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Abstract: The method of clustering is a probabilistic model based on clustering technique. The clustering method 

is often based on the assumption that data comes from a mixed model. One such mixture model is the beta mixed 

model. This mixed model can be used for the case of one variable or multiple variables. However, for the mixed 

beta model of the double variable, each variable is assumed to be independent.  In this article, we propose a mixed 

beta model with correlated variables. The parameter estimation method uses the MLE method via the EM 

algorithm. While determining the optimal number of clusters using the ICL-BIC criteria. Monte Carlo simulation 

is used to see the performance of the model. 
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1. INTRODUCTION 

Cluster analysis is a double variable analysis which aims to group objects or data so that objects 

or data that are in the same cluster have relatively homogeneous properties than objects or data 

that are in different clusters (Johnson et al. 2007; Zickmund et al.  2010). 

The concept of forming groups is a hierarchical method, a non-hierarchical method and a 

probability clustering method. The probability clustering method is a probabilistic model based 
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clustering technique which assumes that the data follows a certain distribution. Hordering 

methods have the opportunity to be widely used in various applications such as market 

segmentation, image segmentation (Blekas et al. 2005 and Stauffer et al. 1999), handwriting 

recognition (Revow et al. 1996), and document clustering (Hoffman 2001). The clustering 

method has the opportunity to try to optimize the compatibility between the data observed with 

a mathematical model using a probabilistic approach. The method is often based on the 

assumption that the data comes from a mixture (mixture) of the distribution of opportunities, 

for example Poisson, beta, normal, lognormal, and Erlang. Thus the clustering problem is 

transformed into the parameter estimation problem because the data is modeled by a mixed 

distribution of the cluster. Data points that have the same distribution can be defined as groups. 

A mixed model with too many clusters might overfit with data, whereas a mixed model with 

too few clusters is not flexible enough to approach the real model. 

Sahu et al. (2016) discusses the mixed model of beta double variable with the estimated 

parameters using the EM algorithm and the determination of the optimal cluster using the ICL-

BIC deterministic method (integrated classification likelihood Bayesian information criterion). 

Sahu et al. (2016) assumes that there is no correlation between the variables. Until now there 

has been no research that discusses the mixed model beta two variables that involve 

correlations between variables. Olkin and Liu (2003) discuss the problem of beta formation of 

two variables based on the existence of correlations between variables while research related 

to the mixed beta model of two variables usually assumes no correlation between variables. 

Related to the results of research by Sahu et al. (2016) and Olkin and Liu (2003), we need 

another method in determining the optimal optimal number of groups in the mixed beta model 

of two variables by involving correlations between the variables. The purpose of this article is 

to discuss the mixed beta model of two variables involving correlation between variables by 

utilizing the results of research from Sahu et al. (2016) and Olkin and Liu (2003). Monte Carlo 

simulations will be used to evaluate the performance of the proposed method. 

 

2.  MIXED BETA TWO VARIABLE MODEL 

The density function of opportunities for variables and those that follow the beta mixture 

distribution of two variables (Olkin and Liu, 2003) are 

𝑓𝑋1,𝑋2(𝑥1, 𝑥2) =∑𝛼𝑗
𝑥1
𝑎𝑗−1𝑥2

𝑏𝑗−1(1 − 𝑥1)
𝑏𝑗+𝑐𝑗−1(1 − 𝑥2)

𝑎𝑗+𝑐𝑗−1

𝐵(𝑎𝑗, 𝑏𝑗 , 𝑐𝑗)(1 − 𝑥1𝑥2)
𝑎𝑗+𝑏𝑗+𝑐𝑗

𝑘

𝑗=1

                                         (1) 
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where 𝛼𝑗 > 0, 𝛼1 + 𝛼2 +⋯+ 𝛼𝐶 = 1 with 𝑎𝑗 > 0, 𝑏𝑗 > 0 and 𝑐𝑗 > 0 for 𝑗 = 1, 2,⋯ , 𝑘 are 

parameters of the beta mixture distribution of two variables, and 

𝐵(𝑎𝑗 , 𝑏𝑗 , 𝑐𝑗) =
Γ(𝑎𝑗)Γ(𝑏𝑗)Γ(𝑐𝑗)

Γ(𝑎𝑗 + 𝑏𝑗 + 𝑐𝑗)
, for 𝑗 = 1, 2,⋯ , 𝑘. 

Figure 1 illustrates the opportunity density density curve for the distribution of beta mixes of 

two variables for various combinations of parameters.  The expected value and variety of 

variables and can be obtained directly from the marginal distribution as follows: 

𝐸(𝑋1) =∑𝑤𝑗
𝑎𝑗

𝑎𝑗 + 𝑐𝑗

𝑘

𝑗=1

, 

𝑉𝑎𝑟(𝑋1) =∑𝑤𝑗 ((
𝑎𝑗

𝑎𝑗 + 𝑐𝑗
)

2

+
𝑎𝑗𝑐𝑗

(𝑎𝑗 + 𝑐𝑗)
2
(𝑎𝑗 + 𝑐𝑗 + 1)

)

𝑘

𝑗=1

− (∑𝑤𝑗
𝑎𝑗

𝑎𝑗 + 𝑐𝑗

𝑘

𝑗=1

)

2

, 

𝐸(𝑋2) =∑𝑤𝑗
𝑏𝑗

𝑏𝑗 + 𝑐𝑗

𝑘

𝑗=1

 

𝑉𝑎𝑟(𝑋2) =∑𝑤𝑗 ((
𝑏𝑗

𝑏𝑗 + 𝑐𝑗
)

