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Abstract. In this paper, we employed a deterministic model in the analysis of the dynamics of Tuberculosis with

a keen interest in vaccination and drug resistance as the first line of treatment. It was assumed that some of the

susceptible population were vaccinated but with temporal immunity. This is due to the fact that vaccines do not

confer permanent immunity. Moreover, Part of the infected individual after treatment grow resistance to the drug.

Infective immigrants were also considered to be part of the population. The basic reproductive number for the

model is estimated using the Next Generation Matrix method. The equilibrium points of the TB model and their

local and global stability were determined. It was established that if the basic reproductive number was less than

unity (R0 < 1), then the disease free equilibrium is stable and unstable if R0 > 1. Furthermore, we investigated the

optimal prevention, treatment and vaccination as control measures for the disease. It was established that the best

control measure in combating Tuberculosis infections is prevention and vaccination of susceptible population.
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1. INTRODUCTION

Respiratory disease can be described as infections in which can be treated with time. Com-

monest respiratory infections include pneumonia, Tuberculosis, and flu. Chronic conditions

such as asthma and Chronic Bronchitis are persistent and sometimes long lasting. The study of

the determinate and distribution in the study of the existing population of health-related events

and descriptive research based on regularly collected data for this purpose according to [1] is

known as Epidemiology.

In epidemiology, we try to find the factors associated with diseases and how we may protect hu-

mans and animals from such diseases. Proving that a certain risk factor directly causes a disease

is difficult, if not impossible. This can only lead us to establish that this risk factor results in a

higher incidence of disease among the population exposed to a certain risk factor. Tuberculosis

is among the most ancient diseases worldwide. It is very contagious. The causative organism,

Mycobacterium tuberculosis was discovered by the German Microbiologist, Robert Koch in

1882 [2].

TB which attacks the lungs is known as pulmonary TB. If any organ other than the lungs is

affected by the illness, it is known as extra pulmonary TB. As with pulmonary TB, extra pul-

monary TB is not as contagious. Through coughing, singing, and sneezing, pulmonary TB is

spread from a sick TB patient as a droplet infection. Inhalation by an uninfected individual of

these droplets may cause infection. With the frequency and duration of contact with people who

have the disease, the risk of contracting TB rises.

In 1993, the WHO decreed TB a global epidemic [3]. It is estimated that the risk of contracting

active TB after coming into contact with an infected person is between 5% and 10%, with a

greater proportion of the disease playing a crucial role which happens in the very first few years

after the initial infection with the arrival of HIV [4]. Drug-resistance TB is actually one of the

world’s key health issues today. Less than 50% of multi-drug resistance TB (MDR TB) patients

are successfully treated, with HIV-coinfected patients showing poor results [5].

Biological models usually explain the transmission dynamics of infectious diseases and can de-

termine the status of the disease in a population with time. The basic reproduction number is the

threshold value that determines the persistence or die out of a disease in a population [6, 7, 8, 9].
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Optimal control theory are usually employed in biological models to determine the best optimal

control strategy in combating infections in a population [10, 11, 12, 13].

2. MODEL DESCRIPTION AND FORMULATION

The model partitions the entire populace into six compartments accordant to their epidemi-

ological status. We define S(t), V (t) , E(t), I(t) , R1(t) and R(t) as the number of susceptible

individuals, vaccinated individuals, exposed individuals, infectious individuals, individuals re-

sistance to treatment and recovered individuals respectively at time t ≥ 0.

Variables Description

S Susceptible persons

V Vaccinated persons

E Exposed persons

I TB-Infected persons

R1 Individuals resistant to treatment

R Recovered persons

TABLE 1. Variable description

Parameters Description

Λ Recruitment of susceptible individuals

M Immigrants into the susceptible and infectious compartments

α Rate of inflow of immigrants into the susceptible compartment

σ Rate at which the cured lose their immunity

µ Rate of natural mortality

γ Rate of vaccination of susceptible individuals

θ Rate at which the vaccinated recover

β Rate at which the susceptible individuals are exposed to Mtb

ρ Rate at which unprotected individuals get infected

δ Disease-induced death rate

κ Rate of recovery after treatment

τ Rate of resistance to the treatment

(1−α) Rate of inflows of immigrants into the infected compartment

TABLE 2. Parameter description
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Table 1 and Table 2 show the variables and parameters used in the Tuberculosis model. Figure

1 shows the Tuberculosis (TB) model transmission dynamics.

FIGURE 1. Flow diagram for the Tuberculosis disease transmission dynamics.

