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Abstract. Despite the complexity of tumour cells population, which is well known as difficult to control. Math-

ematical modelling has been identified as a powerful tool to understand complex dynamics and integrations of

tumour cells population. In this paper, the technique of Jacobi Last Multiplier is employed to build linear La-

grangians of cancer stem cells (CSC) which describe the development dynamic of CSC population in vitro as well

as in vivo. Additionally, the use of Noether’s theorem facilitate in achieving conservation laws of the reduced two

dimensional nonlinear system. The technique of Lie Symmetry is applied to a model and helps to point out the

correlation between parameters. As a result, the system has been linearized and the corresponding analytical as

well as numerical solutions were provided.
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1. INTRODUCTION

Breast cancer is mainly the familiar form of persistent cancer among women [21]. Cancer

stem cells (CSCs) are expressed as an undersized compartment of cancer cells inside cancer that

can restore and reproduce diverse families of cancer cells that contain the tumour. According to
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Liu et al. [10], CSCs are frequently resistant to chemotherapeutic drugs. Therefore, it may be

considered as the main cause of tumour deterioration and metastasis [10]. To analytically study

the involvedness of cancer development and response to treatment in breast malignancy [21, 1],

mathematical modelling is utilized to provide a framework to investigate the vigorous, as well

as cell invasion of breast cancer citeMichael. Moreover, responses to medical issues cannot

always come from modern clinical and investigational equipment [1].

This paper investigates the linear lagrangian and closed-form solutions of a mathematical

model of breast cancer stem cells. The model was formulated by Liu et al [10]. In their study,

the authors computer-generated probable results of diverse therapeutic approaches for breast

cancer. The population dynamics of the cell is divided into three different classes: The cancer

stem cells (CSCs) phenotype denoted by x0(t); the progenitor cells (PCs) phenotype denoted

by x1(t), and the terminally differentiated cells (TDCs) phenotype denoted by x2(t). The model

flow diagram which represented the disease is given by [10]

FIGURE 1. Cancer stem cells (CSC) describing the expansion of CSC popula-

tion dynamics in vitro as well as in vivo.

The model is governed by the following system of nonlinear ordinary differential equations [10]

dx0

dt
= (p0−q0)v0x0(t)−d0x0(t)(1)

dx1

dt
= (1− p0−q0)v0x0(t)+(p1−q1)v1x1(t)−d1x1(t)(2)

dx2

dt
= (1− p1−q1)v1x1(t)−d2x2(t)(3)

where p0 and p1 represent the probability that CSC and PC are divided into a pair of CSCs

and PCs respectively, while the probability that CSC and PC is divided into PCs and TDCs

is represented by q0 and q1. The rates of synthesis are denoted by v0 and v1. Furthermore,
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di, i = 0,1,2, is the degradation rate of CSCs, PCs and TDCs, respectively.

According to the theory of Lie symmetry, any system of first-order ordinary differential

equations admits an infinite number of Lie point symmetries [12, 18]. Nevertheless, the

reduction of the infinite number of transformations occurs in replacing the original system with

a system containing at least one second-order differential equation [13, 18]. The discussion in

the present paper is highlighted conservation laws for a nonlinear system of physical quantity

describing breast cancer. However, to be able to assess the physical method requires the

physical magnitude to be conserved in space and time. In [6], Ibragimov formulated a math-

ematical technique that lead to obtaining the laws of conservation for a physical system that

is illustrated by a differential equation. In addition, the author develops the main conservation

result for any well-defined system of differential equations. It is also argued that the method

of Lie symmetry analysis can be used to unpack the conservation law theorem of nonlinear

differential equations. In [19], Noether formulated a theorem that facilitates in acquiring local

conservation laws for a system of differential equations that admit a variational principle.

Furthermore, the scholar has shown that if a Lie point transformation is obtained, then one

can achieve the change of a local conservation law by way of a direct formula that entails the

infinitesimal Lie point symmetry and the Langrangian of the action function. In [2], Bluman

et. al. shown how the local conservation laws for any given system of differential equations

can be directly constructed.