2

+
𝑏𝑗𝑐𝑗

(𝑏𝑗 + 𝑐𝑗)
2
(𝑏𝑗 + 𝑐𝑗 + 1)

)

𝑘

𝑗=1

− (∑𝑤𝑗
𝑏𝑗

𝑏𝑗 + 𝑐𝑗

𝑘

𝑗=1

)

2

, 

the density function of the opportunity for the distribution of a beta mixture of two variables 

can be written in another form, namely: 

𝑓𝑋1,𝑋2(𝑥1, 𝑥2) =∑𝑤𝑗𝑓𝑋1,𝑋2
𝑗

(𝑥1, 𝑥2)

𝑘

𝑗=1

 

with 

𝑓𝑋1,𝑋2
𝑗 (𝑥1, 𝑥2) =∑𝑑𝑗𝐴(𝑖)

𝑥1
𝑎𝑗+𝑖−1(1 − 𝑥1)

𝑏𝑗+𝑐𝑗−1

𝐵(𝑎𝑗 + 𝑖, 𝑏𝑗 + 𝑐𝑗)

∞

𝑖=0

𝑥2
𝑏𝑗+𝑖−1(1 − 𝑥2)

𝑎𝑗+𝑐𝑖−1

𝐵(𝑏𝑗 + 𝑖, 𝑎𝑗 + 𝑐𝑗
 

The form of the opportunity density function above can be used to calculate the expected value 

of two variables 𝑋1 and 𝑋2, i.e. 

𝐸(𝑋1
𝑘𝑋2

𝑙) = ∫∫𝑥𝑘𝑦𝑙
1

0

∑𝑤𝑗𝑓𝑋,𝑌
𝑗 (𝑥, 𝑦)𝑑𝑥𝑑𝑦

𝑘

𝑗=1

1

0

 

𝐸(𝑋1
𝑘𝑋2

𝑙) =∑𝑤𝑗

𝑘

𝑗=1

∫∫𝑥𝑘𝑦𝑙
1

0

∑𝑤𝑗𝑓𝑋,𝑌
𝑗 (𝑥, 𝑦)𝑑𝑥𝑑𝑦

𝑘

𝑗=1

1

0
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                  = ∑𝑤𝑗

𝑘

𝑗=1

𝐹23 (𝑎𝑗 + 𝑘, 𝑏𝑗 + 𝑙, 𝑠𝑗; 𝑠𝑗 + 𝑘, 𝑠𝑗 + 𝑙; 1)                                                          (2) 

where 𝑠𝑗 = 𝑎𝑗 + 𝑏𝑗 + 𝑐𝑗 

 

  
(i)  

 

(ii) 

  
(iii) (iv) 

 

Figure 1. Density Function for Beta Distribution of Two Variable Variants for different value of parameter 

Combinations: (i) 𝑤1 = 0,35, 𝑤2 = 0,65, 𝑎1 = 15, 𝑎2 = 30, 𝑏1 = 25, and 𝑏2 = 30, 𝑐1 = 25, and 𝑐2 = 15; (ii) 

𝑤1 = 0,4, 𝑤2 = 0,6, 𝑎1 = 15, 𝑎2 = 25, 𝑏1 = 25, and 𝑏2 = 30, 𝑐1 = 35, and 𝑐2 = 20; (iii) 𝑤1 = 0,45, 𝑤2 =
0,55, 𝑎1 = 35, 𝑎2 = 15, 𝑏1 = 25, and 𝑏2 = 35, 𝑐1 = 20, and 𝑐2 = 35; (iv) 𝑤1 = 0,5, 𝑤2 = 0,5, 𝑎1 = 35, 𝑎2 =

15, 𝑏1 = 25, and 𝑏2 = 35, 𝑐1 = 45, and 𝑐2 = 35 

 

3. MLE FOR THE BVARIATE BETA MIXTURE MODEL PARAMETER 

In the following, we will look for estimators of the beta distribution parameters of two variables 

using the maximum likelihood method. Suppose a random sample is sized 𝑛 , i.e. 

(𝑋1, 𝑌1), (𝑋2, 𝑌2), … , (𝑋𝑛, 𝑌𝑛) from the distribution of a beta mixture of two Olkin-Liu variables 

such as Equation (1). The realization of the random sample is (𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛).  

The likelihood function for the random sample is (Olkin and Liu, 2003) 

𝐿1(𝒂, 𝒃, 𝒄, 𝜶) =∏{∑𝛼𝑗
𝑥1𝑖

𝑎𝑗−1𝑥2𝑖
𝑏𝑗−1(1 − 𝑥1𝑖)

𝑏𝑗+𝑐𝑗−1(1 − 𝑥2𝑖)
𝑎𝑗+𝑐𝑗−1

𝐵(𝑎𝑗, 𝑏𝑗, 𝑐𝑗)(1 − 𝑥1𝑖𝑥2𝑖)
𝑎𝑗+𝑏𝑗+𝑐𝑗

𝑘

𝑗=1

}

𝑛

𝑖=1
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with 𝒂 = (𝑎1, 𝑎2, … , 𝑎𝑘), 𝒃 = (𝑏1, 𝑏2, … , 𝑏𝑘), 𝒄 = (𝑐1, 𝑐2, … , 𝑐𝑘), 𝜶 = (𝜶1, 𝜶2, … , 𝜶𝑘). 