The following differential equations were obtained from the model flow diagram;

(1)

dS
dt

= Λ+αM+σR−βSI− (γ +µ)S
dV
dt

= γS− (θ +µ)V
dE
dt

= βSI− (ρ +µ)E
dI
dt

= ρE +(1−α)M− (τ +δ +µ) I
dR1

dt
= τI− (κ +µ)R1

dR
dt

= κR1 +θV − (σ +µ)R

Thus the total population is given as;

(2) N = S+V +E + I +R1 +R

with initial conditions;

(S (0) ,V (0) ,E (0) , I (0) ,R1 (0) ,R(0)) ∈ R6
+(3)
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3. TUBERCULOSIS MODEL ANALYSIS

Tuberculosis (TB) model is about human population, hence model state variables ought to

be non-negative and limited for all t ≥ 0. In this section, we demonstrate that the TB model is

numerically and epidemiologically sensible.

3.1. Positivity of the Solution. We prove the positivity of the variables in the model. Based

on the concept of derivative of a function, the behavior of the function at a known point can be

established [14, 15, 16].

Theorem 1. Let the initial set be S(0),V (0),E(0),I(0),R1(0),and R(0), be non-negative, then the

solution set of {S (t) ,V (t) , E (t) , I (t) , R1 (t) , R(t)} of the equation (1) is positive and bounded

for all t > 0 , wherever they exist.

Proof. From Equation (1), we can state that

dS
dt
>−(γ +µ +β I)S

dS
S
>−(γ +µ +β I)dt

In |S|>−(γ +µ +β I) t + c

S (t)> ce−(γ+µ+β I)t

At t = 0, S (0)> c

S (t)> S (0)e
−(γ+µ+β I)t

since

(γ +µ +β I)> 0,S (t)> 0

Also
dV
dt
>−(θ +µ)V

V (t)> ce−(θ+µ)t

At t = 0, V (0)> c

V (t)>V (0)e
−(θ+µ)t
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since

(θ +µ)> 0,V (t)> 0

Also
dE
dt
>−(ρ +µ)E

E (t)> ce−(ρ+µ)t

At t = 0, E (0)> c

E (t)> E (0)e
−(ρ+µ)t

since

(ρ +µ)> 0,E (t)> 0

Also,
dI
dt
>−(τ +µ +δ ) I

I (t)> ce−(τ+µ+δ )t

At t = 0, I (0)> c

I (t)> I (0)e
−(τ+µ+δ )t

since

(τ +µ +δ )> 0, I (t)> 0

Also,
dR1

dt
>−(κ +µ)R1

R1 (t)> ce−(κ+µ)t

At t = 0, R1 (0)> c

R1 (t)> R1 (0)e
−(κ+µ)t

since

(κ +µ)> 0,R1 (t)> 0
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Also
dR
dt
>−(σ +µ)R

R(t)> ce−(σ+µ)t

At t = 0, R(0)> c

R(t)> R(0)e
−(σ+µ)t

since

(σ +µ)> 0,R(t)> 0

�

3.2. Region of Feasibility.

Theorem 2. The positive solution set is a positively invariant set of the model and is given by

(4) Γ =

{
(S,V,E, I,R1,R) ∈ R6

+ : N 6
Λ+M−δ I

µ
, µ 6= 0

}
Proof.

N = S+V +E + I +R1 +R

dN
dt

= Λ−µN +M−δ I

dN
Λ−µN +M−δ I

= dt

− 1
µ

∫ ( −µ

Λ−µN +M−δ I

)
dN =

∫
dt

− 1
µ

In |Λ−µN +M−δ I|= t + c

In |Λ−µN +M−dI|=−µt + c1

Λ−µN +M−δ I = c2e−µt

N (t) =
Λ+M−δ I− c2e−µt

µ

At t = 0, N (0) = N0, I (0) = I0

N0 =
Λ+M−δ I0− c2

µ

c2 = Λ+M−δ I0−µN0
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N (t) =
Λ+M−δ I− (Λ+M−δ I0−µN0)e−µt

µ

So as t→ ∞, N→ Λ+M−δ I
µ

∈ R+

Therefore, Γ is positive invariant. �

3.3. Existence of Disease-Free Equilibrium Point. The disease-free equilibrium of the dy-

namical system (1) is obtained by setting
dS
dt

=
dV
dt

=
dE
dt

=
dI
dt

=
dR1

dt
=

dR
dt

= 0 and since

there is no disease E = I = R1 = R = 0

Λ+αM− (γ +µ)S = 0 ⇒ S =
Λ+αM

γ +µ

Therefore, the disease-free equilibrium of the dynamical system (1) is

(5) C0 =
(
S0,V 0,E0, I0,R0

1,R
0)= (Λ+αM

γ +µ
,

γ (Λ+αM)

(θ +µ)(γ +µ)
,0,0,0,0

)

3.4. The Basic Reproductive Number, Ro. The basic reproductive number can be computed

utilizing the cutting edge matrix approach. It is utilized to predict the stability of the disease

equilibrium. The basic reproductive number is characterized as the quantity of secondary infec-

tions that one tainted person can create in a completely susceptible populace [17]. According

to [17, 18], the next generation matrix is defined as K = FG−1 and R0 = ρ
(
FG−1), where

ρ
(
FG−1) denotes the spectral radius of FG−1.