In 1971, Kerner initiated the application of linear Lagrangians in the analysis of population

dynamics [9]. The author’s technique was restricted to interactions among even numbers of

the group. His method was extended by Trubatch and Franco to odd numbers of interacting

species (see [25]). In addition, They introduced a dummy variable as well as an extra equation

of motion in case two of the equations of motion is integrated. As a result, one population can

be represented in terms of the other. Later on, Wooley [26] explained the method with more

clarity and clearly in a dissimilar circumstance. Nucci and Tamizhmani [20] demonstrated

that the technique developed by Trubatch and Franco [25] and soon after by Paine [23] for
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achieving Lagrangians of a biological classical models, is simply equivalent to the Jacobi Last

Multiplier. Moreover, researchers showed how one can attain linear Lagrangians of systems

of two-dimensional first-order ordinary differential equations. Above and beyond, the authors

provide a technique of finding nonlinear Lagrangians of the corresponding single second-order

equation.

This study is organised as follows. We provide some basic definitions and theorems which

will be employed throughout the paper. we reduced the three-dimensional system (1)-(3) into a

single ordinary differential equation of second-order. As a result, the Jacoby Last multiplier was

performed for the solutions of nonlinear second-order differential equation and obtained linear

lagrangian in Sections 2 and 3. We performed a Lie symmetry method of the reduced equations

to obtain explicit along with numerical solutions in Section 4. The conclusion is provided in

Section 5.

2. FUNDAMENTAL DEFINITIONS AND THEOREMS

In this Section, a comprehensive review of the Jacoby Last multiplier and group-theoretic

approaches to the Solution of differential equations are given. The theory entails the tools

necessary for after be employed throughout the paper. In [12, 14], Matadi provided fundamental

definitions and theorems which can be found from the literature (see [20, 25]).

2.1. The Jacoby Last multiplier Method. In [16, 11], Matadi summarised the technique of

Jacoby Last Multiplied due to Nucci and Tamizhmani [20] as follows. Given a system of two

first-order ordinary differential [25]

u̇1 = φ1(t,u1,u2)

u̇2 = φ1(t,u1,u2),(4)

admits the following linear Lagrangian

(5) L =U1(t,u1,u2)u̇1 +U2(t,u1,u2)u̇2−V (t,u1,u2).
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The most important step is to obtain a function W in such a way

(6) W =−∂U1

∂u2
=

∂U2

∂u1

and

(7)
d log(W )

dt
+

∂φ1

∂u1
+

∂φ2

∂u2
= 0.

Nucci and Tamizhmani [20] claimed that (7) is equivalent to the Jacobi Last Multiplier for

the system (4). Consequently, it was pointed out that the finding of a Jacobi Last Multiplier

M(t,u1,u2) leads to a Lagrangian of the system (4) which can be obtained by double integra-

tions, i.e. [20]

(8) L =

(∫
Mdu1

)
u̇2−

(∫
Mdu2

)
u̇1 +g(t,u1,u2)+

d
dt

G(t,u1,u2),

with g(t,u1,u2) satisfying a linear differential equations of first-order which has to be at all

times integrated [20]. In order to correctly apply Noether’s theorem [19], the arbitrary gauge

function G(t,u1,u2) needs to be taken into consideration. If a Noether’s symmetry

(9) Γ = ξ (t,u1,u2)∂t +η1(t,u1,u2)∂u1 +η2(t,u1,u2)∂u2

exists for the Lagrangian L in (8) then a first integral of system (4) is [20]

(10) −ξ L− ∂L
∂ u̇1

(η1−ξ u̇1)−
∂L
∂ u̇2

(η2−ξ u̇2)+G(t,u1,u2).

Nucci and Tamizhmani [20] stated that for a given second-order equation

(11) ẍ = φ(t,x, ẋ)

there exists a bijection between the Jacobi Last Multiplier and the Lagrangian, L = L(t,x, ẋ), as

a result,

(12) M =
∂ 2L
∂ ẋ2

with M = M(t,x, ẋ) fulfilling the given equation

(13)
d log(M)

dt
+

∂φ

∂ ẋ
= 0.
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In addition, equation (11) satisfies the Euler-Lagrangian equation:

(14) − d
dt

(
∂L
∂ ẋ

)
+

∂L
∂x

= 0.

The authors claimed that the following Lagrangian L is found if and only if a Jacobi Last Mul-

tiplier is obtained

(15) L =
∫ (∫

Mdẋ
)

dẋ+ l1(t,x)ẋ+ l2(t,x),

with l1 and l2 describing the gauge function F = F(t,x) [20]

l1 =
∂F
∂x

,(16a)

l2 =
∂F
∂ t

+ l3.(16b)

2.2. Lie Group Theory. The overall idea behind Lie’s theory is to transform independent and

dependant variables of a differential equation, such that the order of a differential equation gets

reduced and easy to solve. If a differential equation admits the symmetry group, its order can

be reduced by using what is called Canonical Coordinates.