The possibility function is: 

𝑙1(𝒂, 𝒃, 𝒄, 𝜶) =∑ln{∑𝛼𝑗
𝑥1𝑖

𝑎𝑗−1𝑥2𝑖
𝑏𝑗−1(1 − 𝑥1𝑖)

𝑏𝑗+𝑐𝑗−1(1 − 𝑥2𝑖)
𝑎𝑗+𝑐𝑗−1

𝐵(𝑎𝑗, 𝑏𝑗 , 𝑐𝑗)(1 − 𝑥1𝑖𝑥2𝑖)
𝑎𝑗+𝑏𝑗+𝑐𝑗

𝑘

𝑗=1

}

𝑛

𝑖=1

 

The log-possibility function is 

𝑙1(𝒂, 𝒃, 𝒄, 𝜶) =∑ln{∑𝛼𝑗
𝑥1𝑖

𝑎𝑗−1𝑥2𝑖
𝑏𝑗−1(1 − 𝑥1𝑖)

𝑏𝑗+𝑐𝑗−1(1 − 𝑥2𝑖)
𝑎𝑗+𝑐𝑗−1

𝐵(𝑎𝑗, 𝑏𝑗 , 𝑐𝑗)(1 − 𝑥1𝑖𝑥2𝑖)
𝑎𝑗+𝑏𝑗+𝑐𝑗

𝑘

𝑗=1

}

𝑛

𝑖=1

 

The log-possibility function above is difficult to maximize because it contains a logarithm of 

the sum.  One way to overcome the above problem is to use the EM algorithm. For example 

𝒁 = (𝑍𝑖𝑗; 𝑖 = 1,2, … , 𝑛𝑖 , 𝑗 = 1,2, … , 𝑘), which is the latent variable that determines the group 

with observations originating, 

𝑍𝑖𝑗 = {
1 ; observations (𝑥1𝑖, 𝑥2𝑖) derived from distribution 𝑓𝑗

0 ; others
 

The possibility function is: 

𝐿2(𝒂, 𝒃, 𝒄, 𝜶) =∑∑𝑍𝑖𝑗 ln (𝛼𝑗
𝑥1𝑖

𝑎𝑗−1𝑥2𝑖
𝑏𝑗−1(1 − 𝑥1𝑖)

𝑏𝑗+𝑐𝑗−1(1 − 𝑥2𝑖)
𝑎𝑗+𝑐𝑗−1

𝐵(𝑎𝑗 , 𝑏𝑗 , 𝑐𝑗)(1 − 𝑥1𝑖𝑥2𝑖)
𝑎𝑗+𝑏𝑗+𝑐𝑗

)

𝑍𝑖𝑗𝑘

𝑗=1

𝑛

𝑖=1

 

The log-possibility function is: 

𝑙2(𝒂, 𝒃, 𝒄, 𝜶) =∑∑𝑍𝑖𝑗 ln (𝛼𝑗
𝑥1𝑖

𝑎𝑗−1𝑥2𝑖
𝑏𝑗−1(1 − 𝑥1𝑖)

𝑏𝑗+𝑐𝑗−1(1 − 𝑥2𝑖)
𝑎𝑗+𝑐𝑗−1

𝐵(𝑎𝑗, 𝑏𝑗 , 𝑐𝑗)(1 − 𝑥1𝑖𝑥2𝑖)
𝑎𝑗+𝑏𝑗+𝑐𝑗

) .          (3)

𝑘

𝑗=1

𝑛

𝑖=1

 

 

Stage E (expectation stage) 

Substitute 𝑍𝑗 in Equation (3) to be 𝐸(𝑍𝑖𝑗) = 𝑇𝑖𝑗, i.e. 

𝐸[𝑙2(𝒂, 𝒃, 𝒄, 𝜶)] =∑∑𝑇𝑖𝑗 ln (𝛼𝑗
𝑥1𝑖

𝑎𝑗−1𝑥2𝑖
𝑏𝑗−1(1 − 𝑥1𝑖)

𝑏𝑗+𝑐𝑗−1(1 − 𝑥2𝑖)
𝑎𝑗+𝑐𝑗−1

𝐵(𝑎𝑗, 𝑏𝑗 , 𝑐𝑗)(1 − 𝑥1𝑖𝑥2𝑖)
𝑎𝑗+𝑏𝑗+𝑐𝑗

) .    (4)

𝑘

𝑗=1

𝑛

𝑖=1

 

with 𝑇𝑖𝑗 is 

𝑇𝑖𝑗 = 𝑃(𝑍𝑖𝑗 = 1|(𝑋𝑖, 𝑌𝑗) = (𝑥𝑖 , 𝑦𝑗) ; 𝑎, 𝑏, 𝑐, 𝛼)

=

𝛼𝑗
𝑥1𝑖

𝑎𝑗−1𝑥2𝑖
𝑏𝑗−1(1 − 𝑥1𝑖)

𝑏𝑗+𝑐𝑗−1(1 − 𝑥2𝑖)
𝑎𝑗+𝑐𝑗−1

𝐵(𝑎𝑗 , 𝑏𝑗 , 𝑐𝑗)(1 − 𝑥1𝑖𝑥2𝑖)
𝑎𝑗+𝑏𝑗+𝑐𝑗

∑ 𝛼𝑙
𝑥1𝑖𝑎𝑙−1𝑥2𝑖𝑏𝑙−1(1 − 𝑥1𝑖)𝑏𝑙+𝑐𝑙−1(1 − 𝑥2𝑖)𝑎𝑙+𝑐𝑙−1

𝐵(𝑎𝑙, 𝑏𝑙, 𝑐𝑙)(1 − 𝑥1𝑖𝑥2𝑖)𝑎𝑙+𝑏𝑙+𝑐𝑙
𝑘
𝑙=1
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Stage M (maximization stage) 

Maximize Equation (4) to estimate 𝒂, 𝒃, 𝒄, 𝜶 

𝜕𝐸[𝑙2(𝒂, 𝒃, 𝒄, 𝜶)]

𝜕𝛼𝑗
= 0, 

will get an estimate for the parameter 𝜶 = (𝛼1, 𝛼2, … , 𝛼𝑘), i.e. 