Using the Next Generation Matrix, we consider only the infectious compartments in the system

of differential equation in 4.2.1

(6)

dE
dt

= βSI− (ρ +µ)E
dI
dt

= ρE +(1−α)M− (τ +δ +µ) I
dR1

dt
= τI− (κ +µ)R1

Let f be the count of emerging infection moving into the system and g be the count of infections

existing the system.

f = (βSI, 0, 0) and g = ((ρ +µ)E, −ρE− (1−α)M+(τ +µ +δ ) I, −γI +(k+µ)R1)
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The Jacobian matrix of f and g are obtained by

(7) F =


0 βS 0

0 0 0

0 0 0

 and G =


ρ +µ 0 0

−ρ τ +µ +δ 0

0 −γ k+µ


But R0 = ρ

(
FG−1)

From the relation FG−1 , the inverse of G can be calculated:

(8) G−1 =


(γ+µ+δ )

(ρ+µ)(τ+µ+δ ) 0 0
ρ

(ρ +µ)(τ +µ +δ )

1
(τ +µ +δ )

0

γρ

(ρ +µ)(τ +µ +δ )(k+µ)

γ

(τ +µ +δ )(k+µ)

(γ +µ +δ )

(τ +µ +δ )(k+µ)


Computing the product of FG−1

FG−1 =


0 βS 0

0 0 0

0 0 0




(γ +µ +δ )

(ρ +µ)(τ +µ +δ )
0 0

ρ

(ρ +µ)(τ +µ +δ )

1
(τ +µ +δ )

0

γρ

(ρ +µ)(τ +µ +δ )(k+µ)

γ

(τ +µ +δ )(k+µ)

(γ +µ +δ )

(τ +µ +δ )(k+µ)



(9) FG−1 =


βρS

(ρ +µ)(τ +µ +δ )

βS
(τ +µ +δ )

0

0 0 0

0 0 0


By selecting the dominant eigenvalue of FG−1, the basic reproductive number is

(10) R0 =
βρS

(ρ +µ)(τ +µ +δ )

At the disease-free equilibrium, we substitute S = Λ+αM
γ+µ

into the basic reproductive number,

R0.

This therefore implies that,

(11) R0 =
βρ (Λ+αM)

(γ +µ)(ρ +µ)(τ +µ +δ )
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3.5. Local Stability of The Disease-Free Equilibrium Point.

Theorem 3. The disease-free equilibrium point Co of the dynamical system (1) is locally asymp-

totically stable if R0 < 1 and unstable R0 > 1.

Proof. The Jacobian matrix of the dynamical system (1) at the DFE point C0 =(
Λ+αM

γ +µ
,

γ (Λ+αM)

(θ +µ)(γ +µ)
,0,0,0,0

)
is given by;

(12)

J
(
C0)=



−(γ +µ) 0 0 −β (Λ+αM)
γ+µ

0 σ

γ −(θ +µ) 0 0 0 0

0 0 −(ρ +µ) β (Λ+αM)
γ+µ

0 0

0 0 ρ −(τ +µ +δ ) 0 0

0 0 0 τ −(κ +µ) 0

0 θ 0 0 κ −(σ +µ)


The corresponding characteristics equation for the eigenvalues, λ

is
∣∣λ I− J

(
C0)∣∣= 0 �

(13)∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ +(γ +µ) 0 0 β (Λ+αM)
γ+µ

0 −σ

−γ λ +(θ +µ) 0 0 0 0

0 0 λ +(ρ +µ) −β (Λ+αM)
γ+µ

0 0

0 0 −ρ λ +(τ +µ +δ ) 0 0

0 0 0 −τ λ +(κ +µ) 0

0 −θ 0 0 −κ λ +(σ +µ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

(14)

(λ +κ +µ) [(λ + γ +µ)(λ +θ +µ)(λ +σ +µ)− γθσ ]

[
(λ + τ +µ +δ )(λ +ρ +µ)− ρβ (Λ+αM)

γ+µ

]
= 0

λ +κ +µ = 0 ⇒ λ1 =−κ−µ
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(λ + γ +µ)(λ +θ +µ)(λ +σ +µ)−σγθ = 0

λ 3 +(γ +θ +σ +3µ)λ 2 +[(θ +µ)(σ +µ)(γ +µ)(θ +σ +2µ)]λ +
[
µ3 +(γ +θ +σ)µ2 +(γθ +σγ +σθ)µ

]
= 0

This is,

(15) λ
3 +Qλ

2 +Rλ +T = 0

According to Routh-Hurwith criterion, since Q > 0, R > 0 and T > 0 λ2, λ3 and λ4 will have

negative real part as roots.

