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Abstract. In this paper we propose a new mathematical model describing the dynamics of the human immunodefi-

ciency virus 1 and 2 with drug resistant compartment. We proved the positivity and boundedness of solutions with

non-negative initial conditions. The dynamical system admits four equilibrium states: free equilibrium disease, one

endemic equilibrium of each strain and one of the two strains. Two basic reproduction numbers are calculated. The

global stability of the four equilibrium points is proved by using suitable Lyapunov functions. Numerical simulations

were carried out to illustrate our results and a parameter sensitivity analysis completed this work.
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1. INTRODUCTION

Human Immunodeficiency Virus infection remains a major public health problem of global pro-

portions, resulting in nearly 33 million deaths to date [1]. However, with improved access to

∗Corresponding author

E-mail address: elmehdi.farah.ed@gmail.com

Received March 04, 2021
1



2 SAIDA AMINE, EL MEHDI FARAH

effective prevention, diagnosis, treatment and care, including for opportunistic infections, HIV in-

fection has become a chronic condition that can be managed with the assurance of a long and

healthy life, and is classified into two types: HIV-1 and HIV-2. HIV-1 was first discovered and is

more prevalent worldwide, while HIV-2 is less pathogenic and is largely housed in West Africa. So

when we generally say HIV, we refer to HIV-1. The main differences between HIV-1 and HIV-2

infections lie in the mechanism of retroviral pathogenesis, which is not entirely clear yet, but they

have the same symptoms. The advanced stage of HIV infection is the Acquired Immunodeficiency

Syndrome (AIDS). There is no vaccine or cure for HIV infection. However, effective antiretroviral

drugs (ART) can control the virus, help prevent its transmission to uninfected people and prolong

the lives of infected people who receive treatment. Globally 38 million people were living with

HIV at the end of 2019 [1]. HIV has great genetic diversity. This genetic diversity of HIV can pose

diagnostic and therapeutic problems. Typically HIV mutates and prodiges resistant strains that are

no longer sensitive to drug therapy resulting to change drug or the inability to find pharmaceutical

that provide effective treatment. HIV drug resistant (HIV-DR) resistance differs between HIV-1

and HIV-2 infection. Therefore, it is recommended to ensure that the differentiation between HIV-

1 and HIV-2 is correctly carried out at the time of HIV diagnosis. This is essential in order to use

the appropriate and specific virological monitoring tests and to choose an appropriate. Currently

World Health Organization (WHO) [1] is developing a new five-tear global action plan for 2017-

2021 to support a coordinated emergence of HIV drug resistance, and to strengthen country efforts

to achieve the global HIV targets treatment [2].

Mathematical modelling is an important tool for describing and understanding the dynamics of

numerous infectious diseases, which allows monitoring. The classical mathematical model for in-

fectious diseases is the compartment model, first proposed by Kermack and McKendric in the year

of 1927, in which, individuals are divided into multiple compartments dependent on their epidemi-

ological status [3]. Since then, several mathematical models have been proposed for HIV/ AIDS

transmission dynamics to find out the mechanism of HIV transmission and to determine the effec-

tive measures in preventing and controlling the spread of HIV/AIDS [4],[5], [6],[7], [8].

In [9] the author’s derived HIV therapeutic strategies by formulating and analyzing an optimal con-

trol problem using two types of dynamics treatments while [10] investigated the fundamental role
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of chemotherapy treatment in controlling the virus reproduction in an HIV patient. Moreover, [11]

presented the impact of optimal control on the treatment of HIV/AIDS and screening of unaware

infectives on the transmission dynamics of the disease in a homogeneous population with constant

immigration of susceptible incorporating use of condom, screening of unaware infectives and treat-

ment of the infected. And the authors in [12] proposed a new epidemiological model for HIV/AIDS

transmission including PrEP and study a control problem to determine the PrEP strategy that sat-

isfies the mixed state control constraint and minimizes the number of individuals with pre-AIDS

HIV infection balanced against the costs associated with PrEP. Most recently, Gurmu et all. [13]

studied the role of passive immunity and drug therapy in reducing the replication and transmission

of the disease for a mathematical model of HIV/AIDS transmission dynamics with drug resistance

compartment.