𝑤̂𝑗 =
1

𝑛
∑𝑇𝑖𝑗   ;   𝑗 = 1, 2, … 𝑘

𝑛

Γ=1

. 

Whereas the estimated parameters 𝒂 = (𝑎1, 𝑎2, … , 𝑎𝑘), 𝒃 = (𝑏1, 𝑏2, … , 𝑏𝑘), dan 𝒄 =

(𝑐1, 𝑐2, … , 𝑐𝑘) is the solution of the following equations 

𝜕𝐸[𝑙2(𝒂, 𝒃, 𝒄, 𝜶)]

𝜕𝑎𝑗
= 0; 𝑗 = 1,2, … 𝑘, 

𝜕𝐸[𝑙2(𝒂, 𝒃, 𝒄, 𝜶)]

𝜕𝑏𝑗
= 0; 𝑗 = 1,2, … 𝑘, 

𝜕𝐸[𝑙2(𝒂, 𝒃, 𝒄, 𝜶)]

𝜕𝑐𝑗
= 0; 𝑗 = 1,2, … 𝑘, 

with 

𝜕𝐸[𝑙2(𝒂, 𝒃, 𝒄, 𝜶)]

𝜕𝑎𝑗
=∑𝑇𝑖𝑗 [ln 𝑥1𝑖 + ln(1 − 𝑥2𝑖) − ln(1 − 𝑥1𝑖𝑥2𝑖) +

Γ′(𝑎𝑗 + 𝑏𝑗 + 𝑐𝑗)

Γ(a𝑗 + 𝑏𝑗 + 𝑐𝑗)
−
Γ′(𝑏𝑗)

Γ(𝑏𝑗)
]

𝑛

Γ=1

 

𝜕𝐸[𝑙2(𝒂, 𝒃, 𝒄, 𝜶)]

𝜕𝑏𝑗
=∑𝑇𝑖𝑗 [ln 𝑥2𝑖 + ln(1 − 𝑥1𝑖) − ln(1 − 𝑥1𝑖𝑥2𝑖) +

Γ′(𝑎𝑗 + 𝑏𝑗 + 𝑐𝑗)

Γ(a𝑗 + 𝑏𝑗 + 𝑐𝑗)
−
Γ′(𝑎𝑗)

Γ(𝑎𝑗)
]

𝑛

Γ=1

, 

𝜕𝐸[𝑙2(𝒂, 𝒃, 𝒄, 𝜶)]

𝜕𝑐𝑗
=∑𝑇𝑖𝑗 [ln(1 − 𝑥1𝑖) + ln(1 − 𝑥2𝑖) − ln(1 − 𝑥1𝑖𝑥2𝑖) +

Γ′(𝑎𝑗 + 𝑏𝑗 + 𝑐𝑗)

Γ(a𝑗 + 𝑏𝑗 + 𝑐𝑗)
−
Γ′(𝑏𝑗)

Γ(𝑏𝑗)
]

𝑛

Γ=1

. 

There is no analytical solution for the alleged parameters 𝒂 = (𝑎1, 𝑎2, … , 𝑎𝑘) , 𝒃 =

(𝑏1, 𝑏2, … , 𝑏𝑘) , and 𝒄 = (𝑐1, 𝑐2, … , 𝑐𝑘) . Numerical solutions using the Newton-Raphson 

iteration method can be used to obtain the expected parameters 𝒂 = (𝑎1, 𝑎2, … , 𝑎𝑘) , 𝒃 =

(𝑏1, 𝑏2, … , 𝑏𝑘), and 𝒄 = (𝑐1, 𝑐2, … , 𝑐𝑘). Iteration equation to get the estimated parameters 𝒂 =

(𝑎1, 𝑎2, … , 𝑎𝑘), 𝒃 = (𝑏1, 𝑏2, … , 𝑏𝑘), and 𝒄 = (𝑐1, 𝑐2, … , 𝑐𝑘) is 

(
𝒂(𝑘+1)

𝒃(𝑘+1)

𝒄(𝑘+1)
) = (

𝒂(𝑘)

𝒃(𝑘)

𝒄(𝑘)
) −

(

  
 

𝜕𝐸[𝑙2(𝒂,𝒃,𝒄,𝜶)]

𝜕𝑎𝑗

𝜕𝐸[𝑙2(𝒂,𝒃,𝒄,𝜶)]

𝜕𝑏𝑗

𝜕𝐸[𝑙2(𝒂,𝒃,𝒄,𝜶)]

𝜕𝑐𝑗 )

  
 
×

(

 
 
 

𝜕2𝐸[𝑙2(𝒂,𝒃,𝒄,𝜶)]

(𝜕𝑎𝑗)
2

𝜕2𝐸[l2(𝑎,𝑏,𝑐,𝛼)]

𝜕𝑎𝑗𝜕𝑏𝑗

𝜕2𝐸[l2(𝑎,𝑏,𝑐,𝛼)]

𝜕𝑎𝑗𝜕𝑐𝑗

𝜕2𝐸[𝑙2(𝒂,𝒃,𝒄,𝜶)]

𝜕𝑏𝑗𝜕𝑎𝑗

𝜕2𝐸[𝑙2(𝒂,𝒃,𝒄,𝜶)]

(𝜕𝑏𝑗)
2

𝜕2𝐸[l2(𝑎,𝑏,𝑐,𝑤)]

