1
a2m

+
(m+1)u3

5
a2mu2

3
− a2u2

3
m(u5−u3)

c3 =
(m+1)u1u3

5
a2u2

3
+

u1u2
5(a2−2m−2)

a2u3
− u1u5(a2−m−1)

a2
.
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For stability, all the eigen values should have negative real parts, which implies, c3 < 0. Exis-

tence condition of the equilibrium implies that,

a2 =
u3−u5

u3
+φ1,m = φ2(−a2u3+u3−u5)

u5−u3
,u5 = u3−φ3,φ1 > 0,0 < φ2 < 1,0 < φ3 < u3,

c3 =−
u1φ1 (φ2−1)φ3 (u3−φ3)

u3φ1 +φ3
> 0

which implies at least one of the real part of eigen values non negative. Hence the result. �

4.4. Stability of the coexisting equilibrium. Jacobian matrix of the system (2) at E∗ is

J∗ =


A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44


where

A11 =−
a2z(m(w+ z)+ y)
(m(w+ z)+ x+ y)2 −a1y−2x− y+1;A12 = x

(
a2z

(m(w+ z)+ x+ y)2 −a1−1
)

A13 =−
a2x(mw+ x+ y)

(m(w+ z)+ x+ y)2 ;A14 =
a2mxz

(m(w+ z)+ x+ y)2

A21 = y
(

a1 +
b2z

(m(w+ z)+ x+ y)2

)
;A22 = a1x− b2z(m(w+ z)+ x)

(m(w+ z)+ x+ y)2 −b1

A23 =−
b2y(mw+ x+ y)

(m(w+ z)+ x+ y)2 ;A24 =
b2myz

(m(w+ z)+ x+ y)2

A31 = z
(

u4y
(m(w+ z)+ x+ y)2 +

u1z
x2

)
;A32 =−

u4z(m(w+ z)+ x)
(m(w+ z)+ x+ y)2

A33 =−
u4y(mw+ x+ y)

(m(w+ z)+ x+ y)2 −u3w+
u1(x−2z)

x
;A34 =

mu4yz
(m(w+ z)+ x+ y)2 +u3(−z)+u5

A41 =−
u4yz

(m(w+ z)+ x+ y)2 ;A42 =
u4z(m(w+ z)+ x)
(m(w+ z)+ x+ y)2

A43 =
u4y(mw+ x+ y)

(m(w+ z)+ x+ y)2 +u3w;A44 =−
mu4yz

(m(w+ z)+ x+ y)2 +u3z−u5

The characteristic equation of J∗ can be written as,

λ
4 +L1λ

3 +L2λ
2 +L3λ +L4 = 0



DYNAMICS IN A RATIO-DEPENDENT ECO-EPIDEMIOLOGICAL PREDATOR-PREY MODEL 21

Theorem 8. The coexisting equilibrium E∗ is stable if L4,L3,L2L3−L4,∆2 = L1L2L3−L2
3−

L2
1L4 > 0 and the system undergoes Hopf bifurcation at this fixed point in a certain parametric

region.

The stability condition is due to Routh–Hurwitz criteria. The control parameter has been set

as u1 as the so obtained coexistence condition is independent of u1. The numerical evidence of

Hopf bifurcation scenario has been obtained applying the following criteria:

Theorem 9 (Liu[35]). The Hopf bifurcation criteria is equivalent to the following condition

(1) L4,L3,L2L3−L4 > 0,∆2 = 0

(2) ∂∆2
∂ µ
6= 0, where µ is the bifurcation point.

4.5. Direction of Hopf-bifurcation at the coexisting equilibrium. In order to determine

the direction and stability criterion of the bifurcating periodic solution, we reduce the set of

differential equations in the system (2) into it’s normal form using the procedure described by

Hassard et al.[37]. For the sake, introducing the new variables x = s1 + x∗,y = s2 + y∗,z =

s3 + z∗,w = s4 +w∗, the system (2) can be written in matrix form as,

(15) Ẋ = AX +B

where A is the Jacobian matrix of the modified system, AX is the linear part of the system and

B represents the nonlinear part. Moreover,

X =


s1

s2

s3

s4

 ,A =


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

 ,B =


B1(s1,s2,s3,s4)

B2(s1,s2,s3,s4)

B3(s1,s2,s3,s4)

B4(s1,s2,s3,s4)


where ai j(i, j = 1,2,3,4), Bi(s1,s2,s3,s4)(i = 1,2,3,4) are in Appendix. We consider two con-

jugate imaginary eigenvalues λ1,2 =±β and two other eigenvalues λ3,4 = ν1,2 the characteristic

equation of the system (2). Next, we seek a transformation matrix T which reduces the matrix
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A to the form,

T−1AT =


0 β 0 0

−β 0 0 0

0 0 ν1 0

0 0 0 ν2


where the nonsingular matrix T is given as

T =


1 0 1 1

c21 c22 c23 c24

c31 c32 c33 c34

c41 c42 c43 c44


where ci j(i. j = 1,2,3,4) can be calculated using basic matrix operations.