In this work, we continue the investigation of this last kind of problems by taking into account two-

strain HIV-1 and HIV-2 model with drug resistance compartment. In our paper we will establish

the global stability of all our two-strain HIV model equilibria.

The rest of the paper is organized as follows. In the next section, we introduce the HIV-1 and HIV-2

model with drug resistance compartment, and we show the positivity and boundedness of the solu-

tions of our model with positive initial conditions. In section 3, we calculate the basic reproduction

number, and we study the global stability of the equilibria. Section 4 presents numerical simula-

tions to assess the dynamics of a HIV-1 and HIV-2 transmission with drug resistance compartment.

The sensitivity analysis of the basic reproduction number with respect to the parameters of our

model is given in Section 5. Finally, a brief conclusion sums up the paper.

2. MODEL FORMULATION AND BASIC PROPERTIES

2.1. Mathematical model. In this section, we will propose a mathematical model describing the

transmission dynamics of the HIV-1 and HIV-2 with drug resistance compartment. The total pop-

ulation noted N(t) subdivides into six compartments, namely, susceptible individuals (S), HIV-1

infected individuals (I1), HIV-2 infected individuals (I2), drug resistance individuals (DR), AIDS

individuals (A) and removed individuals (R).

The dynamics of the model described by the following nonlinear system of differential equations :
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(2.1)



S′(t) = Λ−β1SI1−β2SI2−µS,

I′1(t) = β1SI1− (θ1 +ω1 +µ)I1,

I′2(t) = β2SI2− (θ2 +ω2 +µ)I2,

D′R(t) = ω1I1 +ω2I2− (1−ρ)ηDR− (ηρ +µ)DR,

A′(t) = (1−ρ)ηDR +θ1I1 +θ2I2− (d +µ)A,

R′(t) = ηρDR−µR,

with :

(2.2) S(0)> 0, I1(0)> 0, I2(0)> 0,DR(0)> 0,A(0)> 0,R(0)> 0.

The corresponding flow chart and description of the parameters for the model (2.1) are given in

figure 1 and table 1, respectively.

FIGURE 1. Flow diagram of the model (2.1)

Table 1. Model parameters and their interpretations.
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Parameter Description

Λ Recruitment rate

µ Natural death rate

β1 Infection rate of the HIV-1 strain

β2 Infection rate of the HIV-2 strain

θ1 Rate at which HIV-1 infected people progress to AIDS stage

θ2 Rate at which HIV-2 infected people progress to AIDS stage

ω1 Progression rate from HIV-1 to drug resistance compartment

ω2 Progression rate from HIV-2 to drug resistance compartment

ρ Therapy efficacy

η Removed rate of drug resistance.

d AIDS induced death rate

2.2. Positivity and boundedness of solutions. All variables of our model represent the popula-

tions classes, they can not become negative at any stage. Therefore, it is important to verify the

following theorem.

Theorem 1. The solutions (S(t), I1(t), I2(t),DR(t),A(t),R(t)) of the model (2.1) are positive for all

t > 0 with non-negative initial conditions (2.2) in R6
+.

Proof. We have 

S′(t) |S(t)=0 = Λ> 0

I′1(t) |I1(t)=0 = 0

I′2(t) |I2(t)=0 = 0

D′R(t) |DR(t)=0 = ω1I1 +ω2I2 > 0

A′(t) |A(t)=0 = (1−ρ)ηDR +θ1I1 +θ2I2 > 0

R′(t) |R(t)=0 = ηρDR > 0

(2.3)

According to Lemma 2 in [14], the positivity of all solutions initiating in R6
+ under positive initial

conditions is guaranteed. �
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Theorem 2. The biologically region

Ω = {(S, I1, I2,DR,A,R) ∈ R6
+ : N 6

Λ

µ
}

is positively invariant for the model (2.1) in R6
+.