𝜕𝑏𝑗𝜕𝑐𝑗

𝜕2𝐸[𝑙2(𝒂,𝒃,𝒄,𝜶)]

𝜕𝑐𝑗𝜕𝑎𝑗

𝜕2𝐸[𝑙2(𝒂,𝒃,𝒄,𝜶)]

𝜕𝑐𝑗𝜕𝑏𝑗

𝜕2𝐸[𝑙2(𝒂,𝒃,𝒄,𝜶)]

(𝜕𝑐𝑗)
2 )

 
 
 

−1

 (5) 

with 
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𝜕2𝐸[𝑙2(𝒂, 𝒃, 𝒄, 𝜶)]

(𝜕𝑎𝑗)2
=∑𝑇𝑖𝑗[Ψ

′(𝑎𝑗, 𝑏𝑗 , 𝑐𝑗) − Ψ
′(𝑎𝑗)]

𝑛

𝑖=1

, 

𝜕2𝐸[𝑙2(𝒂, 𝒃, 𝒄, 𝜶)]

(𝜕𝑏𝑗)2
=∑𝑇𝑖𝑗[Ψ

′(𝑎𝑗, 𝑏𝑗 , 𝑐𝑗) − Ψ
′(𝑏𝑗)]

𝑛

𝑖=1

, 

𝜕2𝐸[𝑙2(𝒂, 𝒃, 𝒄, 𝜶)]

(𝜕𝑐𝑗)2
=∑𝑇𝑖𝑗[Ψ

′(𝑎𝑗, 𝑏𝑗 , 𝑐𝑗) − Ψ
′(𝑐𝑗)]

𝑛

𝑖=1

, 

𝜕2𝐸[𝑙2(𝒂, 𝒃, 𝒄, 𝜶)]

𝜕𝑏𝑗𝜕𝑎𝑗
=
𝜕2𝐸[l2(𝑎, 𝑏, 𝑐, 𝛼)]

𝜕𝑎𝑗𝜕𝑏𝑗
=∑𝑇𝑖𝑗[Ψ

′(𝑎𝑗 + 𝑏𝑗 + 𝑐𝑗)]

𝑛

𝑖=1

, 

𝜕2𝐸[𝑙2(𝒂, 𝒃, 𝒄, 𝜶)]

𝜕𝑐𝑗𝜕𝑎𝑗
=
𝜕2𝐸[l2(𝑎, 𝑏, 𝑐, 𝛼)]

𝜕𝑎𝑗𝜕𝑐𝑗
=∑𝑇𝑖𝑗[Ψ

′(𝑎𝑗 + 𝑏𝑗 + 𝑐𝑗)]

𝑛

𝑖=1

, 

𝜕2𝐸[𝑙2(𝒂, 𝒃, 𝒄, 𝜶)]

𝜕𝑐𝑗𝜕𝑏𝑗
=
𝜕2𝐸[l2(𝑎, 𝑏, 𝑐, 𝛼)]

𝜕𝑏𝑗𝜕𝑐𝑗
=∑𝑇𝑖𝑗[Ψ

′(𝑎𝑗 + 𝑏𝑗 + 𝑐𝑗)]

𝑛

𝑖=1

. 

The initial values for the Newton-Raphson iteration process above use the moment estimation 

results for the parameters of the beta distribution, i.e. 

𝑎̂𝑗
(0)
= 𝑥̅𝑗 (

𝑥̅𝑗(1 − 𝑥̅𝑗)

𝑆𝑋𝑗
2 − 1)                                                     

𝑏̂𝑗
(0)
= 𝑦̅𝑗 (

𝑦̅𝑗(1 − 𝑦̅𝑗)

𝑆𝑌𝑗
2 − 1)                                                    

𝑐̂𝑗
(0)
=

(1 − 𝑥̅𝑗) (
𝑥̅𝑗(1 − 𝑥̅𝑗)

𝑆𝑋𝑗
2 − 1) + (1 − 𝑦̅𝑗) (

𝑦̅𝑗(1 − 𝑦̅𝑗)

𝑆𝑌𝑗
2 − 1)

2
 .                                     (6) 

where 𝑥̅𝑗  and 𝑆𝑋𝑗
2  each state the mean and variety of examples for the 𝑋  variable of the 𝑗 

cluster.  Whereas 𝑦̅𝑗 and 𝑆𝑌𝑗
2  each state the mean and variety of examples for the 𝑌 variable of 

the 𝑗 cluster. 

 

4. SIMULATION STUDY 

In this section an evaluation of the performance of the mixed beta two variables using the 

Monte Carlo simulation will be discussed. The data that will be used to evaluate the distribution 

of beta mix two variables is simulation data generated from MATLAB software from two 

distribution cases. Case 1, the simulation data are generated from the beta mixture distribution 

of two variables proposed in this paper which involve correlations between variables. Case 2, 
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simulation data generated from the distribution of beta mixture developed by Sahu et al. (2016) 

which does not involve correlation between variables. 

Case Simulation Data 1 

Case 1 simulation data is obtained from the generation of data through MATLAB software 

from the beta mixture distribution of two variables with the number of groups 2 and sample 

sizes 100, 300 and 500. Pearson correlation between the two variables tried is 6, namely 2 low 

Pearson correlation values (correlation value between 0.1 to 0.2), 2 moderate Pearson 

correlation values (correlation values between 0.5 to 0.6) and 2 high Pearson correlation values 

(correlation values between 0.8 to 0.9).  There are 6 combination parameters for the beta mixed 

model two variables that will be tried (Table 1). 