Definition 1. The canonical coordinates (r(x,y),s(x,y)) of a differential equation are the coor-

dinates in which the equation becomes separable [24].

According to Lie theory, the kth-order differential equation [14, ?]

ut−F(t,x,u,u(1),u(2), ...,u(k)) = 0,(17)

admits the given Lie group of transformations of one-parameter

t̂ ≈ t +aξ 0(t,x,u,u(1),u(2), ...,u(k))

x̂i ≈ xi +aξ i(t,x,u,u(1),u(2), ...,u(k))

ûα
i ≈ uα

i +aηα
i (t,x,u,u(1),u(2), ...,u(k))

with infinitesimal Lie generator [13, ?]

X = ξ
0 ∂

∂ t
+ξ

i ∂

∂xi +η
α ∂

∂uα
.(18)



A MODEL DESCRIBING BREAST CANCER STEM CELLS 7

if

ût−F(t̂, x̂, û, û(1), û(2), ..., û(k)) = 0.(19)

The group transformations t̂, x̂ and û are obtained by solving the following Lie equations [12]

dt̂
da

= ξ
0(t̂, x̂, û, û(1), û(2), ..., û(k))

dx̂i

da
= ξ

i(t̂, x̂, û, û(1), û(2), ..., û(k))(20)

dûα
i

da
= η

α
i (t̂, x̂, û, û(1), û(2), ..., û(k))

with initial conditions

t̂ |a=0= t, x̂i |a=0= xi, ûα
i |a=0= uα

i .

The infinitesimal form of ût̄ , û(1), û(2), ..., û(k) are found by the given formulas [16]:

ûα
i ≈ uα

i +aη
α
i (x,u,u1)

ûα
i j ≈ uα

i j +aη
α
i j (x,u,u1,u2)(21)

...

ûα
i1...ik ≈ uα

i1...ik +aη
α
i1...ik(x,u,u1, ...,uk).

The functions ηα
i (x,u,u1), ηα

i j (x,u,u1,u2), and ηα
i1...ik(x,u,u1, ...,uk) are obtained from the fol-

lowing prolongation formulas [24]

η
α
i = Di(η

α)−uα
j Di(ξ

j)

η
α
i j = D j(η

α
i )−uα

il D j(ξ
l)(22)

...

η
α
i1...ik = Dik(η

α
i1...ik−1

)−uα
i1...ik−1lDik(ξ

l).

where Di denotes the operator of total differentiation with respect to (x1,x2...xn), then

Di =
∂

∂xi
+uα

i
∂

∂uα
+uα

i j
∂

∂uα
j
.(23)

The transformed derivatives û(1), û(2), ..., û(k) can be computed from the formulae

Di = Di( f i)D̂ j.(24)
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The generators are therefore given by

X [1] = X +η
α
i (x,u,u1)

∂

∂uα
i

...(25)

X [k] = X [1]+ ...+η
α
i1...ik(x,u, ...,uk)

∂

∂uα
i1...ik

.

Theorem 1. A function F(x,u, · · · ,uk) is invariant under the prolonged group G, if and only if

[13]

X [k]F = 0,(26)

where X [k] is the generator of G.

Theorem 2. Every one-parameter group of transformations (x̂ = f (x,y,ε), ŷ = g(x,y,ε)) is

reduced to a group of translations t̂ = t + ε , û = u with the generator [13]

X =
∂

∂ t

by suitable change of variables

t = t(x,y), u = u(x,y).

Theorem 3. (Noether’s Theorem)

Given a Euler-Lagrange equations [6]

(27)
∂L

∂uα
−Di

∂L
∂uα

i
= 0, α = 1....m

with L(x,u,u(1)) be a Lagrangian of first-order involving with the independent variables x =

(x1, ...,xn), dependent variables u= (u, ...,um) as well as the first-order derivatives u(1) = {uα
i }.

According to Noether’s theorem, in as much as the variational integral through Lagrangian

L(x,u,u(1)) is invariant under the group X generator given by

(28) X = ξ
i(x,u,u(1), ...)

∂

∂xi +η
α(x,u,u(1), ...)

∂

∂uα
.
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The given vector field T i = (T 1, ...,T n)

(29) T i = Lξ
i +(ηα −ξ

juα
j )

∂L
∂uα

j

admits a law of conservation for the Euler-Lagrange equations (27).

