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Abstract: Statistical Downscaling (SDS) is a technique in climatology to analyze the functional relationship of global 

scale GCM (Global Circulation Model) output data as predictor variables and local scale rainfall data as a response 

variable. Rainfall contains continuous and discrete components. The continuous component is related to the intensity 

of rainfall more than zero which can be assumed to be Gamma distribution while the discrete component is related to 

the occurrence of rain including zero which can be assumed to be Poisson distribution. A combination of both 

distributions is called Tweedie compound poisson gamma (TCPG). SDS modeling with TCPG response can be used 

to predict the occurrence of rain and also the rainfall intensity simultaneously. GCM output data generally contain 

multicollinearity problems which can be overcome by Lasso regularization. This study discusses SDS modeling which 

assumes TCPG distributed response and uses Lasso to predict some characteristics of rainfall such as the average 

number of daily rainfall events per month (𝜆), shape parameter (𝛾), the average intensity of daily rainfall per month 

(𝛼𝛾), probability of no rain event per month 𝜋 = exp⁡(−𝜆),  the number of no rain per month 𝑁𝜋. Based on the 
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smallest RMSEP and the high correlation of the actual and predicted data, the TCPG model with Lasso regulation is 

more reliable and needs to be considered for modeling rainfall than TCPG-generalized linear models and TCPG-

principal component analysis. 

Keywords: statistical downscaling; global circulation model; lasso; tweedie compound poissson gamma. 

2010 AMS Subject Classification: 93A30. 

 

1. INTRODUCTION 

Statistical downscaling (SDS) is a technique to develop a relationship of global scale variables 

(covariate) and local scale variables (responses) [1]. The SDS technique is used to overcome the 

inability of low-resolution general circulation model (GCM) output to directly predict high-scale local 

climate conditions. Thus, the information of the GCM output is used to Predict rainfall.  

Rainfall consists of two components, continuous and discrete components. The continuous 

component is used to measure the intensity of rainfall which is more than zero, while the discrete 

component includes the occurrence of rainfall with an intensity of zero because there is no recorded 

rainfall [2]. It is important to consider the estimation of the two components of rainfall for the sake 

of predicting the characteristics of rainfall.  

Some proposed models for continuous components assumed the normal distribution in the linear 

model. This will lead to violations of assumptions because rainfall data are generally skewed to the 

right with gamma distribution. Generalized linear models are used as a solution. However, some 

rainfall events will be zero (no rain). These results in the distribution of gamma are less suitable for 

modeling the data. Proposing the distribution of Tweedie compound Poisson-gamma as a sum of 

continuous rainfall events can accommodate both components of rainfall simultaneously. This 

distribution is required because both components have important information for predicting rainfall 

in the future [3]. 

Precipitation data of GCM output are used as covariate variables in SDS modeling. The GCM 

output data has several problems, including multiple-dimensional explanatory variables, spatial 

correlation between grids, and multicollinearity between variables. This problem can be solved by 



3 

A NEW APPROACH TO STATISTICAL DOWNSCALING  

several methods such as dimensional reduction, variable selection, and parameter shrinkage. The 

dimensional reduction can use the principal component analysis method (PCA) and the variable 

selection and parameter shrinkage often use the LASSO (least absolute shrinkage and selection 

operator) method.An example of the dimensional reduction method is the principal component 

analysis method (PCA). The lasso method has the advantage of selecting variables and estimating 

stable parameters in data analysis [10].   

SDS research is generally carried out by modeling the two components of rainfall separately. 

SDS modeling by [10] uses gamma and Pareto distributions with lasso regularization. [12] conducted 

an SDS study using a rainfall response with a Gaussian distribution with fused lasso penalty. [11] 

used a general linear mixed model (GLMM) using a Gaussian response with lasso regularization. 

These models have not accommodated the two components of rainfall simultaneously in a single 

distribution. Therefore, this study will conduct SDS modeling that can handle several problems in 

rainfall modeling in one model, namely handling two rain components simultaneously using TCPG 

distribution, handling multicollinearity using Lasso regularization, and predicting several 

characteristics of rainfall in addition to rainfall intensity. 