 

Table 1. Combinations of Beta Mixed Model Parameters Two variables 

Case 1 for Monte Carlo Simulation 

No. 𝑎1 𝑎2 𝑏1 𝑏2 𝑐1 𝑐2 𝑤1 𝑤2 
Pearson 

Correlation 

1 35 25 25 35 30 35 0,35 0,65 Low 

2 35 25 27 35 30 35 0,35 0,65 Low 

3 35 15 25 35 20 35 0,35 0,65 Moderate 

4 25 25 20 40 45 35 0,35 0,65 Moderate 

5 15 30 25 30 25 16 0,35 0,65 High 

6 15 30 25 30 35 16 0,35 0,65 High 

Thus there are 18 possible data scenarios to be simulated. Each data scenario is generated 1,000 

times with a certain sample size and a certain Pearson correlation coefficient value. All data 

scenarios are presented in Table 2. 

 

Table 2. Case Simulation Data Scenarios 1 

Scenario 

Number 

Parameter 

Combination 

Number 𝑛 
Pearson 

Correlation 

1 1 100 Low 

2 2 100 Low 

3 3 100 Moderate 

4 4 100 Moderate 

5 5 100 High 

6 6 100 High 

7 1 300 Low 

8 2 300 Low 

9 3 300 Moderate 

10 4 300 Moderate 

11 5 300 High 

12 6 300 High 

13 1 500 Low 

14 2 500 Low 

15 3 500 Moderate 

16 4 500 Moderate 

17 5 500 High 

18 6 500 High 
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Case Simulation Data 2 

Case 2 simulation data were obtained from the generation of data through MATLAB software 

from the beta mixture distribution of two variables with the number of groups 2 and sample 

sizes of 100, 300 and 500. Table 3 presents 12 combinations of parameters tested. The 

combination of parameters is made in such a way that clearly visible distance between the 

center of the group. Distances between center groups are categorized as close, medium and far.  

Because the sample size was tested there were 3, and the combination of parameters there were 

12, overall, 36 data case scenarios were generated (see Table 4). 

 

Table 3. Parameters of the Beta Variable Mixed Model Combination 

  Case 2 for Monte Carlo Simulation 

No. 𝑎11 𝑎12 𝑎21 𝑎22 𝑏11 𝑏12 𝑏21 𝑏22 𝛼1 𝛼2 

Distance 

Between Cluster 

Center 

1 30 40 25 35 30 20 25 20 0,35 0,65 Close 

2 25 40 25 35 40 30 35 20 0,35 0,65 Medium 

3 20 40 20 35 40 20 35 20 0,35 0,65 Long 

4 40 20 20 25 25 25 40 20 0,35 0,65 Close 

5 40 20 20 30 25 25 40 20 0,35 0,65 Medium 

6 40 20 20 35 20 35 40 20 0,35 0,65 Long 

7 40 15 40 25 25 25 30 20 0,35 0,65 Close 

8 40 15 40 25 20 25 30 20 0,35 0,65 Medium 

9 40 15 40 25 15 25 30 20 0,35 0,65 Long 

10 35 25 20 40 35 25 45 35 0,35 0,65 Close 

11 35 25 20 40 35 25 50 30 0,35 0,65 Medium 

12 35 25 20 40 35 25 50 20 0,35 0,65 Long 

 

Table 4. Case 2 Simulation Data Scenario 

Scenario 

Number 

Parameter 

Combination 

Number 

𝑛 

Pearson 

Correlation 

1 1 100 Close 

2 2 100 Medium 

3 3 100 Long 

4 1 300 Close 

5 2 300 Medium 

6 3 300 Long 

7 1 500 Close 

8 2 500 Medium 

9 3 500 Long 

10 4 100 Close 

11 5 100 Medium 

12 6 100 Long 

13 4 300 Close 

14 5 300 Medium 

15 6 300 Long 

16 4 500 Close 

17 5 500 Medium 

18 6 500 Long 

19 7 100 Close 
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20 8 100 Medium 

21 9 100 Long 

22 7 300 Close 

23 8 300 Medium 

24 9 300 Long 

25 7 500 Close 

26 8 500 Medium 

27 9 500 Long 

28 10 100 Close 

29 11 100 Medium 

30 12 100 Long 

31 10 300 Close 

32 11 300 Medium 

33 12 300 Long 

34 10 500 Close 

35 11 500 Medium 

36 12 500 Long 

 

In this section, we will discuss the performance comparison results of the two-variable beta 

mixture model discussed in this paper with the beta mixture model Sahu et al. (2016) for data 

containing correlations. The comparison is done using a Monte Carlo simulation.  The size of 

the comparison used is the percentage of accuracy of the number of groups of the results of 

each model. The results of the comparison are presented in Table 5. 

 

Table 5. Comparison of Proposed Model Performance with Sahu et al Model, for Case 1 

Scenario 

Number 
𝑛 

Pearson 

Correlation 

Percentage of Accuracy 

Number of Cluster 

Proposed 

Model  

Sahu et al. 

Model 

1 100 Low 91,0 0 

2 100 Low 93,8 0 

3 100 Moderate 100 98,5 

4 100 Moderate 100 53,1 

5 100 High 100 98,4 

6 100 High 100 100 

7 300 Low 98,3 0 

8 300 Low 99,3 0 

9 300 Moderate 100 100 

10 300 Moderate 100 69,5 

11 300 High 100 100 

12 300 High 100 100 

13 500 Low 99,7 0 

14 500 Low 100 0 

15 500 Moderate 100 100 

16 500 Moderate 100 77,8 

17 500 High 100 100 

18 500 High 100 100 

 

Based on Table 5 it can be seen that the percentage of accuracy of the number of groups for 

the proposed model in this paper is above 90%. While the percentage accuracy of the number 

of groups for the model of Sahu et al. (2016), at least 0%. This happens for data with low 
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Pearson correlation. Both the proposed model and the Sahu et al. (2016), the greater the Pearson 

correlation value, the greater the accuracy of the number of groups.  Both the proposed model 

and the Sahu et al. (2016), the greater the sample size, the greater the accuracy of the number 

of groups. Based on the results of the comparison of the performance of the proposed model 

with the model of Sahu et al. (2016), which is in Table 5 shows that the percentage of the 

number of groups for the proposed model is greater than the percentage of the number of groups 

for the model of Sahu et al. (2016), except for high correlation measures. This shows that for 

correlated data, the proposed model is better to be used than the Sahu et al. (2016). 