Also;

(λ +ρ +µ)(λ + τ +µ +δ )− ρβ (Λ+αM)

γ +µ
= 0

λ
2 +(ρ + τ +δ +2µ)λ +(ρ +µ)(τ +µ +δ )− ρβ (Λ+αM)

γ +µ
= 0

The roots, λ5 and λ6 , of this characteristic polynomial will have negative real part if and only

if

(16) (ρ +µ)(τ +µ +δ )− ρβ (Λ+αM)

γ +µ
> 0

1− ρβ (Λ+αM)

(γ +µ)(ρ +µ)(τ +µ +δ )
> 0

1−R0 > 0

R0 < 1

Therefore, C0 is asymptotically stable since R0 < 1 and unstable if R0 > 1

3.6. Global Stability of The Disease-Free Equilibrium Point.

Theorem 4. The disease-free equilibrium point C0 of the dynamical system (1) is globally

asymptotically stable in Λ if R0 < 1 and unstable R0 > 1.

Proof. Using the Perron eigenvector to prove the global stability of the disease free equilibrium

as in [19, 20] we apply the matrix-theoretic method. In the dynamical system, the disease

compartment is x =
(

E I R1

)T
∈ R3 and the non-disease compartment is y ∈ R6
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Taking the same path as[19, 20],

let us set

(17) f (x,y) := (F−G)x−F (x,y)+G(x,y)

Then, the equation of the disease compartment can be written as

(18) x1 = (F−G)x− f (x,y)

�

Theorem 5. Let Ro be defined as in 4.8. Then the threshold property holds for system (1)

Proof. Using the instrument provided in subsection 3.4.3 and the conditions outlined in the

theorem 3.4.3 in chapter 3, we set the Lyapunov function for the disease-free equilibrium (DFE).

We first find wT (the left eigenvector of the non-negative matrix G−1F )

G−1F =


1

(ρ+µ) 0 0
ρ

(ρ+µ)(γ+µ+δ )
1

(γ+µ+δ ) 0
γρ

(ρ+µ)(γ+µ+δ )(κ+µ)
γ

(γ+µ+δ )(κ+µ)
1

(κ+µ)




0 βS 0

0 0 0

0 0 0



=


0 βS

(ρ+µ) 0

0 ρβS
(ρ+µ)(γ+µ+δ ) 0

0 ρβγS
(ρ+µ)(γ+µ+δ )(κ+µ) 0



=


0 R0

(γ+µ+δ )
ρ

0

0 R0 0

0 R0
γ

κ+µ
0



⇒ wT =


0 R0

(γ+µ+δ )
ρ

0

0 R0 0

0 R0
γ

κ+µ
0




n1

n2

n3

=


n1

n2

n3

R0

⇒ R0
(γ +µ +δ )

ρ
n2 = R0n1, R0n2 = R0n2 and R0

γ

κ +µ
n2 = R0n3
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∴ wT =

(
γ +µ +δ

ρ
1

γ

κ +µ

)
and any multiple of this becomes our eigenvector.

From equation (15),

x1 = (F−G)x− f (x,y)

That is f (x,y) = (F−G)x− x1

(19)

f (x,y) =




0 βS 0

0 0 0

0 0 0

−


ρ +µ 0 0

−ρ τ +µ +δ 0

0 −γ κ +µ


x−


βSI

0

0

+


(ρ +µ)E

−ρE +(1−α)M+(τ +µ +δ ) I

−γI +(κ +µ)R1



=


−(ρ +µ) βS 0

ρ −(τ +µ +δ ) 0

0 γ −(κ +µ)




E

I

R1

+


−βSI +(ρ +µ)E

−ρE +(1−α)M+(τ +µ +δ ) I

−γI +(κ +µ)R1



=


βSI− (ρ +µ)E

ρE− (τ +µ +δ ) I

γI− (κ +µ)R1

+


−βSI +(ρ +µ)E

−ρE +(1−α)M+(τ +µ +δ ) I

−γI +(κ +µ)R1

= 0

where α = 1 at the disease-free equilibrium

Therefore, f (x,y) = 0 and this satisfies the demand of Theorem 5. The Lyapunov function D as

D = wT G−1x

(20) D =
(

γ+µ+δ

ρ
1 γ

κ+µ

)
1

(ρ+µ) 0 0
ρ

(ρ+µ)(γ+µ+δ )
1

(γ+µ+δ ) 0
ργ

(ρ+µ)(γ+µ+δ )(κ+µ)
γ

(γ+µ+δ )(κ+µ)
1

(κ+µ)




E

I

R1



=
(

γ+µ+δ

ρ
1 γ

κ+µ

)
1

(ρ+µ)E
ρ

(ρ+µ)(γ+µ+δ )E + 1
(γ+µ+δ )I

ργ

(ρ+µ)(γ+µ+δ )(κ+µ)E + γ

(γ+µ+δ )(κ+µ)I +
1

(κ+µ)R1


=
((

γ+µ+δ

ρ(ρ+µ) +
ρ

(ρ+µ)(γ+µ+δ ) +
ργ2

(ρ+µ)(γ+µ+δ )(κ+µ)2

)
E +

(
1

(γ+µ+δ ) +
γ2

(γ+µ+δ )(κ+µ)2

)
I + γ

(κ+µ)2 R1

)
=
(
(γ+µ+δ )2(κ+µ)2+ρ2(ρ+µ)(κ+µ)+ρ2γ2

ρ(ρ+µ)(γ+µ+δ )(κ+µ)2

)
E +

(
(κ+µ)2+γ2

(γ+µ+δ )(κ+µ)2

)
I +
(

γ

(κ+µ)2

)
R1

But

D1 = wTV−1x1 = wTV−1 (F−V )x−wTV−1 f (x,y)
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D1 = (R0−1)wT x−wTV−1 f (x,y)