To obtain the normal form of the Equation (15), we make another change of variable i.e. X =

TY , where Y = (y1,y2,y3,y4)
′

Then the normal form of system (15) can be given by,

(16) Ẏ = T−1ATY +F

where

F = T−1B =


F1(y1,y2,y3,y4)

F2(y1,y2,y3,y4)

F3(y1,y2,y3,y4)

F4(y1,y2,y3,y4)


where Fi(y1,y2,y3,y4)(i = 1,2,3,4) can be obtained by transforming Bi’s using the variables

s1 = y1 + y3 + y4,s2 = c21y1 + c22y2 + c23y3 + c24y4;s3 = c31y1 + c32y2 + c33y3 + c34y4;s4 =

c41y1 + c42y2 + c43y3 + c44y4.

Equation (16) is the normal form of Equation (15) from which The stability and direction of the

Hopf bifurcation can be computed. In Equation (16), on the right hand side of the first term is

linear and the second is non-linear in yi’s. For evaluating the direction of periodic solution, we

can evaluated the following quantities at u1 = u1(0) and origin.
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g11 =
1
4

[
∂ 2F1

∂y2
1
+

∂ 2F1

∂y2
2
+ i
(

∂ 2F2

∂y2
1
+

∂ 2F2

∂y2
2

)]

g02 =
1
4

[
∂ 2F1

∂y2
1
− ∂ 2F1

∂y2
2
−2

∂ 2F2

∂y1∂y2
+ i
(

∂ 2F2

∂y2
1
− ∂ 2F2

∂y2
2
+2

∂ 2F1

∂y1∂y2

)]

g20 =
1
4

[
∂ 2F1

∂y2
1
− ∂ 2F1

∂y2
2
+2

∂ 2F2

∂y1∂y2
+ i
(

∂ 2F2

∂y2
1
− ∂ 2F2

∂y2
2
−2

∂ 2F1

∂y1∂y2

)]

G21 =
1
8

[
∂ 3F1

∂y3
1
+

∂ 3F1

∂y1∂y2
2
+

∂ 3F2

∂y2
1∂y2

+
∂ 3F2

∂y3
2
+ i
(

∂ 3F2

∂y3
1
+

∂ 3F2

∂y1∂y2
2
− ∂ 3F1

∂y2
1∂y2

− ∂ 3F1

∂y3
2

)]

G j
110 =

1
2

[
∂ 2F1

∂y1∂y j
+

∂ 2F2

∂y2∂y j
+ i
(

∂ 2F2

∂y1∂y j
− ∂ 2F1

∂y2∂y j

)]

G j
101 =

1
2

[
∂ 2F1

∂y1∂y j
− ∂ 2F2

∂y2∂y j
+ i
(

∂ 2F2

∂y1∂y j
+

∂ 2F1

∂y2∂y j

)]

h j
11 =

1
4

[
∂ 2F j

∂y2
1
+

∂ 2F j

∂y2
2

]

h j
20 =

1
4

[
∂ 2F j

∂y2
1
− ∂ 2F j

∂y2
2
−2i

∂ 2F j

∂y1∂y2

]

w j
11 =

h j
11

ν j

w j
20 =

h j
20

(ν j +2iβ )
, j = 1,2

and

g21 = G21 +
2

∑
j=1

(
2G j

110w j
11 +G j

101w j
20

)

C1(0) =
i

2β

(
g11g20−2|g11|2−

|g02|2

3

)
+

g21

2

(17) µ2 =−
Re{C1(0)}

Re{∆′(u1(0))}

where ∆′ can be calculated using (CH2) in [35]. The system (2) undergoes supercritical (sub-

critical) Hopf bifurcation if µ2 > 0 (µ2 < 0). Furthermore, the bifurcating periodic solutions

are asymptotically stable (unstable) if β2 < 0 (β2 > 0).
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4.6. Global stability analysis.