Proof. Let N(t) = S(t)+ I1(t)+ I2(t)+DR(t)+A(t)+R(t), we have

dN
dt

= Λ−µN−dA6 Λ−µN

⇒ dN
dt

+µN ≤ Λ

⇒ 0≤ N ≤ Λ

µ
+N(0)e−µt

For t→∞, 0≤ N ≤ Λ

µ
. Therefore, N(t) is bounded, and all the solutions of the model (2.1) starting

in Ω confined within the region. This completes the proof. �

3. MODEL ANALYSIS

3.1. Basic Reproduction Number R0. The basic reproduction number, denoted R0, is one of the

most important concepts about the dynamics of epidemic models, which represents the expected

number of secondary cases caused by a typical infected individual in a completely susceptible pop-

ulation [15].

Mathematically the basic reproduction number is defined as a spectral radius of the next generation

matrix FV−1 [16]: R0 = ρ(FV−1), where F is the non-negative matrix of the new infection terms,

and V is the matrix of the transition infections associated.

In our model, the infected compartments are I1, I2 and A, then the matrices F and V are :

F =


β1

Λ

µ
0 0

0 β2
Λ

µ
0

0 0 0

 andV =


θ1 +ω1 +µ 0 0

0 θ2 +ω2 +µ 0

−θ1 −θ2 d +µ


The dominant eigenvalues of FV−1 are :

R1
0 =

β1Λ

µ(θ1+ω1+µ) and R2
0 =

β2Λ

µ(θ2+ω2+µ)

Consequently, the basic reproduction number of model (2.1) is : R0 = max{R1
0,R

2
0}.
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3.2. Model steady states. The model (2.1) admits four equilibrium points, whose one disease-

free equilibrium (DFE) and three endemic equilibrium as follows :

• The disease-free equilibrium E f = (S∗, I∗1 , I
∗
2 ,D

∗
R,A
∗,R∗) = (Λ

µ
,0,0,0,0,0)

• The HIV-1 only endemic equilibrium exist when R1
0 > 1, and is given

by ES1 = (S∗1, I
∗
1,1,0,D

∗
R,1,A

∗
1,R
∗
1) where :

S∗1 =
θ1+ω1+µ

β1
; I∗1,1 =

µ

β1
(R1

0−1); D∗R,1 =
ω1

η+µ
I∗1,1; A∗1 =

1
d+µ

[
(1−ρ)η

ω1

η +µ
+θ1

]
I∗1,1

and R∗1 =
ηρω1

µ(η+µ)I
∗
1,1

• The HIV-2 only endemic equilibrium exists when R2
0 > 1, and is given by

ES2 = (S∗2,0, I
∗
2,2,D

∗
R,2,A

∗
2,R
∗
2) where :

S∗2 =
θ2+ω2+µ

β2
; I∗2,2 =

µ

β2
(R2

0−1); D∗R,2 =
ω2

η+µ
I∗2,2; A∗2 =

1
d+µ

[
(1−ρ)η

ω2

η +µ
+θ2

]
I∗2,2

and R∗2 =
ηρω2

µ(η+µ)I
∗
2,2

• The interior endemic equilibrium point for the model (2.1) is given by

ESt = (S∗t , I
∗
1,t , I

∗
2,t ,D

∗
R,t ,A

∗
t ,R
∗
t ) where :

S∗t =
1
µ

(
Λ− (θ1 +ω1 +µ)I∗1,t− (θ2 +ω2 +µ)I∗2,t

)
= 1

µ

(
Λ−

β1
Λ

µ

R1
0

I∗1,t−
β2

Λ

µ

R2
0

I∗2,t
)

;

D∗R,t =
ω1I∗1,t+ω2I∗2,t

η+µ
;

A∗t =
(
(1−ρ)η

η+µ
+θ1

)
I∗1,t +

(
(1−ρ)η

η+µ
+θ2

)
I∗2,t ;

R∗t = (ηρ

µ
)

ω1I∗1,t+ω2I∗2,t
η+µ

with Λ≥
β1

Λ

µ

R1
0

I∗1,t +
β2

Λ

µ

R2
0

I∗2,t .

3.3. Global stability. In this section, we will prove the global stability of the equilibrium points.

Theorem 3. If R0 ≤ 1, the disease-free equilibrium point E f is globally asymptotically stable.