Since wT > 0, V−1 and f (x,y) = 0

⇒ D1 < 0 if R0 < 1

From the derivative of the Lyapunov function, D1 < 0 when R0 < 1 , which satisfy the condition

that the disease-free equilibrium is asymptotically stable, and unstable when R0 > 1 . �

3.7. Existence of The Endemic Equilibrium Point. The endemic equilibrium point is ac-

quired by mounting the right-hand side of the dynamical system (4) equal to zero and solve

them simultaneously. The endemic equilibrium point is C∗ = (S∗,V ∗,E∗, I∗,R∗1,R
∗) where

(21)

S∗ = (θ+µ)[(Λ+αM)(σ+µ)(κ+µ)+κστI∗]
(κ+µ)[(σ+µ)(θ+µ)(γ+µ+β I∗)−σθγ]

V ∗ = γ[(Λ+αM)(σ+µ)(κ+µ)+κστI∗]
(κ+µ)[(σ+µ)(θ+µ)(γ+µ+β I∗)−σθγ]

E∗ = β (θ+µ)[(Λ+αM)(σ+µ)(κ+µ)+κστI∗]I∗

(ρ+µ)(κ+µ)[(σ+µ)(θ+µ)(γ+µ+β I∗)−σθγ]

R∗1 = τI∗
(κ+µ) and

R∗ = 1
(σ+µ)(κ+µ)

[
κτI∗+ θγ[(Λ+αM)(σ+µ)(κ+µ)+κστI∗]

[(σ+µ)(θ+µ)(γ+µ+β I∗)−σθγ]

]
I∗ is the positive root of AI∗2 +BI∗+C = 0 that is I∗ = −B+

√
B2−4AC

2A > 0

We have three possibilities of getting the value of I∗

(1) If B2−4AC < 0, then there is no endemic equilibrium state;

(2) If B2−4AC = 0, then again, the endemic equilibrium point does not exist.

(3) If B2−4AC > 0, then the endemic equilibrium point exists when AC < 0

where A = κστρβ (θ +µ)

B = β (σ +µ)(κ +µ) [ρ (θ +µ)(Λ+αM)+(ρ +µ)(τ +µ +δ )(θ +µ)+(ρ +µ)(1−α)M]

C = (ρ +µ)(κ +µ) [θγσ − (σ +µ)(θ +µ)(γ +µ)] [(τ +µ +δ )− (1−α)M]
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3.8. Local Stabilty of The Endemic Equilibrium Point.

Theorem 6. The positive endemic equilibrium point C∗ of the system (4.1) is locally asymptot-

ically stable if Ro > 1

Proof. The Jacobian matrix of the system of the equations (1) at the endemic point is

(22) J (C∗) =



M11 0 0 M14 0 σ

γ M22 0 0 0 0

M31 0 M33 M34 0 0

0 0 ρ M44 0 0

0 0 0 τ M55 0

0 θ 0 0 κ M66


where M11 =−(γ +µ +β I∗), M14 =−βS∗, M22 =−(θ +µ), M31 =−β I∗, M33 =−(ρ +µ),

M34 =−βS∗, M44 =−(τ +µ +δ ), M55 =−(κ +µ), and M66 =−(σ +µ)

The corresponding characteristic equation is J (C∗) is denoted by |λ I− J (C∗)|= 0 and is given

as

(23)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ −M11 0 0 M14 0 σ

γ λ −M22 0 0 0 0

M31 0 λ −M33 M34 0 0

0 0 ρ λ −M44 0 0

0 0 0 τ λ −M55 0

0 θ 0 0 κ λ −M66

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

The matrix J(C∗) is a strictly column diagonally dominant matrix. Again, all the diagonal

entries are negative. Hence, all eigenvalues of J(C∗) have negative real part. Now applying

the Gershgorin circle theorem [21], C∗ is locally asymptotically stable if |M11| > |M14 +σ |,

|M22|> |γ|, |M33|> |M31 +M34|, |M44|> |ρ|, |M55|> |τ| and |M66|> |θ +κ| �

3.9. Global Stabilty of The Endemic Equilibrium Point.

Theorem 7. The dynamical system (1) is said to have an endemic equilibrium if Ro > 1 , and it

is globally asymptotically stable.
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Proof. Consider the Lyapunov function defined by

(24)