Theorem 10. The DFE equilibrium E3 is globally asymptotically stable under the sufficient

conditions: a1θ2 < b1, L3z3u4θ2
θ1

−L2θ1b2 < 0, (wθ2u3− z3u5)< 0

Proof. At the equilibrium point E3 system (2) reduces to,

x∗(1− x∗− y∗)−a1x∗y∗− a2x∗z∗

m(w∗+ z∗)+ x∗+ y∗
= 0

u1z∗
(

1− z∗

x∗

)
−u3w∗z∗− u4z∗y∗

m(w∗+ z∗)+ x∗+ y∗
+u5w∗ = 0

To study the globally asymptotically stability of the DFE E3 the following positive definite Lya-

punov function is considered:

V (x,y,z,w) = L1

(
x− x∗− x∗ ln

x
x∗

)
+L2y+L3

(
z− z∗− z∗ ln

z
z∗

)
+L4w

Now taking the time derivative of V (x,y,z,w) along the solutions of system (2), V̇ (x,y,z,w) is

given by,

dV (x,y,z,w)
dt

= L1
(x− x∗)

x
.
dx
dt

+L2.
dy
dt

+L3
(z− z∗)

z
.
dz
dt

+L4.
dw
dt

Suppose L1 =
L2a1
1+a1

; L3 = L4 and θ1 < x,y,z,w < θ2. Since x3 = z3 therefore,

dV (x,y,z,w)
dt

=−L1(x− x3)
2− (x− x3)

(
L1y+L1ya1 +

L1za2

φ
+

L1z3a2

x3 +mz3

)
+L2xya1−L2yb1

− L2yzb2

φ
+

(
L3u1−

L3zu1

x

)
(z− z3)+L3wz3u3 +

L3yz3u4

φ
− L3wz3u5

z

where m(w+ z)+ x+ y = φ . When x→ x3 and z→ z3,

dV
dt

= L2xya1−L2yb1−
L2yzb2

φ
+L3wz3u3 +

L3yz3u4

φ
− L3wz3u5

z

= L2y(xa1−b1)+
z
φ

(
L3z3yu4

z
−L2yb2

)
+L3

(
wz3u3−

wz3u5

z

)
= L2θ1g1(θ1,θ2)+

θ1

2θ2(1+m)
g2(θ1,θ2)+L3g3(θ1,θ2)

where g1(θ1,θ2) = a1θ2−b1, g2(θ1,θ2) =
L3z3u4θ2

θ1
−L2θ1b2, g3(θ1,θ2) = (wθ2u3− z3u5)

Therefore dV
dt is negative definite under the sufficient conditions g1(θ1,θ2) < 0, g2(θ1,θ2) < 0
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and g3(θ1,θ2)< 0

�

Theorem 11. The coexisting equilibrium E∗ is globally asymptotically stable under the suffi-

cient conditions (18).

Proof. At the equilibrium point E∗ system (2) reduces to,

x∗(1− x∗− y∗)−a1x∗y∗− a2x∗z∗

m(w∗+ z∗)+ x∗+ y∗
= 0

a1x∗y∗−b1y∗− b2y∗z∗

m(w∗+ z∗)+ x∗+ y∗
= 0

u1z∗
(

1− z∗

x∗

)
−u3w∗z∗− u4z∗y∗

m(w∗+ z∗)+ x∗+ y∗
+u5w∗ = 0

u3w∗z∗+
u4z∗y∗

m(w∗+ z∗)+ x∗+ y∗
−u5w∗ = 0

To study the globally asymptotically stability of E∗ the following positive definite Lyapunov

function is considered:

V (x,y,z,w) = L1

(
x− x∗− x∗ ln

x
x∗

)
+L2

(
y− y∗− y∗ ln

y
y∗

)
+L3

(
z− z∗− z∗ ln

z
z∗

)
+L4

(
w−w∗−w∗ ln

w
w∗

)
Now taking the time derivative of V (x,y,z,w) along the solutions of system (2), V̇ (x,y,z,w) is

given by,

dV (x,y,z,w)
dt

= L1
(x− x∗)

x
.
dx
dt

+L2
(y− y∗)

y
.
dy
dt

+L3
(z− z∗)

z
.
dz
dt

+L4
(y− y∗)

y
.
dw
dt

Suppose L1 =
L2a1
1+a1

; L3 = L4 and θ1 < x,y,z,w < θ2. Since x∗ = z∗ therefore,

dV (x,y,z,w)
dt

=−L1(x− x∗)2− L1x∗a2

φ1
− L2y∗b2

φ1
+

z
φ
(ξ11 +χ11)+L4z∗ (ξ21 +χ22)+L4z(ξ31 +χ32)

≤−L1(x− x∗)2− L1x∗a2

φ1
− L2y∗b2

φ1
+

z
φ

Ψ+nz∗g1(θ1,θ2)+nzg2(θ1,θ2)

+L4

(
−z2u1

x
+

zz∗u1

x

)
+L4

(
wu5−

wz∗u5

z

)
+L4w∗u5

where m(w+z)+x+y= φ and m(w∗+z∗)+x∗+y∗= φ1 and ξ11,χ11,ξ21,χ21,ξ31,χ31,Ψ,g1(θ1,θ2),g2(θ1,θ2)

are given in Appendix.