 

2. LITERATURE REVIEW 

2.1. Statistical Downscaling and General Circulation Models 

The SDS technique is used to overcome the inability of GCM (low resolution) to predict local-scale 

climate conditions (high resolution). The model usually used in SDS is as follows: 

𝒚𝑛×1 = 𝑓(𝑿𝑛×𝑘) 

where: 

𝒚𝑡×1  is the rainfall data, 𝑿𝑛×𝑘 is the precipitation of GCM output data, n is the number of 

observations, 𝑘 is the number of covariate variables. 

Some reasons that GCM output data cannot produce information for local scale directly are: (1) 

The description of spatial solutions about the structure of the earth surface, especially topography, is 

unclear; (2) Atmospheric hydrodynamics is nonlinear and there are nonlinear interactions between 
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small scale grids; (3) Too many parameters that might not be right for small-scale processes. [4]. The 

illustration of Statistical Downscaling is shown in Figure 1. 

 

FIGURE 1. Illustration of Statistical Downscaling [15] 

2.2. Tweedie Compound Poisson Gamma 

The Tweedie model is a special member of the exponential dispersion model (EDM). The density 

function of EDM is defined by a two-parameter function, namely: 

(1)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑓𝑦⁡(𝑦|𝜃, 𝜙) = 𝑎 (𝑦, 𝜙) exp (
1

𝜙
[𝑦𝜃 − 𝑘(𝜃)]) 

where: 

𝜃  is canonical parameters in ℝ , 𝜙 > 0  is dispersion Parameter (0, +∞) , 𝑘(𝜃)  is the cumulant 

function of the exponential dispersion model, 𝑎 (𝑦, 𝜙) is the normalized quantity that has a size base 

that is independent of the   parameter θ [5,6] 

EDM has a mean characteristic, namely 𝜇 = 𝑘′(𝜃) = 𝑑𝑘(𝜃)/𝑑𝜃   and variance 𝑉𝑎𝑟(𝑦) =

⁡𝜙⁡𝑘′′(𝜃) = 𝜙𝑉𝑎𝑟(𝜇), which can be calculated from the first and second derivatives of 𝑘(𝜃) w.r.t 

𝜃,  because of the one-to-one mapping between 𝜃 and 𝜇.  𝑘′′(𝜃) can be denoted as a function of 

the mean 𝜇, 𝑘′′(𝜃) = 𝑉𝑎𝑟(𝜇).     which is known as a variance function. 
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The Tweedie model specifies the power-law relationship between variance and mean 𝑉(𝜇) =

𝜇𝑝. Tweedie is denoted by 𝑇𝑊𝑝(𝜇, 𝜙) wherein mean 𝜇, dispersion parameter 𝜙 > 0, and index or 

power parameter  𝑝. Based on the general form of EDM in equation (1). Tweedie's natural parameters 

and Tweedie's cumulative function are: 

𝜃𝑖 = 𝜃(𝜇𝑖) = {
𝜇𝑖
1−𝑝

1−𝑝
, 𝑝 ≠ 1

𝑙𝑜𝑔𝜇𝑖⁡, 𝑝 = 1
         and             𝑏(𝜃𝑖) = {

𝜇(𝜃𝑖)
2−𝑝

2−𝑝
, 𝑝 ≠ 2

𝑙𝑜𝑔𝜇𝑖 ⁡, 𝑝 = 2
 

Tweedie EDM with {⁡𝜇, 𝜙, 𝑝}  and 𝑝 ∈ (1,2)  equivalent to describing Tweedie Compound 

Poisson Gamma (TCPG) which is parameterized with {⁡𝜆, 𝛼, 𝛾}. Tweedie assumes that the arrival of 

an event has Poisson distribution and the intensity of each event has Gamma distribution. In the field 

of meteorology, Tweedie assumes Y as total monthly rainfall, 𝑁 is the total number of rainfall events 

per month and 𝑦𝑖 is precipitation in the i-event [7] mathematically written as: 

𝑃(𝑁 = 𝑛) = 𝑒−𝜆
𝜆𝑛

𝑛!
, ∀𝑛 ∈ 𝑁𝑡 

𝑁 =∑1[𝑡,∞)(𝑡)

𝑡≥1

 