Proof. We define a Lyapunov Function V0 as follows : V0 =
1

θ1+ω1+µ
I1 +

1
θ2+ω2+µ

I2

The derivative of V0 is given by :

V̇0 =
1

θ1+ω1+µ
İ1 +

1
θ2+ω2+µ

İ2 = (R1
0−1)I1 +(R2

0−1)I2

If R0 ≤ 1, we obtain V̇0 ≤ 0, thus the disease-free equilibrium E f is globally asymptotically stable.

�

Theorem 4. The HIV-1 only endemic equilibrium ES1 is globally asymptotically stable if R2
0 6 1 <

R1
0.
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Proof. Consider the following Lyapunov function :

V1 = (S−S∗1−S∗1 lnS)+(I1− I∗1,1− I∗1,1 ln I1)+(DR−D∗R,1−D∗R,1 lnDR)+(A−A∗1−A∗1 lnA)

+ (R−R∗1−R∗1 lnR)

Differentiating V1 with respect to time gives :

V̇1 = (1−
S∗1
S
)Ṡ+(1−

I∗1,1
I1

)İ1 +(1−
D∗R,1
DR

)ḊR +(1−
A∗1
A
)Ȧ+(1−

R∗1
R
)Ṙ

Substituting the expressions for the derivatives in V̇1, it follows from 2.1 that

V̇1 = (1−
S∗1
S
)
[
Λ−β1SI1−µS

]
+(1−

I∗1,1
I1

)
[
β1SI1− (θ1 +ω1 +µ)I1

]
+(1−

D∗R,1
DR

)
[
ω1I1− (1−ρ)ηDR− (ηρ +µ)DR

]
+(1−

A∗1
A
)
[
(1−ρ)ηDR +θ1I1− (d +µ)A)

]
+(1−

R∗1
R
)
[
ηρDR−µR

]
We have Λ = β1S∗1I∗1,1 + µS∗1 from the first equation of 2.1 at steady-state ES1 , therefore, V̇1 can

be written as

V̇1 = (1−
S∗1
S
)
[
β1S∗1I∗1,1 +µS∗1−β1SI1−µS

]
+(1−

I∗1,1
I1

)
[
β1SI1− (θ1 +ω1 +µ)I1

]
+(1−

D∗R,1
DR

)
[
ω1I1− (1−ρ)ηDR− (ηρ +µ)DR

]
+(1−

A∗1
A
)
[
(1−ρ)ηDR +θ1I1− (d +µ)A)

]
+(1−

R∗1
R
)
[
ηρDR−µR

]
then, V̇1 can be simplified to :

V̇1 = β1S∗1I∗1,1
(

1− I1

I∗1,1

S∗1
S

)
+β1S∗1I1

(
1− S

S∗1

I∗1,1
I1

)
+µS∗1

(
2−

S∗1
S
− S

S∗1

)
+θ1I∗1,1

(
1− I1

I∗1,1

A∗1
A

)
+ω1I∗1,1

(
1− I1

I∗1,1

D∗R,1
DR

)
+µI∗1,1

(
1− I1

I∗1,1

)
+(1−ρ)ηD∗R,1

(
1− DR

D∗R,1

A∗1
A

)
+ηρD∗R,1

(
1−

R∗1
R

DR

D∗R,1

)
+µD∗R,1

(
1− DR

D∗R,1

)
+(d +µ)A∗1

(
1− A

A∗1

)
+µR∗1

(
1− R

R∗1

)
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This implies V̇1 < 0, by the relation between geometric and arithmetic means. The equality V̇1 = 0

holds if and only if (S, I1, I2,DR,A,R) take the equilibrium values (S∗1, I
∗
1,1,0,D

∗
R,1,A

∗
1,R
∗
1). There-

fore, by LaSalle’s Invariance Principle [18], the endemic equilibrium ES1 is globally asymptotically

stable. �

Theorem 5. The HIV-2 only endemic equilibrium ES2 is globally asymptotically stable if R1
0 6 1 <

R2
0.