In the neighbourhood of the equilibrium point E∗, lim(x,y,z)→(x∗,y∗,z∗)

(
− z2u1

x + zz∗u1
x

)
= 0 and

lim(x,y,z)→(x∗,y∗,z∗)

(
wu5− wz∗u5

z

)
= 0
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∴ |− z2u1
x + zz∗u1

x |< δ1 and |
(

wu5− wz∗u5
z

)
|< δ2

Therefore
dV (x,y,z,w)

dt
≤−L1(x− x∗)2− L1x∗a2

φ1
− L2y∗b2

φ1
+

θ1

2θ2(1+m)
Ψ+L4z∗g1(θ1,θ2)+L4θ1g2(θ1,θ2)

+L4|δ1|+L4|δ2|+L4w∗u5

Then the coexisting equilibrium point E∗ is Globally asymptotically stable under the sufficient

condition,

−L1(x− x∗)2− L1x∗a2

φ1
− L2y∗b2

φ1
+

θ1

2θ2(1+m)
Ψ+L4z∗g1(θ1,θ2)+L4θ1g2(θ1,θ2)

+L4|δ1|+L4|δ2|+L4w∗u5 < 0
(18)

provided Ψ < 0,g1(θ1,θ2)< 0 and g2(θ1,θ2)< 0. Further, we can always find a neighbourhood

of the equilibrium point E∗ such that L4|δ1|+L4|δ2|< |ε| which satisfies (18). �

5. NUMERICAL SIMULATIONS

TABLE 1. Paramteter Values

Parameters Definition Default value

r Growth rate of susceptible prey 3

K Carrying capacity 250

λ Disease transmission coefficient of prey 0.06

λ ′ Disease transmission coefficient of predator 0.03

p searching rate of susceptible predator towards susceptible prey 0.6

c searching rate of susceptible predator towards infected prey 0.7

m a positive constant 0.4

γ death rate of infected prey 0.3

δ species growth rate of susceptible predator 2

γ ′ conversion rate of infected to susceptible predator 1/3

α Infection transmission proportionality due to predation 0.5

In this section we illustrate some of the key findings of the system (2) numerically around the

coexisting equilibrium for a wide range of parameter values given in Table (1). For visualization



DYNAMICS IN A RATIO-DEPENDENT ECO-EPIDEMIOLOGICAL PREDATOR-PREY MODEL 27

of the dynamical behavior of the system we use the software MatCont 6[36]. For the param-

eters in Table (1) a1 = 5,a2 = 0.2,b1 = 0.1,b2 = 0.23,u1 = 2/3,u3 = 2.5,u4 = 0.11667,u5 =

1/9,m= 0.4. Our study focuses on the occurrence and termination of the disease. The trajectory

of the system (2) is drawn in the Figure(1) for different initial points which shows that the solu-

tion of system (2) approaches the coexisting equilibrium E∗= {0.0255,0.1584,0.0255,0.0468}

which is globally asymptotically stable with the eigen values

−0.845741,−0.0188191±0.325998i,−0.037742.
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FIGURE 1. Depicts global stability of the positive equilibrium E∗ of the system

(2)



28 BHATTACHARJEE, KASHYAP, SARMAH, PAUL

5.1. Dynamics of the system for variation of the parameters a1 and u3. For the parameter

a1 = 0.3 and u3 = 0.12 (keeping the other parameters fixed) the coexisting equilibrium of the

system (2) changes to disease free equillibrium E3 (Figure 2).
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FIGURE 2. (a)Time series of the solution of system (2) for a1 = 0.3 , u3 = 0.12

(keeping other parameters fixed in Table:(1)). (b)Depicts E∗ approaches disease

free equilibrium E3

5.2. Hopf bifurcation at the disease free equilibrium. We fix the parameter values as a1 =

2,b1 = 0.75,b2 = 0.5,u1 = 0.50,u3 = 1,u4 = 0.25,u5 = 0.62,m= 0.06 keeping a2 as bifurcation

parameter. For a2 = 0.75, all the trajectories of the system (2) approaches to (0.2925,0,0.2925,0).