The performance of the method for estimating the parameters of a beta mix two-variable model 

involving correlations proposed in this paper is presented in Tables 6 and 7. Based on Table 

4.4, it appears that the greater the sample size, the EM estimator values for the proposed model 

parameters in this paper are closer to the actual parameter values for all measures of Pearson 

correlation. This means that the larger the sample size, the more accurate the EM estimation 

method in estimating the proposed model parameters in this paper.  Based on Table 4.5, it 

appears that the greater the sample size, the deviation of the EM estimator values for the 

proposed model parameters from the actual parameters is smaller for all measures of Pearson 

correlation. This means that the larger the sample size, the more precise the EM estimation 

method in estimating the parameters of the proposed model in this paper. 

 

 Table 6. Accuracy of EM Estimation Methods for Proposed Models 

Scenario 

Number 
𝑛 

Pearson 

Correlation 

Accuracy for estimators 

𝛼̂1 𝛼̂2 𝑏̂1 𝑏̂2 𝑐̂1 𝑐̂2 𝑤̂1 𝑤̂2 

1 100 Low 39.082 26.470 28.403 36.564 33.722 36.809 0.352 0.648 

2 100 Low 38.849 26.522 31.124 35.947 34.103 36.244 0.348 0.652 

3 100 Moderate 37.292 15.544 26.592 36.306 21.272 36.334 0.349 0.651 

4 100 Moderate 26.653 26.134 21.292 41.832 48.094 36.536 0.350 0.650 

5 100 High 16.311 31.350 27.226 31.354 27.322 16.721 0.351 0.649 

6 100 High 15.931 31.111 26.592 31.145 37.224 16.604 0.351 0.649 

7 300 Low 36.761 25.428 26.126 35.578 31.346 35.628 0.349 0.651 

8 300 Low 36.734 25.476 28.322 35.634 31.465 35.659 0.350 0.650 

9 300 Moderate 35.625 15.137 25.459 35.319 20.347 35.325 0.349 0.651 

10 300 Moderate 25.550 25.438 20.408 40.740 46.001 35.633 0.351 0.649 

11 300 High 15.311 30.442 25.534 30.446 25.565 16.216 0.350 0.650 

12 300 High 15.341 30.198 25.554 30.191 35.830 16.110 0.350 0.650 

13 500 Low 35.957 25.225 25.575 35.361 30.683 35.371 0.348 0.652 

14 500 Low 35.914 25.268 27.600 35.443 30.688 35.423 0.351 0.649 

15 500 Moderate 35.491 15.060 25.339 35.115 20.277 35.124 0.350 0.650 

16 500 Moderate 25.342 25.176 20.259 40.312 45.569 35.252 0.349 0.651 

17 500 High 15.249 30.361 25.445 30.344 25.457 16.183 0.349 0.651 

18 500 High 15.160 30.144 25.266 30.163 35.385 16.071 0.350 0.650 
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Table 7. Precision of the EM Estimation Method for the Proposed Model 

Scenario 

Number 
𝑛 

Pearson 

Correlation 

Precision for estimators 

𝛼̂1 𝛼̂2 𝑏̂1 𝑏̂2 𝑐̂1 𝑐̂2 𝑤̂1 𝑤̂2 

1 100 Low 106.425 19.083 59.845 52.892 71.947 47.957 0.006 0.006 

2 100 Low 113.029 22.460 78.953 56.716 81.761 53.402 0.007 0.007 

3 100 Moderate 54.274 4.663 26.030 25.768 16.953 26.042 0.002 0.002 

4 100 Moderate 32.393 14.291 18.977 38.962 108.509 27.236 0.003 0.003 

5 100 High 14.143 27.699 40.320 26.263 45.234 6.775 0.003 0.003 

6 100 High 10.602 18.467 29.657 18.486 60.142 5.128 0.002 0.002 

7 300 Low 40.929 5.938 15.822 15.530 24.273 14.697 0.002 0.002 

8 300 Low 42.123 6.020 20.584 16.918 25.198 15.927 0.003 0.003 

9 300 Moderate 15.139 1.181 7.398 6.807 4.742 6.766 0.001 0.001 

10 300 Moderate 9.619 4.468 5.465 12.585 32.143 8.935 0.001 0.001 

11 300 High 3.301 7.233 10.096 6.866 11.263 1.838 0.001 0.001 

12 300 High 2.802 5.493 7.767 5.371 16.294 1.553 0.001 0.001 

13 500 Low 19.391 3.170 7.240 8.236 11.346 7.644 0.002 0.002 

14 500 Low 21.752 3.185 8.973 8.530 11.952 8.140 0.002 0.002 

15 500 Moderate 8.117 0.756 4.003 4.277 2.558 4.333 0.000 0.000 

16 500 Moderate 5.541 2.723 3.243 7.511 18.305 5.196 0.000 0.000 

17 500 High 1.918 4.057 5.870 3.868 6.444 0.990 0.001 0.001 

18 500 High 1.574 3.313 4.572 3.255 9.205 0.886 0.001 0.001 

 

Table 8. Comparison of Proposed Model Performance with Sahu et al. Model for Case 2 

Scenario 

Number 

Parameter 

Combination 

Number 𝑛 

Distance 

Between 

Cluster 

Center 

Percentage of Accuracy 

Number of Cluster 

Model 

Usulan 

Sahu et al. 