The proof of Theorem 3 is sketch out in [6].

Definition 2. A vector T i = (T 1...T n) is a conserved vector if [6]

(30) Di(T i) = 0

3. FINDING LAGRANGIAN OF THE SYSTEM (1)-(3)

In this section, Lagrangian of the two-dimensional system of first-order differential equations

and one-dimensional second equation is found.

Given that the first equation of the system is independent on x1(t) and x2(t), the cancer stem

cells (CSCs) phenotype, x0(t) can be found as follows

(31) x0(t) = Aexp [(pv0−d0)t].

Hence, the system (1)-(3) is reduced to

dx1

dt
= A(1− p)v0 exp [(pv0−d0)t]+ (qv1−d1)x1(t)(32)

dx2

dt
= (1−q)v1x1(t)−d2x2(t)(33)

with

p = p0−q0

and

q = p1−q1.
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Subsequent Jacobi Last Multiplier of the system (32)-(33) is found by using equation (7)

above

(34) M = exp{[d1 +d2−qv1]t}.

By using equation (8), we obtain a linear Lagrangian of system (32)-(33):

L = exp{[d1 +d2−qv1]t}x1(t)(1−q)v1x1(t)−d2x2(t)

−exp{[d1 +d2−qv1]t}x1(t)[A(1− p)v0 exp [(pv0−d0)t]+ (qv1−d1)x1(t)]

2
3
(1−q)v1x2

1−d2x2x2
1 + x1x2[A(1− p)v0 exp [(pv0−d0)t]+ (qv1−d1)x1(t)]

+
d

dτ
G(τ,x1,x2).

From equation (33), we obtain

(35) x1(t) =
1

(1−q)v1

dx2

dt
+

d2

(1−q)v1
x2

The substitution of equation (35) into (32) gives

(36)
d2x2

dt2 +(d2− k2)
dx2

dt
−d2k2x2(t)− k3 exp [k4t] = 0

where

k2 =
qv1−d1

1−qv1

k3 = (1− p)v0(37)

k4 = pv0−d0.

Applying the technique due to Nucci (see [20]) as summarized above, the Jacobi Last Multiplier

is given by

(38) M = exp [(k2−d2)t].

Hence applying equation (15), we obtain the given Lagrangian

(39) L1 =
exp{[k2−d2)t]}ẋ2

2
+ ẋ+

d
dτ

F(τ,x)



A MODEL DESCRIBING BREAST CANCER STEM CELLS 11

The Lagragian equation (39) suggests that the case k2 6= d2, provides the efficiency of

chemotherapy agent on cancer stem cells (CSCs). In addition, the model equations (1)-(3)

reaches the global tumour clearance state in the case k2 = d2.

4. RESULTS AND DISCUSSION

In this section, the method of Lie symmetry analysis is used to find the analytical solution

of the model. Furthermore, numerical simulations of treatment protocols are examined. In

addition, simulations confirmed the theoretical approach and are performed using Python.

4.1. Symmetry Analysis of equation (36). As stated in the introduction, a system (1)-(3)

admits an infinite number of Lie point symmetries. In this section Lie symmetry of the re-

duced equation (36) is performed. Using SYM packages ([3], [4], [5]) and we obtain an eight-

dimensional Lie symmetry algebra, namely

G1 = (d2− k2)
[
∂t + exp(k4t)∂x2

]
G2 =

d2

k4

[
∂t +(d2− k3)∂x2

]
G3 = ∂t

G4 = x2∂t + tx2 exp(k4t)∂x(40)

G5 = d2 exp(k4t)∂t

G6 = exp [−t(d2− k2)]x2∂x2

G7 = x2
2∂x2

G8 = exp [−t(d2− k2)]∂t .

The above Lie symmetry algebra is isomorphic to Sl(3,ℜ), which means that equation (36) is

linearizable by means of a point transformation. The case d2 =
1−d1
1−qv1

and p0 = 1+q0 gives the

following

(41)
d2x2

dt2 +
dx2

dt
− x2(t)− k3 exp [k4t] = 0.
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Hence, the complementary function is given by

(42) xc
2 = c1 exp [

−(1+
√

5)t
2

]+ c2 exp [
(−1+

√
5)t

2
].