Increasing the parameter a2 it is observed that the equilibrium E3 loses it’s stability and the
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susceptible population oscilate due to supercritical Hopf bifurcation above the threshold value

a∗2 = 0.818155 (Figure 3) where the first Lyapunov coefficient l1 =−0.2080247 (from equation

(14)). Again we fix a2 = 0.75, m = 0.06 keeping u1 as the bifurcation parameter. On increasing

the parameter value u1 it is observed that the equilibrium E3 loses it’s stability and the sus-

ceptible population oscilates due to supercritical Hopf bifurcation above the threshold value

u∗1 = 0.375044 (Figure 4) where the first Lyapunov coefficient is l1 = −0.1753540. We draw

Hopf-bifurcation curve of the system (2) at the DFE E3 in two parametric plane. On further

continuation of the Hopf-bifurcation curve shows generalised Hopf-bifurcation (labeled as GH)

in a2−m parametric space. The GH bifurcation occurs at (a2,m) = (0.750031,0.000028),

where the first Lyapunov coefficient l1 becomes zero (Figure 5). On further continuation

of the system (2) at the DFE E3 undergoes Bogdanov-Takens bifurcation (labeled as BT) at

a2 = 2.000628,m = 1.000440.
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FIGURE 3. (a) depicts limit cycle. (b), (c) Bifurcation diagram at a2 =

0.818156.
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FIGURE 4. (a)) depicts limit cycle.(b),(c)Bifurcation diagram at u1 = 0.375042
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FIGURE 5. Depicts generalised Hopf-bifurcation of the system (2) at the DFE

E3, where a2 = 0.750031,m = 0.000028
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5.3. Analysis of bifurcation at the coexisting equilibrium.

5.3.1. Existence of Hopf Bifurcation: We fix a1 = 0.303;a2 = 0.647;b1 = 0.004;b2 = 0.257;

u1 = 0.55;u3 = 2.106;u4 = 0.261;u5 = 0.992;m= 0.210 and initial values x= 0.02;y= 0.15;z=

0.02;w = 0.04. It is observed that all the species coexists with populations x∗ = 0.4581;y∗ =

0.1555;z∗ = 0.4581;w∗ = 0.779. Now we set u1 as the bifurcation parameter. On increasing u1

the system (2) loses it’s stability and shows oscillatory behavior above the threshold parame-

ter value u∗1 = 0.579726 via supercritical Hopf bifurcation where the first Lyapunov coefficient

l1 =−1.893888×10−2. (Figure 6). Though we are using MatCont to determine the nature of

the Hopf bifurcation as well as the Lyapunov coefficient, the nature of the Hopf bifurcation can

also be determined using equation (17). For the above parameter values µ2 > 0 which confirms

that the system undergoes supercritical Hopf bifurcation.

g11 =−0.378465−0.778659i g20 = 3.96973 −1.52318i

g02 =−3.47332+1.74093i g21 = 6.22262 +210.947i

C1(0) = 3.18282 +105.211i ∆
′(u1(0)) =−0.118163

While drawing the Hopf-bifurcation curve of the system (2) in two parametric plane we observe

that the system becomes unstable with an increase of the parameter u1. On continuation, the

Hopf bifurcation curve shows generalised Hopf-bifurcation (labeled as GH) in (u1,a1), (u1,a2),

(u1,b2), (u1,u3) and (u1,u4) parametric spaces. In (u1,a1) parametric space GH bifurcation

occurs at u1 = 1.085892, a1 = 0.221289 where the first lypunov coefficient becomes zero. Sim-

ilarly in (u1,a2) parametric space GH bifurcation occurs at u1 = 0.379809, a2 = 0.705966,

in (u1,b2) parametric space at u1 = 1.486966, b2 = 0.363905, in (u1,u3) parametric space

at u1 = 5.616859, u3 = 16.339412 and in (u1,u5) parametric space at u1 = 0.297226, u5 =

1.075390 (Figure 7). Further, it is observed that for u1 = 5.867, and u3 = 17.55 in the paramet-

ric space u1− u3, the system shows multiple limit cycles around coexisting equilibrium point

E∗ = (0.0565,0.07,0.0565,1.918). Here, all the populations approaches to a fixed value (sta-

ble equilibrium), if the initial populations start inside the unstable limit cycle otherwise the the

solution trajectories approaches to the stable limit cycle (Figure 8). Similar scenarios can also

be obtained for (u1,a2),(u1,b2) and (u1,a1) parameter space. Some other similar scenarios can
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be found in [38].
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FIGURE 6. (a) Depicts limit cycle at u1 = 0.62 (b) Depicts appearance of limit

cycle at u1 = 0.579726
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FIGURE 7. Two dimensional projection of Hopf-bifurcation curves of the sys-

tem (2)
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FIGURE 8. Depicts multiple limit cycles of the system where u1 = 5.867,u3 =

