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Abstract: In this paper, we study predator prey interactions where the predator is exposed to the risk of 

disease and harvesting while the prey has the ability to use a refuge. We consider two models: the 

ability of prey to use a constant refuge and the ability to use random refuge. We found bounded, 

non-periodic solutions and the equilibrium points for both models. We then show the role of the 

refuges in the stability of the systems. The equilibrium was stable locally, but not globally, and we 

found some basin to these equilibrium points. Numerical simulations show several types of oscillations 

that occur due to the kinds of refuges and prey's ability to use these refuges. For both models, there 

exist an invariant region; the invariant region in the constant refuge is better than the invariant region in 

random refuge because it ensures the continuity of all populations and sustainability of the harvested 

species and controlling the disease without it becoming endemic. Finally the low density prey in 

refuges makes a limit cycle around the equilibrium in refuges whiles the small density is stable. 
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1. Introduction 

 Prey-predator models are of great interest to researchers in mathematics and ecology 

because they deal with environmental problems such as community’s morbidity and 

how to control it, optimal harvest policy to sustain a community, and others. In the 

physical sciences, generic models can be constructed to explain a variety of 
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phenomena. However, in the life sciences a model only describes a particular situation. 

Simple models such as the Lotka-Volterra are not able to tell us what is going on in 

the majority of cases. One of the reasons is due to the complexity of the biological 

ecosystem. Hence the needs for a variety of models to describe nature .  

Theoretical and numerical studies of these models are able to give us an 

understanding of the interactions that is taking place. A particular class of models 

considers the existence of a disease in the predator or prey. Several models were 

constructed to study particular cases. To ensure the existence of the species involved, 

one of the steps taken is to harvest the infected species. Due to the need to survive, the 

prey has developed strategies to avoid the predator, one of them the use of refuge.   

In this paper, we consider the case where the infected predator is harvested, while the 

prey has a refuge. Several related theoretical studies have been conducted. 

Amongst them are studies on the disease spread among the prey and the epidemic 

among predators with action incidence [18], the role of transmissible disease in the 

Holling Tanner predator prey model [9], the analysis of prey predator model with 

disease in the prey [19], anothers study the disease in Lotka Volterra, [7]study the 

dynamics of a fisher resource system in an aquatic environment in two zones harvest 

in reserve area,[16] study the harvesting of infected prey,[2]show the stability analysis 

of harvesting,[6] Study the stability of harvested when the disease affects the predator 

by using the reproduction number, While some researchers took their studies using the 

refuge by the prey and the types of those refuges where used ,[4] idea refuge disk with 

response function type II functional response incorporation a constant prey refuge[3] 

studied the idea of using prey refuge random,[1,4]Some studies took the form of a 

special like the refuges effect on the stability of the models studied in [14,11, 10],[17, 

8] the refuge protect a constant number of prey lead to a stable and stronger 

stabile ,[13 , 6 ,8] investigated that the a destabilizing effect through the occurrence of 

a stable limit cycle. Analysis [15] refers to the low density of prey at the refuge gives 

a limit cycle,[15] investigated the rate at which prey moves to refuge is proportional 

to predator density and show the stability,[12] per-formed an analytical study two 
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kinds of refuge (constant and proportional) and investigated the role of these in 

different classes of functional responses.  

The model is introduced after this section, followed by analysis on nature and 

properties of the solutions. Numerical simulations were performed to verify the 

theoretical discussions and to investigate further properties.  

 

2. Mathematical model 

The model is written as: 

 

1

2

(1 ) (1 )

(1 )

(1 )

x rx x ax m y z

y bx m y yz q y

z bx m z yz q z





    


   
    

                                          (1) 

where x, y, z are the prey, infected predator and susceptible predator respectively; r is the 

growth rate of prey; a ,b  the capture rate ( )a b ,  is the contact rate between the 

susceptible and infected predator; 1 2,q q are the harvest rates of the infected and 

susceptible predator respectively, m is a constant (which describes the ability of the prey 

to use constant refuge) . We assume that the less effective predator shall be easier to 

harvest, so 1 2q q ; we also assume infected predator not become susceptible again and 

finally the disease does not affect the ability of the infected predator attacking prey .  

2.1 Nature of solutions 

Theorem 1.The solution of system (1) is bounded. 

Proof . 