Q(C∗) =
(

S−S∗−S∗InS∗
S

)
+
(

V −V ∗−V ∗InV ∗
V

)
+
(

E−E∗−E∗InE∗
E

)

+
(

I− I∗− I∗In I∗
I

)
+
(

R1−R∗1−R∗1In
R∗

1
R1

)
+
(

R−R∗−R∗InR∗
R

)
Computing the derivative of Q along the solution of the dynamical system in (1) directly,

(25)

dQ
dt

=
(

S−S∗
S

)
dS
dt +

(
V−V ∗

V

)
dV
dt +

(
E−E∗

E

)
dE
dt

+
(

I−I∗
I

)
dI
dt +

(
R1−R∗1

R1

)
dR1
dt +

(
R−R∗

R

)
dR
dt

(26)

dQ(C∗)
dt =

(
S−S∗

S

)
(Λ+αM+σR− (γ +µ)S−βSI)+

(
V−V ∗

V

)
(γS− (θ +µ)S)

+
(

E−E∗
E

)
(βSI− (ρ +µ)E)+

(
I−I∗

I

)
(ρE +(1−α)M− (τ +δ +µ) I)

+
(

R1−R∗1
R1

)
(τI− (κ +µ)R1)+

(
R−R∗

R

)
(κR1 +θV − (σ +µ)R)

(27)

dQ
dt = (Λ+M+µN∗+ γS∗+σV ∗+ρE∗+(τ +δ ) I∗+κR∗1 +σR∗+βS∗I)

−

 µN +(Λ+αM+σR) S∗
S + γ

SV ∗
V +β

SIE∗
E +δ I

+(ρE +(1−α)M) I∗
I + τ

IR∗1
R1

+(κR1 +θV ) R∗
R


⇒ dQ

dt
= Z−Y

where Z = Λ+M+µN∗+ γS∗+σV ∗+ρE∗+(τ +δ ) I∗+κR∗1 +σR∗+βS∗I

and Y = µN +(Λ+αM+σR) S∗
S + γ

SV ∗
V +β

SIE∗
E +δ I +(ρE +(1−α)M) I∗

I + τ
IR∗1
R1

+(κR1 +θV ) R∗
R

Imposing the condition that Z <Y , the derivative of the Lyapunov function with respect to time

is less than or equal to zero.

If Z < Y , then dQ
dt 6 0

But
dQ
dt

= 0 if and only if S = S∗,V =V ∗, E = E∗, I = I∗, R1 = R∗1 andR = R∗

Therefore, the endemic equilibrium point C∗ is globally asymptotically stable in Γ if Z < Y
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The largest invariant set in:
{

C∗ = (S∗,V ∗, E∗, I∗, R∗1, R∗) ∈ Γ : dQ
dt = 0

}
is a singleton, where

C∗ is the endemic equilibrium point. �

4. EXTENSION OF TB MODEL TO OPTIMAL CONTROL

In this section, we will carry out an analysis of the optimal controls to ascertain its effects on

the model. The optimal control problem is obtained by integrating the undermentioned control

functions into the Tuberculosis model (1) and introducing an objective functional that desires

to minimize the controls (u1,u2,u3),

where u1 is the vaccination of the susceptible population (S) as a control measure;

u2 is the treatment of the infected individuals (I) as a control measure; and

u3 is the education/sensitization of the exposed population (E) as a control measure.

By inserting the various controls, the system with the optimal controls becomes

(28)

dS
dt

= Λ+αM+σR−u1γS−µS−βSI
dV
dt

= u1γS− (θ +µ)V
dE
dt

= βSI− (1−u3)ρE−µE
dI
dt

= (1−u3)ρE +(1−α)M−u2τI− (δ +µ) I
dR1

dt
= u2τI− (1−u2)κR1−µR1

dR
dt

= (1−u2)κR1− (1−u1)θV − (σ +µ)R

Let the optimal levels of the control set be u, which is Lesbesgue measurable and defined as:

U =
{
(u1 (t) , u2 (t) , u3 (t)) : 06 u1 < 1,06 u2 < 1,06 u3 < 1,06 t 6 t f

}
The problem is to find a control u(t) and its associated state variables S (t), V (t), E (t), I (t),

R1 (t) and R(t) to minimize the objective functional J given by

(29) J = min
(u1,u2,u3)

t f∫
0

(
a1I +a2R1 +

3

∑
i=1

wiui
2

)
dt

That is J = min(u1,u2,u3)

t f∫
0

(
a1I +a2R1 +w1u2

1 +w2u2
2 +w3u2

3
)
dt subject to the differential

equations system (28).
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Where a1,a2, w1 , w2 and w3 are the weight constants to balance the terms in the inte-

grals to abstain the ascendance of one over the other(s).

Also a1, I and a2R1 are the cost associated with the infected individuals and the individuals

resistance to treatment, respectively; while w1u2
1, w2u2

2 and w3u2
3 are the cost associated

with vaccination, treatment and sensitization as preventive measures. t f is the period of the

intervention.