Proof. Consider the following Lyapunov function :

V2 = (S−S∗2−S∗2 lnS)+(I2− I∗2,2− I∗2,2 ln I2)+(DR−D∗R,2−D∗R,2 lnDR)+(A−A∗2−A∗2 lnA)

+ (R−R∗2−R∗2 lnR)

Differentiating V2 with respect to time gives :

V̇2 = (1−
S∗2
S
)Ṡ+(1−

I∗2,2
I2

)İ2 +(1−
D∗R,2
DR

)ḊR +(1−
A∗2
A
)Ȧ+(1−

R∗2
R
)Ṙ

Substituting the expressions for the derivatives in V̇2, it follows from 2.1 that

V̇2 = (1−
S∗2
S
)
[
Λ−β2SI2−µS

]
+(1−

I∗2,2
I2

)
[
β2SI2− (θ2 +ω2 +µ)I2

]
+(1−

D∗R,2
DR

)
[
ω2I2− (1−ρ)ηDR− (ηρ +µ)DR

]
+(1−

A∗2
A
)
[
(1−ρ)ηDR +θ2I2− (d +µ)A)

]
+(1−

R∗2
R
)
[
ηρDR−µR

]
We have Λ = β2S∗2I∗2,2 + µS∗2 from the first equation of 2.1 at steady-state ES2 , therefore, V̇2 can

be written as

V̇2 = (1−
S∗2
S
)
[
β2S∗2I∗2,2 +µS∗2−β2SI2−µS

]
+(1−

I∗2,2
I2

)
[
β2SI2− (θ2 +ω2 +µ)I2

]
+(1−

D∗R,2
DR

)
[
ω2I2− (1−ρ)ηDR− (ηρ +µ)DR

]
+(1−

A∗2
A
)
[
(1−ρ)ηDR +θ2I2− (d +µ)A)

]
+(1−

R∗2
R
)
[
ηρDR−µR

]
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then, V̇2 can be simplified to :

V̇2 = β2S∗2I∗2,2
(

1− I2

I∗2,2

S∗2
S

)
+β2S∗2I2

(
1− S

S∗2

I∗2,2
I2

)
+µS∗2

(
2−

S∗2
S
− S

S∗2

)
+θ2I∗2,2

(
1− I2

I∗2,2

A∗2
A

)
+ω2I∗2,2

(
1− I2

I∗2,2

D∗R,2
DR

)
+µI∗2,2

(
1− I2

I∗2,2

)
+(1−ρ)ηD∗R,2

(
1− DR

D∗R,2

A∗2
A

)
+ηρD∗R,2

(
1−

R∗2
R

DR

D∗R,2

)
+µD∗R,2

(
1− DR

D∗R,2

)
+(d +µ)A∗2

(
1− A

A∗2

)
+µR∗2

(
1− R

R∗2

)
This implies V̇2 < 0, by the relation between geometric and arithmetic means. The equality V̇2 = 0

holds if and only if (S, I1, I2,DR,A,R) take the equilibrium values (S∗2, I
∗
2,2,0,D

∗
R,2,A

∗
2,R
∗
2). There-

fore, by LaSalle’s Invariance Principle [18], the endemic equilibrium ES2 is globally asymptotically

stable. �

Theorem 6. The interior endemic equilibrium ESt is globally asymptotically stable if R0 > 1.

Proof. Consider the following Lyapunov function :

Vt = (S−S∗t −S∗t lnS)+(I1− I∗1,t− I∗1,t ln I1)+(I2− I∗2,t− I∗2,t ln I2)

+(DR−D∗R,t−D∗R,t lnDR)+(A−A∗t −A∗t lnA)+(R−R∗t −R∗t lnR)

Differentiating Vt with respect to time gives :

V̇t = (1− S∗t
S
)Ṡ+(1−

I∗1,t
I1

)İ1 +(1−
I∗2,t
I2

)İ2 +(1−
D∗R,t
DR

)ḊR +(1− A∗t
A
)Ȧ+(1− R∗t

R
)Ṙ

Substituting the expressions for the derivatives in V̇t , it follows from 2.1 that