Correspondingly, the superposition principle for nonhomogeneous differential equations sug-

gests that we seek a particular solution xp
2 = E exp(k4t). Hence, replacing the values of k3 and

k4 (see equation (3)), we obtain the number of terminally differentiated cells (TDCs) phenotype

(43) x2(t) = c1e[
−(1+

√
5)t

2 ]+ c2e[
(−1+

√
5)t

2 ]+(1− p)v0e[(pv0−d0)t].

The progenitor cells (PCs) is found by substituting equation (43) into (35)

x1(t) = 1
(1−q)v1

[
−c1(1+

√
5)

2 e[
−(1+

√
5)t

2 ]+
c2(−1+

√
5)

2 e[
(−1+

√
5)t

2 ]+v0(1−p)(pv0−d0)e[(pv0−d0)t]
]

+ d2
(1−q)v1

[
c1e[

−(1+
√

5)t
2 ]+c2e[

(−1+
√

5)t
2 ]+(1−p)v0e[(pv0−d0)t]

]
.

In the case d2 6= 1−d1
1−qv1

and p0 6= 1+q0 the number of terminally differentiated cells (TDCs) and

progenitor cells (PCs) phenotypes are obtained as follows

x2(t) =
(1− p)v0e(p−v0−d0)t

[d2−v1(pv0−d0)(1−q)
(1−q)v1

+ e−d2t(v0−d0)
]

(pv0−d0 +d2)
(v1(pv0−d0)(1−q)−d2

(1−q)v1

)d2(v1−qv1+1)
(1−q)v1

+ c1e−d2t + c2e
d2

(1−q)v1
t
.

and

x1(t) = 1
(1−q)v1

[ (1−p)v0e(pv0−d0)t
[ (pv0−d)(d2−v1(pv0−d0)(1−q)))

(1−q)v1
+e−d2t (v0−d0)(pv0−d0−d2)

]
(pv0−d0+d2)

(
v1(pv0−d0)(1−q)−d2

(1−q)v1

)
d2(v1−qv1+1)

(1−q)v1

+c1e−d2t+c2e
d2

(1−q)v1
t
]

+ d2
(1−q)v1

[ (1−p)v0e(p−v0−d0)t
[

d2−v1(pv0−d0)(1−q)
(1−q)v1

+e−d2t (v0−d0)

]
(pv0−d0+d2)

(
v1(pv0−d0)(1−q)−d2

(1−q)v1

)
d2(v1−qv1+1)

(1−q)v1

+c1e−d2t+c2e
d2

(1−q)v1
t
]
.

The case pv0 = 1+d0 and v1 =
1

1−q gives the following solutions:

x2(t) = c1e[
−(1+

√
5)t

2 ]+ c2e[
(−1+

√
5)t

2 ]+ et .

x1(t) = −c1(1+
√

5)
2 e[

−(1+
√

5)t
2 ]+

c2(−1+
√

5)
2 e[

(−1+
√

5)t
2 ]+2et

+ [c1e[
−(1+

√
5)t

2 ]+c2e[
(−1+

√
5)t

2 ]].
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4.2. Numerical results. Recall that the parameter di, i = 0,1,2, is the degradation rate of

CSCs, PCs and TDCs, respectively. However, it is known that cancer stem cells (CSCs) are re-

sistant to some chemotherapy drugs, such as Irinotecan, up to date the degree of drug-resistant

remained unknown. Regarding this model, it can be argued that should chemotherapy be inef-

fective on cancer stem cells (CSCs). Subsequently, tumour clearance relies on the efficiency of

immunotherapy. However, when the efficacy of chemotherapy on CSCs upsurges, the amount

of immunotherapy required for tumour clearance decreases. Figure 2 shown that chemotherapy

is as efficient on CSCs as on tumour cells. In figure 3, the model estimates the time evolution

of CSCs with different values of d0.

FIGURE 2. Numerical Solution of cancer stem and tumor cells.

FIGURE 3. Numerical Solution of cancer stem cells with d0 = 0.1, d0 = 0.2 and

d0 = 0.5.
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5. CONCLUSION

The analysis of nonlinear differential equations plays an essential role to comprehend phys-

ical models. Ove [22] stated that to find a closed-form solution of a nonlinear differential, one

needs a complete understanding of the phenomena which are modelled. In this paper, linear

lagrangian and closed-form solutions of a mathematical model of breast cancer stem cells are

found by the mean of the Lie symmetry technique. The result revealed that under parameters

values d2 6= 1−d1
1−qv1

and p0 6= 1+q0, the reduced second-order differential equation leads to the

possibility of the linearization of the system and provide the corresponding solutions.
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