17.55 (keeping other parameters as in subsection 5.3.1)

5.4. Further analysis of the system:

5.4.1. Saddle-Node and Global Bifurcations. The coexisting equilibrium E∗ (obtained for the

parameter values in Table:(1)) undergoes a saddle-node (fold) bifurcation at the parameter value

a2 = 2.443240 (keeping the other parameter fixed as in Table:(1)). Figure(9) depicts a fold bi-

furcation point LP at which x = 0.031321,y = 0.061225,z = 0.031321,w = 0.055466 having

eigen values (−0.370998±0.371244i,−0.00724178,0) and H1,H2,H3 are neutral saddles.

On further analysis for global bifurcations it is seen that the truncated E∗ undergoes Bogdanov-

Taken and Cusp bifurcation for the parameter space (a2,b2), which can be obtained using

MatCont continuation of the fold bifurcation point LP (Figure 9). The system (2) under-

goes Bogdanov-Taken bifurcations at the point BT1 for the parameter values a2 = 2.430790,

b2 = 0.244934 (keeping other parameters fixed as Table:(1)).
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At the point BT1 in the parameter space x = 0.032326,y = 0.059344,z = 0.032326,w =

0.059688 with eigen values (−0.374472± 0.371057i,0,0) . The trajectories approaches cusp

bifurcation at the points CP1 and CP2 at which the parameter values are a2 = 2.483263,b2 =

0.313008 and a2 = 2.426031,b2 = 0.304523 respectively. At the point CP1 the system has

eigen values (−0.401618±0.39349i,0.0883421,0).

Moreover, the trajectories undergoes Bogdenov-Takens bifurcations at another points BT2 (a2 =

2.142068,b2 = 0.278798) and BT3 (a2 = 1.437625,b2 = 0.849279)(Figure 10). In the param-

eter space (a2,b2) the Zero-Hopf(ZH) point is a neutral saddle, Cusp point CP2 and Bogdanov-

Taken point BT2 exists with infected prey free equilibrium which is unstable. The only bifur-

cation points with stable equilibrium are BT1 and CP1. Further, we show the Hopf bifurcation

curve of the system in the parametric space (a2,b2) which meets at the point BT1 (Figure 11).
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FIGURE 9. Depicts Fold (saddle-node) bifurcation point.
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FIGURE 10. Depicts Hopf curves and LP curves in (a2,b2) parameter space.

FIGURE 11. Depicts Hopf curve and LP curve in (a2,b2) parameter space.
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6. EFFECT OF TIME DELAY

6.1. Effect of time delay in disease transmission. For the parameter values a1 = 3,a2 =

0.5,b1 = 0.1,b2 = 0.23,u1 =
2
3 ,u3 = 3.5,u4 = 0.11667,u5 = 0.11,m = 0.4 the coexisting equi-

librium E∗ is unstable. But for a small time delay τ = 0.2 in the disease transmission (a1) in

prey population with the same parameter values the coexisting equilibrium of the delay system

shows oscillatory behaviour of all the population (Figure 12).

6.2. Effect of time delay in disease recovery. For the parameter values a1 = 5,a2 = 0.5,b1 =

0.1,b2 = 0.23,u1 =
2
3 ,u3 = 2.5,u4 = 0.11667,u5 = 0.11,m = 0.4 the coexisting equilibrium E∗

is stable. With a three different time delays τ = 0.5,3.0,5.5 in the recovery rate (u5) it is seen

that time delay have no effect on stability of the coexisting equilibrium E∗(Figure 13).

(A)

(B)

FIGURE 12. (a)Limit cycle for τ = 0.2 (b)Time series of the solution of system

with delay for τ = 0.2
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(A) (B)

(C) (D)

FIGURE 13. Figures (a), (b), (c) and (d) depicts populations for various initial

time delays

7. DISCUSSION AND CONCLUSION

In this paper,an ecological system consisting of prey–predator food web model with ratio-

dependent type of function response is proposed and analyzed. It is assumed that both the

populations are affected by a disease. The disease transmission is assumed to be horizontal with

the consideration that some of the infected predators can recover due to their natural immune

system. The existence and boundedness of the solution of the proposed model together with the

conditions of existence and local stability of all possible equilibrium points are obtained. Finally

for the suitable hypothetical set of parameter values, the proposed system is solved numerically

in order to verify the obtained analytical results. The obtained results can be summarized as

follows:

(1) The disease free equilibrium and the coexisting equilibrium of the system are globally

asymptotically stable.
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(2) The system can achieve a stable population containing both susceptible and infected one,by

maintaining proper parameter value (Figure 1) and hence the infection is controlled to a

certain extent.

