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Abstract. Count data are found in Ecological studies. The log-transformed strategy is commonly used in the count or 

rate data. The rate data are defined as the count data divided by a scale variable such as population at risk or an 

expected count. The log-transformed strategy is used to satisfy the parametric approach and simplify the model 

estimation. However, this strategy is not correct. The parameter estimation based on the log-transformed strategy 

could produce a biased estimate with a high standard error estimate. In this study, we are interested in evaluating the 

bias of parameter estimates based on the log-transformed strategy on the linear regression model. The generalized 

linear models have better performance in dealing with count data. However, some practitioners who are more familiar 

with the linear regression model prefer to use a log-transformed strategy and handle the zero cases by adding small 

values to zero observations. Simulation data from a Poisson distribution were used to compare the Poisson regression 

model and the linear regression model combined with the log-transformed strategy. The models were evaluated based 

on the bias and the root-mean-squared error statistics. We found that the linear regression with log-transformation 

strategy provided a high bias and a small value of root-mean-squared error, especially for small sample size and a 
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small value of the count data. We also use real data set to explore more detail the uses of log-transformed strategy and 

compare it with Poisson regression.  
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1. INTRODUCTION 

Epidemiological and ecological data often deal with discrete count data, for example the number 

of disease incidence. The incidence rate is basically counted data by including a scale variable so 

that the scaled count data becomes the rate [1]. The population at risk or expected count are the 

scale variables that commonly considered in epidemiology [2-4]. The log-transformed strategy 

was commonly recommended to normalize count data as a part of the analysis with the parametric 

model [5, 6]. However, there is no clear explanation of the log-transformed method so that the 

normal linear regression analysis is often applied. The argument only focuses on correcting the 

variance and obtains the linear relationship between the response and predictors variables. They 

did not address the bias estimate that might appear if this approach was implemented. However, 

this strategy is not totally correct. The parameter estimation based on the log-transformed strategy 

may be biased and the research conclusions may be misleading. In this study, we are interested to 

evaluate the bias of parameter estimate based on the log-transformed strategy under the linear 

regression model framework. The generalized linear models are known to be suitable models for 

dealing with count data. However, some practitioners often use the linear regression model for 

analyzing count data by applying the log-transformation and adding a small number on zero value. 

To address this problem, simulation data from a Poisson distribution are used to compare the 

performances between the Poisson regression model and the linear regression model with a log-

transformed strategy. We evaluate the average count and rate models. The models are then 

evaluated based on the bias and the root-mean-squared error criteria. 
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2. METHOD 

2.1 A Generalized linear model (GLM): Poisson regression 

A GLM is an extension of the standard linear model [7, 8]. The basic idea of the GLM is a 

modelling the expected value of the response variable with the predictor linear using a specific 

link function. A GLM extends the standard linear regression model, in which the response variable 

does not follow the normal distribution again but follows other distributions, such as the count 

response variable with the Poisson distribution. Then a function of the linear predictor is applied 

on the expectation of the response variable. 

2.2. Average count data model 

Here we assume the count data 𝑦௜ follow Poisson distribution with mean and variance 𝜆௜ and 

can be defined as [2-4]: 

𝑦௜~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆௜) (1) 

Using a log linear link function, the simple Poisson regression of the average count data is 

presented as: 

log(𝜆௜) = 𝛼 + 𝛽𝑥௜ (2) 

where 𝛼  is an intercept and 𝛽  denotes the slope of covariate. This is equivalent to a 

multiplicative model for 𝜆௜: 

𝜆௜ = 𝑒ఈାఉ௫೔ = 𝑒ఈ(𝑒௫೔)ఉ (3) 

2.3 Rate model 

If  we are interested in estimating the rate of individual, then we can scale the count data 𝑦௜ using 

the scale variable (𝑁௜) such as population or expected count [1]: 