Model 

1 1 100 Close 12.1 1.6 

2 2 100 Medium 86.4 100 

3 3 100 Long 100 100 

4 1 300 Close 25.3 40.3 

5 2 300 Medium 97.9 100 

6 3 300 Long 100 100 

7 1 500 Close 17 49.7 

8 2 500 Medium 99.7 100 

9 3 500 Long 100 100 

10 4 100 Close 100 96.8 

11 5 100 Medium 100 99.9 

12 6 100 Long 100 100 

13 4 300 Close 100 100 

14 5 300 Medium 100 100 

15 6 300 Long 100 100 

16 4 500 Close 100 100 

17 5 500 Medium 100 100 

18 6 500 Long 100 100 

19 7 100 Close 100 1.6 

20 8 100 Medium 100 37.8 

21 9 100 Long 100 93.4 

22 7 300 Close 100 1.1 

23 8 300 Medium 100 70.9 

24 9 300 Long 100 100 

25 7 500 Close 100 0.2 

26 8 500 Medium 100 90.2 

27 9 500 Long 100 100 

28 10 100 Close 100 20.8 
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29 11 100 Medium 100 94.2 

30 12 100 Long 100 100 

31 10 300 Close 100 46.8 

32 11 300 Medium 100 100 

33 12 300 Long 100 100 

34 10 500 Close 100 55.8 

35 11 500 Medium 100 100 

36 12 500 Long 100 100 

 

In this section, we will discuss the performance comparison results of the two-variable beta 

mixture model discussed in this paper with the beta mixture model Sahu et al. (2016) for data 

generated from the model of Sahu et al. (2016) which does not contain correlation. The size of 

the comparison used is the percentage of accuracy of the number of groups of the results of 

each model. The results of the comparison are presented in Table 8. It appears that both the 

proposed model and the Sahu et al. (2016), the farther the distance between the centers of the 

cluster, the greater the percentage of accuracy of the number of groups. In general, the larger 

the sample size, the greater the percentage of accuracy of the number of groups for each model. 

The results of the comparison show that overall it can be concluded that the mixed beta model 

of the two variables discussed in this paper is better than the beta mixture model Sahu et al. 

(2016) for the case of uncorrelated data except for the case of a combination of parameters 1, 

2 and 3 for the distance between close and medium cluster centers. 

Based on the results of comparisons for data case 1 and data case 2 it can be concluded that in 

general the mixed beta model of the two variables discussed in this paper is better than the 

mixed model beta Sahu et al. (2016) for the case of correlated data or non-correlated data. 

 

5.  CONCLUSIONS 

In this article the mixed beta model of two variables has been discussed which involves the 

correlation between the variables by utilizing the results of previous studies. Estimation of 

parameters for the distribution of a beta mixture of multiple variables involving correlations 

between the variables discussed in this my paper uses the EM algorithm. Whereas the selection 

of the best distribution or model or in other words the determination of the optimal number of 

clusters uses the ICL-BIC criteria. Simulation results show that in general the two variable beta 

mixed model proposed in this article is better than the Sahu et al beta mixed model. (2016) for 

the case of correlated data or non-correlated data. The simulation results also show that the 

larger the sample size, the more accurate and more precise the EM estimation method in 

estimating the parameters of the proposed model in this article. 

 



14 

TRIANASARI, SUMERTAJAYA, ERFIANI, MANGKU 

CONFLICT OF INTERESTS 

The author(s) declare that there is no conflict of interests. 

 

REFERENCES 

[1] C.C. Aggarwal, Data Classification: Algorithms and Applications, CRC Press, Boca Raton, London, New 

York, 2014.  

[2] K. Blekas, A. Likas, N.P. Galatsanos, I.E. Lagaris, A Spatially Constrained Mixture Model for Image 

Segmentation, IEEE Trans. Neural Netw. 16 (2005), 494–498. 

[3] J.F. Hair, et al. Multivariate Data Analysis: A Global Perspective. 7th ed. Upper Saddle River: Prentice Hall, 

2009. 

[4] T. Hofmann, Unsupervised Learning by Probabilistic Latent Semantic Analysis. Mach. Learn. 42 (2001), 

177–196. 

[5] R.A. Johnson, D.W. Wichern, Applied Multivariate Statistical Analysis. 6th Ed. Prentice-Hall, London, 

2007. 

[6] T.P. Sahu, N.K. Nagwani, S. Verma, Multivariate Beta Mixture Model for Automatic Identification of 

Topical Authoritative Users in Community Question Answering Sites, IEEE Access. 4 (2016), 5343–5355. 

[7] C. Stauffer, W.E.L. Grimson, Adaptive background mixture models for real-time tracking, in: Proceedings. 

1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149), 

Fort Collins, CO, USA, 1999: pp. 246–252. 

[8] I. Olkin, R. Liu, A bivariate beta distribution, Stat. Probab. Lett. 62 (2003), 407–412. 

[9] M. Revow, C.K.I. Williams, G.E. Hinton, Using generative models for handwritten digit recognition, IEEE 

Trans. Pattern Anal. Machine Intell. 18 (1996), 592–606. 

[10] W.G. Zikmund, Business research methods., South-Western Cengage Learning, Mason, OH, 2010. 

 