(3) When the disease transmission rate related parameter is decreased further in both prey

and predator, the population achieves infection free equilibrium and thus the disease is

eradicated. So, decreasing the disease transmission related parameter (a1,u3) of both the

population, one crosses the parametric surface barrier related to saddle node bifurcation

(Theorem 4) , the system becomes disease free.

(4) If the predation rate related parameter exceeds the threshold value, a coexisting population

which was to go to a stable infection free state enters in to a stable oscillatory state result-

ing in a limit cycle (Figure 3) among the susceptible predator and prey maintaining still

infection free system. Similar stable oscillatory state of the infection free state appears if

the growth rate related parameter exceeds the threshold value (Figure 4).

(5) It is observed that the reproduction rate in predator species as well as catching rate of sus-

ceptible prey may destabilize the system and produce periodic oscillations via supercritical

Hopf-bifurcation.

(6) Further, we have calculated the Lyapunov coefficient and showed that the Hopf-bifurcation

in the system around the disease free equilibrium can be both supercritical and subcritical

depending on the parameter associated with predation rate as well as reproduction rate in

predators. We have also performed two-parameter bifurcation analysis and showed that the

system undergoes the Bogdanov-Takens bifurcation at the DFE (Figure 5).

(7) If the growth rate related parameter (u1) is increased beyond the threshold value, the co-

existing population which was to go to a stable coexisting fixed point achieves a stable

oscillatory state (Figure 6) resulting in a stable limit cycle. One may observe the corre-

sponding time series, the growth rate of the susceptible and the infected prey population is

inversely related whereas the growth rate of the susceptible predator and prey are directly
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related. A relatively large oscillation is found in the susceptible prey compared to the sus-

ceptible predator. Similarly, a relatively large oscillation is generated in the infected sub

population compared to the other sub population.

(8) We have calculated the Lyapunov coefficient and showed that the Hopf-bifurcation in the

system around the coexisting equilibrium can be both supercritical and subcritical depend-

ing on the parameter associated with the reproduction rate in predators and disease trans-

mission rate in them (Figure 7(a)). Moreover, we have shown the supercritical and subcrit-

ical nature of the Hopf bifurcation that may appear in the coexisting equilibrium due to the

reproduction rate in predators and other parameters (Figure 7(b)-(f)).

(9) We have also performed two-parameter bifurcation analysis at the coexisting equilibrium.

It is observed that the system undergoes the Bogdanov-Takens bifurcation together with

a cusp bifurcation. We draw Hopf curve and LP curve in parameter space containing the

parameters associated to predation rate of both the prey population (Figure 10-11).

(10) In general recovery from a disease is not an instantaneous process. Usually it is also a

delay process in nature. System (2) has no effect on delay of the recovery factor. Figure

(13) shows effect three different time delays in recovery factor on the system (2).
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APPENDIX

Expressions of Theorem (11)

ξ11 =
a2L1x∗z

φ
+

b2L2y∗z
φ

χ11 =−
L4u4w∗yz

wφ

ξ21 =
a2L1xz∗

φ1
+

b2L2yz∗

φ1

χ21 =−
L4u4wy∗z∗

w∗φ1
+

L4u4yz∗

φ
−L4u1z∗

ξ31 =−
a2L1xz

φ
− b2L2yz

φ

χ31 =−
L4u5w∗z

z∗
+

L4u4y∗z
φ1

+L4u1z

Ψ = a2L1x∗+b2L2y∗−L4u4w∗

g1(θ1,θ2) =−
a2L1 +b2L2

2(m+1)L4
+

θ1u4(−y∗

2θ1(m+1)w∗
−u1 +u4

g2(θ1,θ2) =−
a2L1 +b2L2

(2(m+1))L4
+

1
2

θ1(m+1)u4y∗− u5w∗

z∗
+u1

Expressions from equation (16)

a11 =−
a2 (s3 + z∗)

m(s3 + s4 +w∗+ z∗)+ s1 + s2 + x∗+ y∗
+

a2 (s1 + x∗)(s3 + z∗)
(m(s3 + s4 +w∗+ z∗)+ s1 + s2 + x∗+ y∗)2

−a1 (s2 + y∗)−2s1− s2−2x∗− y∗+1

a12 =
a2 (s1 + x∗)(s3 + z∗)