The purpose of inserting the controls is to minimize the number of infections and at the

same time reduce the cost of treatment.

Our task at this point is to find the optimal functions; u∗1 (t), u∗2 (t), u∗3 (t) such that

J (u∗1 (t) ,u
∗
1 (t) ,u

∗
1 (t)) = min(u1,u2,u3) ∈ ∪J (u1,u2,u3),

where U =
{

ui : 06 ui (t)6 1, t ∈
[
0, t f

]
, i = 1,2,3

}
is referred to as the control set

[22, 23, 24].

4.1. Pontryagin’s Maximum Principle. Consider the Lagrangian function:

(30) L(I,R1,u1,u2,u3, t) = a1I +a2R1 +w1u2
1 +w2u2

2 +w3u2
3

The Pontryagin’s maximum principle provides the essential condition that the optimal must

satisfy. This change the system of the differential equation into minimization problem point-

wise Hamiltonian (H) with respect to (u1,u2,u3).

Hence, the Hamiltonian (H) becomes

H (S,V,E, I,R1,R, t) = L(I,R1,u1,u2,u3, t)+λ1
dS
dt +λ2

dV
dt +λ3

dE
dt +λ4

dI
dt +λ5

dR1
dt +λ6

dR
dt

where λ1,λ2,λ3,λ4,λ5,and ,λ6 are disjoint variables.

(31)

H = a1I +a2R1 +w1u2
1 +w2u2

2 +w3u2
3 +λ1 {Λ+αM+σR−u1γS−µS−βSI}

+ λ2 {u1γS− (θ +µ)V}+λ3 {βSI− (1−u3)ρE−µE}

+ λ4 {(1−u3)ρE +(1−α)M−u2τI− (δ +µ) I}

+ λ5 {u2τI− (1−u2)κR1−µR1}

+ λ6 {(1−u2)κR1 +(1−u1)θV − (σ +µ)R}
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considering the relation

(32)
dλi

dt
=− ∂H

∂
•
x(t)

By taking partial derivatives of the Hamiltonian function with respect to

(S,V,E, I,R1,R) and negating each of them, the following co-state variables are the solutions of

the adjoint systems.

(33)

dλ1
dt = −∂H

∂S = (λ1−λ2)u1γ +(λ1−λ3)β I +µλ1

dλ2
dt = −∂H

∂V = (λ2−λ6)θ +u2λ2 +u1θλ6

dλ3
dt = −∂H

∂E = (1−u3)(λ3−λ4)ρ +µλ3

dλ4
dt = −∂H

∂ I = (λ1−λ3)βS+(λ4−λ5)u2τ +(µ +δ )λ4

dλ5
dt = − ∂H

∂R1
= (1−u2)(λ5−λ6)κ +µλ5

dλ6
dt = −∂H

∂R = (λ6−λ1)σ +µλ6

The above satisfy the transversality condition;

(34) λ1
(
t f
)
= λ2

(
t f
)
= λ3

(
t f
)
= λ4

(
t f
)
= λ5

(
t f
)
= λ6

(
t f
)
= 0

Moreover, the characterization of the optimal control is obtained by solving

(35)
∂H
∂ui

= 0

Where ui = u∗i , i = 1,2,3

∂H
∂u1

= 2w1u1 +(λ2−λ1)γS−λ6θV

⇒ 2w1u1 +(λ2−λ1)γS−λ6θV = 0

∴ u∗1 =
(λ1−λ2)γS∗+λ6θV ∗

2w1

∂H
∂u2

= 2w2u2− (λ4−λ5)τI∗− (λ6−λ5)κR∗1

⇒ 2w2u2− (λ4−λ5)τI∗− (λ6−λ5)κR∗1 = 0

∴ u∗2 =
(λ4−λ5)τI∗+(λ6−λ5)κR∗1

2w2

∂H
∂u3

= 2w3u3− (λ4−λ3)ρE∗

⇒ 2w3u3− (λ4−λ3)ρE∗ = 0
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∴ u∗3 =
(λ4−λ3)ρE∗

2w3

(36)

u∗1 = (λ2−λ1)γS∗+λ6θV ∗
2w1

u∗2 =
(λ4−λ5)τI∗+(λ6−λ5)κR∗1

2w2

u∗1 = (λ4−λ3)ρE∗
2w3

Theorem 8. The optimal control vector
(
u∗1 (t) ,u

∗
2 (t) ,u

∗
3 (t)

)
that maximizes the objective func-

tion (J) over ∪ is given by

(37)

u∗1 (t) = max
{

0, min
(

1, (λ2−λ1)γS∗+λ6θV ∗
2w1

)}

u∗2 (t) = max
{

0, min
(

1, (λ4−λ5)τI∗+(λ6−λ5)κR∗1
2w2

)}

u∗3 (t) = max
{

0, min
(

1, (λ4−λ3)ρE∗
2w3

)}
where λ1,λ2,λ3,λ4,λ5,and ,λ6 are the solutions of equation (4.28) and (4.30)