𝜆௜ = 𝑟௜𝑁௜  (4) 

where the log linear model is: 

log(𝜆௜) = 𝛼 + 𝛽𝑥௜ + 𝑜𝑓𝑓𝑠𝑒𝑡(log(𝑁௜)) (5) 

where 𝑟௜ = 𝑦௜/𝑁௜. An 𝑜𝑓𝑓𝑠𝑒𝑡(log(𝑁௜)) is used to change a scale and defined as a correction 

factor in the model specification. It is assumed to have a regression coefficient of 1. The offset 

represents the denominator of the rate and it is included to the regression on the logarithmic scale. 
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In model (5), the slope 𝛽 can be interpreted as the risk scale rather than the absolute scale. The 

exponentiating intercept (i.e., exp(𝛼)) explains the overall relative risk and the exponential of 𝛽 

represents the change in the relative risk for one unit change in the predictor x.  In many studies 

of epidemiology, the interest focuses on the rates or relative risks rather than on the average number 

of counts. Some papers were found using a normal linear regression approach to modeling the rate 

variables [9, 10]. 

 

3. SIMULATION STUDY 

Data generating process (DGP) was based on a Poisson regression model with a single covariate 

of x. The covariate values were generated from a normal distribution with μ={0, 5, 10}. The 

variation of μ controls the size of λ. A small value of μ is corresponding to a small value of λ and 

y. We consider four different sample size with n = {10, 50, 100, 500} represent to small, medium, 

large, and extra-large sample size. In order to evaluate the rate model, we simulated the number of 

populations Ni between 1000 until 10,000 inhabitants. One thousand replicates simulations were 

carried out for each parameter value. Based on this simulation design, we have 12 data sets for 

each count and rate models. The regression coefficients were fixed to 𝛼 = 1 and 𝛽 = 1. 

The data were modeled using the Poisson and ordinary least square regression. The performances 

of the two models were then compared with the bias and root mean square error (RMSE) of the 

parameter estimate.  Here we assume there are no non linearity, heteroskedasticity and 

overdispersion problems. In this simulation study, we focus on the evaluation of the relationship 

between the covariate and the response variable. The simulation evaluated by comparing the mean 

of biases, 𝐵: 

𝐵 =
1

𝑆
෍൫𝛽መଵ − 𝛽ଵ൯

ௌ

௦ୀଵ

  
(6) 

and the root mean-squared error (RMSE) is given as follows 

𝑅𝑀𝑆𝐸 = ඩ൭
1

𝑆
෍൫𝛽መଵ − 𝛽ଵ൯

ଶ
ௌ

௦ୀଵ

൱   

(7) 
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where 𝛽መଵ denotes the estimated slope regression coefficient from the Poisson or linear regression 

models, 𝛽ଵis the true value of the slope coefficient and S denotes the number of simulation. Note 

that, we estimated the model on the log scale model, for count models: log(𝜆) = 𝛼 + 𝛽𝑥 and 

log(𝑦) = 𝛼 + 𝛽𝑥 + 𝜀  and for the rate models: log(𝜆) = 𝛼 + 𝛽𝑥 + 𝑜𝑓𝑓𝑠𝑒𝑡(log(𝑁))  and 

log(𝑦/𝑁) = 𝛼 + 𝛽𝑥 + 𝜀. Simulations and analyses were done in the R statistical program using 

stats packages. The codes used are available by request.  

The biases and root-mean-squared error for the different models are presented in Tables 1 and 

2. The surface plots display in Fig.1 and Fig.2. The Poisson regression with the average count data 

model has a lower bias and root mean squared error (RMSE) compared to the normal linear 

regression, especially for small average data values and sample size. For the rate model, the 

Poisson regression model performs better for all conditions. The normal regression model 

performs a good result only for a large average of count data. Increasing sample size does not 

reduce the bias and mean squared error estimates.  

Table 1. Bias estimates of the regression coefficient (slope) for the average count model 

𝑛 𝜇 
Poisson Regression Log Transformation 

𝐵(𝛽଴) 𝐵(𝛽ଵ) 𝐵(𝛽଴) 𝐵(𝛽ଵ) 

10 0 -0.033 0.125 -0.425 1.151 

50 0 -0.009 -0.017 -0.446 0.803 

100 0 -0.004 -0.015 -0.442 0.677 

500 0 -0.002 0.003 -0.446 0.754 

10 5 -0.009 0.002 -0.010 0.002 

50 5 -0.027 0.005 -0.032 0.006 

100 5 0.011 -0.002 0.004 -0.001 

500 5 0.000 0.000 -0.008 0.001 

10 10 0.000 0.000 0.000 0.000 

50 10 -0.003 0.000 -0.003 0.000 

100 10 0.002 0.000 0.002 0.000 

500 10 0.000 0.000 0.000 0.000 
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Table 2. Bias estimates of the regression coefficient (slope) for the rate model 