(m(s3 + s4 +w∗+ z∗)+ s1 + s2 + x∗+ y∗)2 −a1 (s1 + x∗)− s1− x∗

a13 =−
a2 (s1 + x∗)(ms4 +mw∗+ s1 + s2 + x∗+ y∗)

(ms3 +ms4 +mw∗+mz∗+ s1 + s2 + x∗+ y∗)2

a14 =
a2m(s1 + x∗)(s3 + z∗)

(m(s3 + s4 +w∗+ z∗)+ s1 + s2 + x∗+ y∗)2

a21 = (s2 + y∗)
(

a1 +
b2 (s3 + z∗)

(m(s3 + s4 +w∗+ z∗)+ s1 + s2 + x∗+ y∗)2

)

(19)
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a22 = a1 (s1 + x∗)− b2 (s3 + z∗)
m(s3 + s4 +w∗+ z∗)+ s1 + s2 + x∗+ y∗

+
b2 (s2 + y∗)(s3 + z∗)

(m(s3 + s4 +w∗+ z∗)+ s1 + s2 + x∗+ y∗) 2 −b1

a23 =−
b2 (s2 + y∗)(ms4 +mw∗+ s1 + s2 + x∗+ y∗)

(ms3 +ms4 +mw∗+mz∗+ s1 + s2 + x∗+ y∗) 2

a24 =
b2m(s2 + y∗)(s3 + z∗)

(m(s3 + s4 +w∗+ z∗)+ s1 + s2 + x∗+ y∗) 2

a31 = (s3 + z∗)
(

u4 (s2 + y∗)
(m(s3 + s4 +w∗+ z∗)+ s1 + s2 + x∗+ y∗) 2 +

u1 (s3 + z∗)
(s1 + x∗) 2

)
a32 =−

u4 (s3 + z∗)(ms3 +ms4 +mw∗+mz∗+ s1 + x∗)
(ms3 +ms4 +mw∗+mz∗+ s1 + s2 + x∗+ y∗) 2

a33 =−
u4 (s2 + y∗)

m(s3 + s4 +w∗+ z∗)+ s1 + s2 + x∗+ y∗
+

mu4 (s2 + y∗)(s3 + z∗)
(m(s3 + s4 +w∗+ z∗)+ s1 + s2 + x∗+ y∗) 2

−u3 (s4 +w∗)− 2u1 (s3 + z∗)
s1 + x∗

+u1

a34 =
mu4 (s2 + y∗)(s3 + z∗)

(m(s3 + s4 +w∗+ z∗)+ s1 + s2 + x∗+ y∗) 2 −u3 (s3 + z∗)+u5

a41 =−
u4 (s2 + y∗)(s3 + z∗)

(m(s3 + s4 +w∗+ z∗)+ s1 + s2 + x∗+ y∗) 2

a42 =
u4 (s3 + z∗)(ms3 +ms4 +mw∗+mz∗+ s1 + x∗)
(ms3 +ms4 +mw∗+mz∗+ s1 + s2 + x∗+ y∗) 2

a43 =
u4 (s2 + y∗)

m(s3 + s4 +w∗+ z∗)+ s1 + s2 + x∗+ y∗
− mu4 (s2 + y∗)(s3 + z∗)

(m(s3 + s4 +w∗+ z∗)+ s1 + s2 + x∗+ y∗) 2

+u3 (s4 +w∗)

a44 =−
mu4 (s2 + y∗)(s3 + z∗)

(m(s3 + s4 +w∗+ z∗)+ s1 + s2 + x∗+ y∗) 2 +u3 (s3 + z∗)−u5

B1 =−s1 ((a1 +1)s2 + s1)(m(w∗+ z∗)+ x∗+ y∗)4−a2 (m(s3 + s4−w∗− z∗)+ s1 + s2− x∗− y∗)

(z∗ (ms4 + s1 + s2)− s3 (mw∗+ x∗+ y∗))(s1 (m(w∗+ z∗)+ y∗)− x∗ (m(s3 + s4)+ s2))

(m(w∗+ z∗)+ x∗+ y∗)−4

B2 = a1s1s2 (m(w∗+ z∗)+ x∗+ y∗)4 +b2 (m(s3 + s4−w∗− z∗)+ s1 + s2− x∗− y∗)(z∗ (ms4 + s1 + s2)

− s3 (mw∗+ x∗+ y∗)(y∗ (m(s3 + s4)+ s1)− s2 (m(w∗+ z∗)+ x∗))(m(w∗+ z∗)+ x∗+ y∗)−4

(20)
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