V̇t = (1− S∗t
S
)
[
Λ−β1SI1−β2SI2−µS

]
+(1−

I∗1,t
I1

)
[
β1SI1− (θ1 +ω1 +µ)I1

]
+(1−

I∗2,t
I2

)
[
β2SI2− (θ2 +ω2 +µ)I2

]
+(1−

D∗R,1
DR

)
[
ω1I1 +ω2I2− (1−ρ)ηDR− (ηρ +µ)DR

]
+(1− A∗t

A
)
[
(1−ρ)ηDR +θ1I1 +θ2I2− (d +µ)A

]
+(1− R∗t

R
)
[
ηρDR−µR

]
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We have Λ = β1S∗t I∗1,t +β1S∗t I∗2,t +µS∗t from the first equation of 2.1 at steady-state ESt , therefore,

V̇t can be written as

V̇t = (1− S∗t
S
)
[
β1S∗t I∗1,t +β1S∗t I∗2,t +µS∗t −β1SI1−β2SI2−µS

]
+(1−

I∗1,t
I1

)
[
β1SI1− (θ1 +ω1 +µ)I1

]
+(1−

I∗2,t
I2

)
[
β2SI2− (θ2 +ω2 +µ)I2

]
+(1−

D∗R,t
DR

)
[
ω1I1 +ω2I2− (1−ρ)ηDR− (ηρ +µ)DR

]
+(1− A∗t

A
)
[
(1−ρ)ηDR +θ1I1 +θ2I2− (d +µ)A

]
+(1− R∗t

R
)
[
ηρDR−µR

]
which can then be simplified to

V̇t = β1S∗t I1

(
1− S

S∗t

I∗1,t
I1

)
+β2S∗t I2

(
1− S

S∗t

I∗2,t
I2

)
+
(

β1S∗t I∗1,t +β2S∗t I∗2,t
)(

1− S∗t
S

)
+µS∗t

(
2− S∗t

S
− S

S∗t

)
+θ1I∗1,t

(
1− I1

I∗1,t

A∗t
A

)
+θ2I∗2,t

(
1− I2

I∗2,t

A∗t
A

)
+ω1I∗1,t

(
1− I1

I∗1,t

D∗R,t
DR

)
+ω2I∗2,t

(
1− I2

I∗2,t

D∗R,t
DR

)
+µI∗1,t

(
1− I1

I∗1,t

)
+µI∗2,t

(
1− I2

I∗2,t

)
+(1−ρ)ηD∗R,t

(
1− DR

D∗R,t

A∗t
A

)
+ηρD∗R,t

(
1− R∗t

R
DR

D∗R,t

)
+µD∗R,t

(
1− DR

D∗R,t

)
+(d +µ)A∗t

(
1− A

A∗t

)
+µR∗t

(
1− R

R∗t

)
This implies V̇t < 0, by the relation between geometric and arithmetic means. The equality V̇t = 0

holds if and only if (S, I1, I2,DR,A,R) take the equilibrium values (S∗t , I
∗
t,1, I

∗
t,2,D

∗
R,t ,A

∗
t ,R
∗
t ). There-

fore, by LaSalle’s Invariance Principle [18], the interior endemic equilibrium ESt is globally asymp-

totically stable.

�

4. NUMERICAL SIMULATIONS

In this section, we give some numerical simulations of the model 2.1 to verify the validity of our

theoretical results. The parameter values for each numerical simulation are displayed in table 2.

From figure 2, we show that all curves are decreases to zero, unless the susceptible individuals, this

is because both the basic reproduction numbers are less than one (R1
0 = 0.47 and R2

0 = 0.37). This

shows that the disease persists and thus agrees with Theorem 3 which says that the disease-free

equilibrium is globally asymptotically stable.

Next, from Figure 3, we show that HIV-1 infected individuals persists while the HIV-2 infected
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individuals dies out, this is because the basic reproduction number for I2 is less than unity while

the other is great than 1 (R1
0 = 2.39 and R2

0 = 0.37). Thus result agrees with Theorem 4.

From Figure 4, we observe the persistence of the HIV-1 infected individuals and HIV-2 infected

individuals, we can also remark that the persistence of I1 is higher than the one of I2, this is because

( R1
0 = 7,09 > 1 and R2

0 = 6.67 > 1). Thus result agrees the global stability of the interior endemic

equilibrium.