𝑛 𝜇 
Poisson Regression Log Transformation 

𝐵(𝛽଴) 𝐵(𝛽ଵ) 𝐵(𝛽଴) 𝐵(𝛽ଵ) 

10 0 -8.618 0.199 -5.539 -0.926 

50 0 -8.617 0.000 -5.540 -0.938 

100 0 -8.615 0.026 -5.540 -0.936 

500 0 -8.615 0.009 -5.540 -0.938 

10 5 -8.701 0.024 -7.666 -0.134 

50 5 -8.713 0.022 -7.762 -0.115 

100 5 -8.608 0.000 -7.784 -0.111 

500 5 -8.647 0.007 -7.784 -0.111 

10 10 -10.398 0.181 -9.969 0.150 

50 10 -8.446 -0.016 -8.026 -0.044 

100 10 -8.658 0.005 -8.416 -0.005 

500 10 -8.745 0.013 -8.611 0.015 

 

Tables 1 and 2 clearly show that the Poisson regression model work outperforms in comparison 

with the normal linear regression model for the average count and rate models. The idea of dividing 

the count data with the scale variable of the population size in order to be the continuous data 

before applying the normal linear regression is not a good idea. The normal linear regression model 

has high bias except for very large average count data. The clear presentation for this result can be 

seen in Figure 1(b). The interesting point is the negative bias for the rate model which indicates 

that the regression coefficient based on the normal linear regression for the rate model tends is 

underestimate.  
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Figure 1. Bias estimates of the regression coefficient (slope) for (a) count model and (b) rate 

model 

Table 3. Root mean squared error estimate (RMSE) of the regression coefficient (slope) for 

count model 

𝑛 𝜇 
Poisson Regression Log Transformation 

𝑅𝑀𝑆𝐸(𝛽଴) 𝑅𝑀𝑆𝐸(𝛽ଵ) 𝑅𝑀𝑆𝐸(𝛽଴) 𝑅𝑀𝑆𝐸(𝛽ଵ) 

10 0 0.2184 2.3325 0.6366 5.8183 

50 0 0.0905 0.8956 0.4892 2.3524 

100 0 0.0584 0.6224 0.4655 1.7043 

500 0 0.0278 0.2722 0.4510 1.0095 

10 5 0.9508 0.1900 0.9573 0.1913 

50 5 0.3746 0.0748 0.3766 0.0751 

100 5 0.2617 0.0523 0.2630 0.0525 

500 5 0.1111 0.0222 0.1131 0.0226 

10 10 0.1528 0.0153 0.1536 0.0153 

50 10 0.0589 0.0059 0.0593 0.0059 

100 10 0.0409 0.0041 0.0412 0.0041 

500 10 0.0179 0.0018 0.0182 0.0018 
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Table 4. Root mean squared error estimate (RMSE) of the regression coefficient (slope) for rate 

model 

𝑛 𝜇 
Poisson Regression Log Transformation 

𝑅𝑀𝑆𝐸(𝛽଴) 𝑅𝑀𝑆𝐸(𝛽ଵ) 𝑅𝑀𝑆𝐸(𝛽଴) 𝑅𝑀𝑆𝐸(𝛽ଵ) 

10 0 8.6221 3.2199 5.5394 0.9577 

50 0 8.6174 1.1971 5.5397 0.9428 

100 0 8.6157 0.8026 5.5398 0.9381 

500 0 8.6147 0.3435 5.5398 0.9384 

10 5 12.9845 1.9289 12.3301 1.9367 

50 5 9.4714 0.7438 8.6761 0.7846 

100 5 8.9333 0.4772 8.2128 0.5351 

500 5 8.7125 0.2138 7.8722 0.2600 

10 10 22.4285 1.9961 23.9013 2.1776 

50 10 11.0353 0.7100 11.6966 0.8516 

100 10 9.9708 0.4942 10.3693 0.6053 

500 10 9.0109 0.2179 9.0091 0.2652 

 