The amount of rainfall is represented as the total amount of rain from each rain event, say (𝑦𝑖)𝑖≥1 

is assumed to have a gamma distribution that is independent and identically to the time of rain: 

𝑌 = {
∑𝑦𝑖⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑁 = 1,2,3, …

𝑁

𝑖=1

0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑁 = 0,

 

 𝑦𝑖⁡⁡~𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛾) is the probability density function with mean 𝛼𝛾 and variance  𝛼𝛾2. If ⁡𝑁 =

0 then  ⁡𝑌 = 0 and if 𝑁 > 0 then  𝑌 = ∑ 𝑦𝑖
𝑁
𝑖 ⁡[6] .  Probability density function 𝑌 for  𝑁 > 0  

is:  

𝑓(𝑦) = {

𝛾𝛼

Γ(𝛼)
𝑦𝛼−1𝑒−𝛾𝑦⁡,⁡⁡⁡⁡𝑦 > 0

0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡,⁡⁡⁡⁡𝑦 ≤ 0

 

Y has the Poisson-Gamma distribution with the following parameters: 

𝜆 is the average number of rain events per month, 𝛾 is the shape of precipitation events, 𝛼𝛾 is the 

average amount of precipitation per incident. Relationship between parameters {⁡𝜆, 𝛼, 𝛾} from TCPG 

and parameter {⁡𝜇, 𝜙, 𝑝} from Tweedie model that is:  
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(2)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

{
 

 
𝜇 = 𝜆𝛼𝛾

𝑝 =
𝛼+2

𝛼+1

𝜙 =
𝜆1−𝑝(𝛼𝛾)2−𝑝

2−𝑝

  parameterization with    

{
 
 

 
 𝜆 =

𝜇2−𝑝

𝜙(2−𝑝)

𝛼 =
2−𝑝

𝑝−1

𝛾 = 𝜙(𝑝 − 1)𝜇𝑝−1

 

According to [8] the probability of no rain is: 

(3)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝜋 = Pr(𝑌 = 0) = ⁡ 𝑒−𝜆 = exp⁡(
𝜇2−𝑝

𝜙(2 − 𝑝)
)⁡⁡⁡⁡⁡⁡⁡ 

The distribution of probability for data   𝑌 > 0 is: 

(4)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑓(𝑦|𝜇, 𝑝, 𝜙) = 𝑎(𝑦, 𝜙) exp (
1

𝜙
(
𝑦𝜇1−𝑝

(1 − 𝑝)
−
𝜇2−𝑝

2 − 𝑝
))⁡ 

2.3. LASSO (Least Absolute Shrinkage and Selection Operator) 

The least absolute shrinkage and selection operator (LASSO) was introduced by Thibsirani in 1996. 

The basic idea of the Lasso method is to add a penalty called 𝐿1 regularization with the constraint 

∑ |𝛽𝑘| ⁡≤ 𝑡𝑝
𝑗=1 ⁡ , 𝑡⁡ ≥ 0  on the objective function. Penalty 𝐿1  is used for variable selection by 

shrinking the linear regression parameter coefficients of highly correlated covariate variables so that 

they are close to zero or exactly zero. Suppose there is an input vector 𝑿𝑇 = (𝑥1, 𝑥2, … , 𝑥𝑘)  used 

to predict the response of y using a linear regression model 𝑌 in the form: 

𝒀 = 𝛽0 +∑𝑥𝑗𝛽𝑗

𝑘

𝑗=1

+ 𝜺 

The least-squares method is used to estimate 𝜷 = (𝛽0, 𝛽1, … , 𝛽𝑘)
𝑇 by minimizing the number 

of squares of the error [9]. The distribution of responses is not always normal. Thus, the Generalized 

linear model is used as a solution that uses the link function between the linear predictors and the 

mean response. Parameter estimation of the generalized linear model (GLM) with 𝐿1 regularization 

has the following solutions: 

(5)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
arg𝑚𝑖𝑛
𝛽𝑗

{−
log⁡ 𝐿(𝒚, 𝛽𝑗)

𝑛
+ 𝜆∑|𝛽𝑗|⁡

𝑝

𝑗=1

}⁡⁡⁡ 

where: 

𝐿(𝒚, 𝛽𝑗) is the response of likelihood function, n is The number of observations,  𝜆  is the tuning 
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parameters Lasso that is the the coefficient controller shrinkage parameters with 𝜆⁡ ≥ 0, 𝛽𝑗 is the 

regression coefficient. 