Table 2. Model parameters and their interpretations.

Parameter Figure 2 Figure 3 Figure 4

Λ 1 1 1

µ 0.2 0.2 0.2

β1 0.17 0.86 0.95

β2 0.12 0.12 0.9

θ1 0.7 0.7 0.27

θ2 0.6 0.6 0.25

ω1 0.9 0.9 0.2

ω2 0.8 0.8 0.15

ρ 0.48 0.48 0.48

η 0.05 0.05 0.05

d 0.3 0.3 0.3

FIGURE 2. Simulation of the model 2.1 with R1
0 = 0.47 and R2

0 = 0.37
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FIGURE 3. Simulation of the model 2.1 with R1
0 = 2.39 and R2

0 = 0.37

FIGURE 4. Simulation of the model 2.1 with R1
0 = 7,09 and R2

0 = 6.67

5. SENSITIVITY OF THE BASIC REPRODUCTION NUMBER

The sensitivity analysis of the basic reproduction numbers aims to determine the influence of

some parameters on dynamic of the model 2.1, using the normalized forward sensitivity index

follows.
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Definition 7. [19]; [20] The normalized forward sensitivity index of R0 that depends differentiabil-

ity on a parameter p is defined by

ϒ
R0
p :=

∂R0

∂ p
× p

R0
.

We examine the sensitivity index firstly for the basic reproduction number R1
0 with respect to Λ

and β1.

Proposition 8. The normalized forward sensitivity index of R1
0 with respect to Λ and β1 is 1 :

ϒ
R1

0
Λ

= 1 and ϒ
R1

0
β1

= 1.

Proof. It is a simple application of definition 7. �

The sensitivity index of R1
0 with respect to θ1, ω1 and µ is given, respectively, by :

ϒ
R1

0
θ1

= −θ1
θ1+ω1+µ

=−0.389 , ϒ
R1

0
ω1 =

−ω1
θ1+ω1+µ

=−0.5 , ϒ
R1

0
µ = −µ

θ1+ω1+µ
=−0.111.

Secondly, we compute the sensitivity index for the basic reproduction number R2
0 with respect to

Λ, β2 , θ2, ω2 and µ .

ϒ
R2

0
Λ

= 1, ϒ
R2

0
β2

= 1, ϒ
R2

0
θ2

= −θ2
θ2+ω2+µ

=−0.375 , ϒ
R2

0
ω2 =

−ω2
θ2+ω2+µ

=−0.5 , ϒ
R2

0
µ = −µ

θ2+ω2+µ
=−0.125.

Table 3. Sensitivity index of R1
0 and R2

0 for parameter values given in Table 2, Figure 2 .

Parameter Sensitivity indices for R1
0 Parameter Sensitivity index for R2

0

Λ 1 Λ 1

β1 1 β2 1

θ1 -0.389 θ2 -0.375

ω1 -0.5 ω2 -0.5

µ -0.111 µ -0.125

The parameters that they have a positive sensitivity indices means that they have a great impact on

persistence of the disease in the population if their values are increasing, will lead to an increase

in the basic reproduction number. Furthermore, the parameters that they have a negative sensitivity

indices means that they have an influence to minimizing the burden of the disease in the population

as their values increasing while the others are left constant, will lead to a decreases in the basic

reproduction number, which leads to minimizing the rate of infection in the population [21].
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6. CONCLUSION

In this work, we have formulated a mathematical model for the transmission dynamics of HIV-1

and HIV-2 with drug resistance compartment. Moreover, existence, positivity and boundedness are

verified. We have computed the basic reproduction numbers, then, we found two basic reproduc-

tion numbers, we have proved the global stability of both the disease-free and endemic equilibrium

by using Lyapunov’s direct method and LaSalle’s invariance principle. Furthermore, we have in-

troduced a numerical simulations illustrate and extend the obtained theoretical results. Sensitivity

analysis of the model is analyzed to establish which parameter has high effect on the transmission

of the disease.
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