Figure 2. Root mean squared error estimate (RMSE) of the regression coefficient (slope) for (a) 

count model and (b) rate model 

Figure 2 shows Poisson model has lowest RMSE than log-transformation. It indicates that the Poisson model 

provides a better predictive performance.  
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 4. APPLICATION 

Modeling lymphatic filariasis in West Java, Indonesia 

Lymphatic filariasis (LF) is one of serious health problem in West Java Indonesia especially in 

Bogor municipality. LF is an infectious disease caused by filarial worms Wuchereria bancrofti, 

Brugia malayi, and B. timori [11]. In order to evaluate log-transformation approach and Poisson 

log-linear model, we model number of cases and rate of LF as dependent variables and health 

behavior index as predictor. The data LF for period 2016-2018 were obtained from West Java 

official health with 27 districts. Figure 3 shows the spatial distribution of variables interest and 

Table 5 shows the estimation results.  

  
 

 

Figure 3. Spatial distribution of (a) Total incidences of FL, (b) Healthy Behavior Index, and (c) 

Population at Risk, 2016-2018  

 

(a) (b) 

(c) 
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Table 5. Log-transformation versus Poisson Regression 

Model Estimate 
Log Transformation Poisson Regression 

Estimate SE Estimate SE 

Count Intercept 2.179 1.869 2.721 0.427 

 Slope -0.019 0.033 -0.011 0.008 

Rate Intercept -7.820 1.601 -11.678 0.482 

 Slope -0.011 0.028 -0.011 0.009 

Table 5 shows the log-transformation approach and Poisson regression have different slop for 

count model and similar for rate model. However, the intercept of log-transformation and Poisson 

regressions are different for both models. It indicates that log-transformation can be used for rate 

model for explain the effect of the risk factors. However, we have to be aware if the objective of 

the study is evaluate the rate prediction because it has different intercept. The log-transformation 

approach may be provide the under or overestimate prediction.  

 

5. DISCUSSION AND CONCLUSION 

A log-transformed strategy is commonly used when the error structure of data is simple. We can 

improve the ability of a model fits to the data by correcting variance and make the relationship 

closes to linear [12, 13] before applying a simple linear regression. However, we have to be more 

careful especially for count data that were characterized by small values with a lot of zero and 

small sample size. Different models could be used, and Generalized Linear Model with Poisson or 

Negative Binomial models can be the best alternatives [7, 14]. For count data, which is modeled 

by original data (i.e., on the average number of counts) or rate (i.e., scaling by an offset to correct 

the heterogeneity in the data) [1], our simulation results suggest that the log-transformed strategy 

on the average count model performs poorly for a small value of count data and for small sample 

size. It is getting better for a large average of count data and large sample size. For the rate model, 

an increasing number of observations does not reduce bias. It works to be good if the data have a 

large average. An additional problem with the regression of transformed variables is that it can 
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lead to impossible predictions such as the negative number of individuals.  

It is may not be really surprising that fitting the model using Poisson regression gives the 

best result; what is more interesting is that the log-transformed strategy provides a similar result 

with Poisson regression in terms of the slope of the regression coefficient for a large value of λ. 

However, we already knew that, for Poisson distribution phenomenon, the λ tends to small. We 

therefore suggest to fit the count data with the Poisson regression model. The Poisson model 

provide a more accurate foundation for the model due to the ecological data follow Poisson process.   

This is a simple study to answer the question “ do we have to use Poisson regression for any 

kind of count data?”. Our study showed that the Poisson regression model is more appropriate than 

the linear regression model based on the valuation of bias and root mean squared error estimates 

for all parameters simulation. However, modeling is not only about bias and mean squared error 

estimates. In practice, we have to consider the linearity, heteroskedasticity, overdispersion, and 

also autocorrelation assumptions that might cause the Poisson regression model is hard to be 

applied and needs some modification. This situation can be fixed if there is a user-friendly software 

that can help practitioners to apply the right model. Now, the R statistical program facilitates the 

complex model computations as the new packages are developed rapidly by many scientists around 

the world. However, for many practitioners, working on the syntax is less convenient compare to 

the GUI program. 
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