The estimate of 𝛽𝑗  cannot be done deductively by calculus, but it uses optimization methods. 

Common numerical optimization methods that can be used to get optimum solutions is the iteratively 

re-weighted least square (IRWLS) method based on Newton Raphson approximation. By using the 

IRWLS, the likelihood function will get an estimate that reaches a maximum value if the Newton 

Raphson iteration converges [10]. 

 

3. METHODOLOGY 

3.1. Data 

This study uses monthly rainfall and precipitation data of GCM output in a period of January 1981 to 

December 2009 (348) months. Rainfall data (mm) at Cigugur station in West Java province is used 

as the response. The rainfall data were from Meteorology, Climatology, and Geophysical Agency. 

GCM output data as explanatory variables were from the national centers for environmental 

prediction (NCEP) in the form of a climate forecast system reanalysis (CSFR) model (website HTTP: 

//rda.ncar.edu). 

Rainfall data in this study is divided into two parts, namely training data from January 1981 to 

December 2008 and testing data from January 2009 to December 2009 which can be seen in Table 1. 

The research scheme is the comparison of the TCPG-Lasso, TCPG-GLM, and TCPG-PCA on the 

data.  

 TABLE 1. Description of research data 

Variable  Location of the rainfall observation station 

𝒀𝒏⁡⁡×⁡𝟏 Rainfall from Cigugur station 

𝑿𝒏⁡×𝒌 Precipitation as The GCM (general circulation model) 

output data  

 

3.2. TCPG-Lasso for Statistical Downscaling Model 

There are three distributions in the Exponential Dispersion Model (EDM) that are found to be suitable 

for rainfall modeling, namely normal, gamma, and TCPG distributions. So, this study compared 3 
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different methods namely TCPG-Lasso, TCPG in terms of GLM (TCPG-GLM), TCPG with 

multicollinearity handling using principal component analysis (TCPG-PCA). This research assumes 

that the response of Y is TCPG distributed so that the model used in this study is as follows: 

(6)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑙(𝑜𝑔(𝜇)) = 𝛽0 + ∑ 𝑥𝑗𝛽𝑗
𝑘
𝑗=1   

Estimation of the coefficient parameters TCPG-Lasso model is done by minimizing the equation 

of penalty model (5) using a two-layer loop algorithm that incorporates the blockwise majorization 

descent method into an iteratively re-weighted least square (IRLS-BMD) proposed by [6]. TCPG-

GLM and TCPG-PCA have the same parameter estimation method, namely the likelihood estimation 

method. The estimations of the parameter in this Research were assisted by software R version 3.6.0 

with Tweedie package.  

3.3.  Best model selection criteria 

This study uses Root Means Square Error Prediction (RMSEP) and the correlation between actual 

data and prediction data to determine the best parameter estimation and reduction method.  

3.3.1. Root Means Square Error Prediction (RMSEP) 

RMSEP is a method to measure the difference between the predicted value and the actual 

value defined as follows [1]: 

(7)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡RMSEP = √
∑ (𝑌𝑖 − �̂�𝑖)2
𝑛
𝑖=1

𝑛
⁡⁡⁡⁡⁡ 

3.3.2. Correlation of  𝑌𝑖 and �̂�𝑖 (r)  

Correlation is a method for measuring the closeness of a linear relationship between two random 

variables. Correlation used in this study is a correlation to measure the closeness of the relationship 

between actual data and prediction data which is defined as follows: 

(8)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑟 =
𝑐𝑜𝑣(𝑌𝑖,�̂�𝑖)

𝜎𝑌𝑖𝜎�̂�𝑖

⁡⁡      

where 

𝑌𝑖 is Rainfall data, �̂�𝑖 is prediction data, n is the number of rainfall data. 𝜎𝑌𝑖𝑎𝑛𝑑⁡𝜎�̂�𝑖 are variance 

for rainfall and prediction data. 
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4. RESULTS 

The distribution pattern of density, histogram, and boxplot of rainfall data are shown in Figure 2. The 

density plot in Figure 2 (a) shows that data pattern is right-skewed or positive continuous and exact 

zero. Thus, the rainfall data appear to be following the distribution characteristics of the TCPG. Other 

evidence that rainfall follows the characteristics of the TCPG distribution can be seen in Figure 2 (b) 

in the presence of a frequency of zero values and continuous positive values in the data. The box plot 

for the Cigugur station in Figure 2 (c) has a monsoon pattern where the lowest rainfall is between 

June and September. 