Proof. The presence of optimal control is as an aftereffect of the convexity of the integral of J

regarding u1 , u2 and u3 , the Lipschitz property of the state system concerning the state factors

from the earlier boundedness of the state arrangements [25]

The differential conditions administering the adjoint factors are acquired by separation of the

Hamiltonian work, assessed at the ideal control. By standard control contentions including the

limits on the control, we conclude
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(38)

u∗1 =


0, ifη∗1 6 0

η∗1 , if0 < η∗1 < 1

1, ifη∗1 > 1

u∗2 =


0, ifη∗2 6 0

η∗2 , if0 < η∗2 < 1

1, ifη∗2 > 1

u∗3 =


0, ifη∗3 6 0

η∗3 , if0 < η∗3 < 1

1, ifη∗3 > 1


where η∗1 = (λ1−λ2)γS∗+λ6θV ∗

2w1
, η∗2 =

(λ4−λ5)τI∗+(λ6−λ5)κR∗1
2w2

and η∗3 = (λ4−λ3)ρE∗
2w3

�

5. NUMERICAL RESULTS

The state systems, adjoint equations, and the transversality terms are solved simultaneously

to get the optimal strategies. The optimal problem is a two-point boundary-value problem with

two abstracted boundary conditions at initial times t = 0 and t = t f , where t f = 3 months. This

represents the period at which preventive strategies and treatment are expected to be stopped.

The numerical simulation was conducted by solving the state equations, the adjoint equations,

and the transversality conditions using Runge-Kutta fourth-order scheme by guessing the con-

trols over a simulated time. We then use the current iteration of the state equation, the adjoint

equations, and the transversality conditions by a backward method. Further iterations are done

until values of the unknown variables at the previous iteration are very closed to those in at the

present iteration [20, 26, 27, 28].
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Parameter Value Reference

Λ 10 Assumed

α 0.9 [29]

β 0.05 Assumed

γ 0.2 Assumed

σ 0.4 Assumed

µ 0.01874 [30]

θ 0.1 Assumed

ρ 0.00114 [30]

δ 0.1577 [30]

κ 1.00 Assumed

τ 0.4 [31]

TABLE 3. Numerical Values

Table 3 shows the various parameter values used the TB model simulations.

5.1. Strategy 1: Treatment, Prevention and Vaccination of Susceptible. Objective func-

tional was optimised by using treatment, prevention and vaccination as control measures. As

a result of these control measures, there have been significant reduction of infections and an

increase in the number of recoverpopulations as shown in Figure 2 and Figure 3.
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;

FIGURE 2. Optimal treatment of population infected.
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;

FIGURE 3. Optimal prevention and vaccination of population susceptible.

5.2. Strategy 2: Prevention and Treatment of Infected population. Objective functional

was optimised by using prevention, vaccination and treatment as control measures. The out-

come of these control measures indicates a reduction of population infected and increased re-

coveries. An indication that these variables have greatly impacted in the combat of the spread

of infections as shown in Figure 4 and Figure 5.
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;

FIGURE 4. Optimal prevention and treatment of population infected.
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;

FIGURE 5. Optimal prevention and vaccination of susceptible population.

5.3. Strategy 3: Vaccination and Treatment of Infected population. Objective functional

was optimised by using treatment, vaccination and prevention of suscepttible population as con-

trol measures. Figure 6 and Figure 7 show the effects of treatment and vaccination respectively.

An increased in recovery population, a decreased in infectious population and a decreased in

the number of population susceptible.
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;

FIGURE 6. Optimal treatment of population infected.
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;

FIGURE 7. Optimal vaccination of susceptible population.

6. CONCLUSION

A deterministic model for tuberculosis was formulated and analysed. The basic reproductive

number for the TB model is estimated using the Next Generation Matrix method.

The equilibrium points of the TB model and their local and global stability were determined. It

was established that if the basic reproductive number was less than unity (R0 < 1), then the dis-

ease free equilibrium is stable and unstable if R0 > 1. Furthermore, we investigated the optimal
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prevention, treatment and vaccination as control measures for the disease.

Objective functional was optimised by using treatment, prevention and vaccination as control

measures. As a result of these control measures, there have been significant reduction of infec-

tions and an increase in the number of recovered populations as shown in Figure 2 and Figure

3.

Objective functional was optimised by using prevention, vaccination and treatment as control

measures. The outcome of these control measures indicates a reduction of population infected

and increased recoveries as shown in Figure 4 and Figure 5. An indication that these variables

have greatly impacted in the combat of the spread of infections.

Objective functional was optimised by using treatment, vaccination and prevention of suscept-

tible population as control measures. An increased in recovery population, a decreased in in-

fectious population and a decreased in the number of population susceptible as shown in Figure

6 and Figure 7.

It was established that the best control measure in combating Tuberculosis infections is preven-

tion and vaccination of susceptible population.
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