 

 
FIGURE 2. Density plot (a), Histogram (b), and Box plot (c) of monthly rainfall data in 

Cigugur station 1981-2009. 

 

The index parameters of TCPG distribution are in the value range 1 < 𝑝 < 2 . The index 

parameters and the dispersion parameters are estimated simultaneously, the results of which are 

described in Table 2. The selected index parameters which have the smallest likelihood profile can be 

seen in Figure 3. The index parameters are estimated first to determine the distribution of the data. 
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FIGURE 3. The plot of Profile Likelihood of Index Parameters for rainfall data at 

Cigugur station. 

Figure 3 shows that the index parameter with the highest likelihood profile is around the values 

1.4 to 1.5. Some of the parameters are estimated before modeling the TCPG-Lasso distribution that 

can be seen in Table 2, namely the estimated index parameter is 1.47, the dispersion (𝜙) is 16.31, α 

is 1.12 and the confidence interval for the index parameter (𝑝) is 1.41 to 1.52. Confidence intervals 

for index parameters can be used to construct several TCPG models with different index parameters 

according to the value at the selected confidence interval so that the best model can be selected. 

  

TABLE 2. Estimated parameters 𝑝, dispersion 𝜙, 𝛼  

Value parameter 

estimate  

Cigugur 

profile likelihood of 

𝒑 

1.47 

CI 95 % of  (1.41,1.52) 

𝝓 16.31 

𝜶 1.12 

 

From Table 2, it can be seen that the value of the 𝑝 index parameter calculated from the profile 

likelihood for the data is between the values 1 < 𝑝 < 2. So, it is true that the rainfall data for the rain 

station of Cigugur has a TCPG distribution. The GCM output in the form of precipitation is used as a 

covariate variable which is in the form of a grid. The grid domain used is 5x8 which is equivalent to 
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40 covariates with a grid resolution of 2.50 × 2.50. Grid size is selected by looking for the correlation 

between existing grids in the selected domain with rainfall at the selected rain station. The selected 

grid is contiguous and correlates with the correlation value ≥ 0.3⁡  [14]. The grids are spatially 

oriented and correlated so that there will be a violation of the multicollinearity assumption in the 

modeling. This multicollinearity problem can be handled by entering a penalty 𝐿1, called penalty 

lasso. Therefore, the TCPG with lasso regulation modeling can be done for the data. Lasso involved 

in the model is a regression analysis method that can select variables and regulations to improve the 

accuracy of predictions and a statistical model that can be interpreted more easily.  

The explanatory variable chosen will have a regression coefficient other than zero, while the 

explanatory variable that is not selected will be zero. The plot of the selected explanatory variables is 

shown in Figure 4. 

 

FIGURE. 4. The regression coefficients were selected for the Cigugur 

stations 

The TCPG-Lasso model has nine covariate variables selected which are indicated by a regression 

coefficient value other than zero. Furthermore, the prediction and actual rainfall is visualized through 

the plot to see the comparison of the two rainfall data. The plots of the prediction data from the three 

models and the actual data can be seen in Figure 5. 
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The plot of actual and predicted rainfall data for the Cigugur rain station from three methods 

was carried out in 2009 from January to December. The plot shows that the overall actual and 

predicted data patterns are similar to the actual data only slightly different in April and May. The 

TCPG-Lasso method is good at capturing high rainfall intensity. This shows that the model is good 

for the prediction of rainfall, both high and low rainfall. The measure of the goodness of the model is 

seen through the smallest Root Mean Square Error Prediction value and the highest correlation value 

between actual and predicted data of the three models. the goodness of fit model can be seen in Table 

3. 

    TABLE 3. RMSEP and Correlation for Actual and Prediction rainfall 

Method RMSEP r 

TCPG-Lasso 23.33 0.93 

TCPG-GLM 49.67 0.87 

TCPG-PCA 44.87 0.93 

Table 3 shows that the smallest RMSEP was obtained by the TCPG-Lasso model and the highest 

correlation value is obtained by the TCPG-Lasso and TCPG-PCA. Based on Table 2. The TCPG-

Lasso model is more reliable for rainfall modeling than other models because it has the smallest 

RMSEP and the highest correlation. 

TCPG distribution has several parameters that can be estimated to explain some characteristics 

 

FIGURE 5. Rainfall Prediction for Cigugur Station in 2009 
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of rainfall such as the average number of daily rainfall events per month (𝜆), shape parameter (𝛾), 

the average intensity of daily rainfall per month (𝛼𝛾), probability of no rain event per month 𝜋 =

exp⁡(−𝜆),  many events of no rain per month 𝑁𝜋. That will be described in Table 4 and Figure 76 

  

FIGURE 6. The plot of parameter estimates for (a) 𝜆, (𝑏)⁡⁡⁡𝛼𝛾, (𝑐)𝜋 = exp(−𝜆),⁡(𝑑)⁡𝑁𝜋  

for rainfall in Cigugur station                                                                                                                                                                                                                                                                                                                              

From Figure 6 (a) to 6 (d), it can be interpreted that the TCPG-Lasso method has a parameter 

estimate plot between the estimated parameter plots of the TCPG-GLM and TCPG-PCA methods. 

This shows that the TCPG-Lasso method is better than other models. The four plots have a pattern 

following the letter U called the monsoonal rainfall pattern following the characteristics of the rainfall 

pattern in West Java Province which has one peak of the rainy season. The dry season occurs in June, 

July, and August, which is indicated by the chance that there will be no rain and many non-rainy 

events in Figure 6 (c) increase in June, July, and August, while wet months occur in December, 

January, and February. The other six months are the transitional season. 
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Table 4 is the estimates of some TCPG parameters that describe the characteristics of rainfall 

which can be interpreted that the average number of daily rainfall events per month  (𝜆) for January 

is twice, shape parameters 𝛾  for January is 98, the average daily rainfall per month (𝛼𝛾)  for 

January is 110.63, probability of no rain event per month (𝜋) for January is 0.13, and many events 

of no rain per month (𝑁𝜋)  for January is twice. 

TABLE 4. Parameter estimates of  𝜆, 𝛾, 𝛼𝛾, 𝜋 = exp(−𝜆) , 𝑁𝜋 for rainfall in Cigugur 

Month Actual Prediction 

(�̂�) 

�̂� 𝛾 �̂�𝛾 �̂� 𝑁�̂� 

1 280 236 2.02 98.67 110.63 0.13 1.58 

2 252 227 2.01 98.04 109.93 0.13 1.60 

3 51 61 1.15 59.94 67.20 0.31 3.76 

4 147 64 1.08 56.41 63.25 0.33 4.06 

5 114 43 0.95 50.57 56.70 0.48 4.60 

6 25 28 0.75 40.68 45.61 0.47 5.66 

7 0 24 0.7 38.68 43.26 0.49 5.91 

8 0 21 0.66 36.41 40.83 0.51 6.18 

9 0 24 0.70 38.68 43.37 0.49 5.90 

10 0 29 0.78 42.21 47.33 0.45 5.49 

11 39 53 1.01 53.01 59.44 0.36 4.37 

12 153 111 1.35 68.81 77.15 0.25 3.10 

5. CONCLUSION 

Based on the above discussion, it can be concluded that: 

1. The TCPG distribution is a flexible and accurate model for rainfall modeling because it can 

handle two components of rainfall, namely the discrete component which describes no rain 

with zero rainfall and the continuous component which describes the occurrence of rain with 

a rainfall intensity of more than zero. 

2. The TCPG model with Lasso regularization is used to handle multicollinearity in the model. 

The addition of Lasso can reduce the RMSEP value compared to the TCPG-PCA and TCPG-

GLM methods. Therefore, the TCPG-Lasso Model is highly recommended for rainfall 

modeling in order to obtain accurate prediction results. 
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