Let the function ( , , ) ( ) ( ) ( )w x y z x t y t z t   and take the positive number 

 
20 q 

 Then           1 2(1 ) (1 )rx x x a b x m y z q y q zw t uw              

 
 

2 2

2 1

2 2

r r r
r x

r
t uw x

r
w

r

          
                






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2
1

Let
2

r
v

r

 
 

 

 
   w t uw t v  

       00 , , 1 , , |ut ut

t

v
w x y z e e x y z

u

 

     

Theorem 2.The system (1) has no periodic solution  

Proof. 

To show there is no periodic orbit to this system, we use Dulac’s criterion and first 

consider the xy -plane,

 

 

Let   2

1 , (1 )h x y rx rx ax m y    ,  2 1, (1 )h x y bx m y q y    

     
   1 2

,
h H h H r

x y
x y y

 

 
      

It’s clear that is no change in sign, therefore this system cannot have any periodic 

solution in the xy - plane. 

Let
1

( , )H x z
xz

 , where ( , )H x z in the positive quadrant of the xz - plane 

Let   2

3 , (1 )h x z rx rx ax m z    ,  4 2, (1 )h x z bx m z q z    

    
   3 4

,
h H h H r

x z
x z z

 

 
      

There is no change in sign; therefore there is no periodic solution in xz - plane. 

Hence the system has no periodic solution.
 

 

2.2 Equilibrium 

 Letting  0x y z   we get the equilibriums (non trivial): 

 i  A predator free-equilibrium 1(1,0,0)cP  in the absent of the predator, the prey 

grows and tends to its carrying capacity. 

( )ii  A disease free equilibrium 2 2 2( ,0, )cP x z , in this case the disease disappears from 
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the system,

 

where

 

2 2
2 2

(1 )
,

(1 ) (1 )

q r x
x z

b m a m


 

   

 ( )iii The disease becomes epidemic i.e. all predators become infected, the 

equilibrium in this case 3 3 3( , ,0)cP x y , where 31
3 3

(1 )
,

(1 ) (1 )

r xq
x y

b m a m


 

   

( )iv The positive equilibrium ( , , )cP x y z    where all population coexists and 

survives, from the second and third equations of system (1) we get  

  

1

2

1 2

(1 )

(1 )

bx m z q

bx m y q

q q
y z







   

  


 

  

  Then   2 1
1 2

(1 ) (1 )
1 (1 ) , ,

bx m q q bx ma
x m q q y z

r  

 
     
     

 

  With conditions

  
1 2

1 2

1 and 1 1
q qr

m m
a q q bx bx


 

     


 

2.2. Equilibrium 

   

Letting  0x y z   we get the equilibriums (non trivial): 

 i  A predator free-equilibrium 1(1,0,0)cP  in the absent of the predator, the prey 

grows and tends to its carrying capacity. 

( )ii  A disease free equilibrium 2 2 2( ,0, )cP x z , in this case the disease disappears 

from the system,

 

where

 

2 2
2 2

(1 )
,

(1 ) (1 )

q r x
x z

b m a m


 

   

( )iii The disease becomes epidemic i.e. all predators become infected, the 

equilibrium in this case 3 3 3( , ,0)cP x y , where 31
3 3

(1 )
,

(1 ) (1 )

r xq
x y

b m a m


 

   

( )iv The positive equilibrium ( , , )cP x y z    where all population coexists and  

survives, from the second and third equations of system (1) we get  
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1

2

1 2

(1 )

(1 )

bx m z q

bx m y q

q q
y z







   

  


 

  

Then   2 1
1 2

(1 ) (1 )
1 (1 ) , ,

bx m q q bx ma
x m q q y z

r  

 
     
     

 

With conditions

  
1 2

1 2

1 and 1 1
q qr

m m
a q q bx bx


 

     


  

2.3. Stability  

The Jacobian matrix of system (1) is given by: 

1

2

2 (1 )( ) (1 ) (1 )

(1 ) (1 )

(1 ) (1 )

c

r rx a m y z ax m ax m

J b m y bx m z q y

b m z z bx m y q

 

 

        
 

    
 
      

 

 

First we study system (1) as a sub system (without disease); the system become  

2

(1 ) (1 )

(1 )

x rx x ax m z

z bx m z q z

   


  
                                            (1-a)  

The equilibrium (non trivial) are 2 2(1,0), ( , ))c cE E x z , where 

 2 2
2 2

1
and

(1 ) 1

q xr
x z

b m a m

 
   

  

 

The eigenvalues near the first equilibrium are r and 2(1 )b m q   . 

This is stable when 21
q

m
b

   and unstable otherwise. 

Let 0R is denote the basic reproduction number of the susceptible predator, where 

0

2

(1 )b m
R

q


 and if 0 1R  the susceptible predator survive, but in this case 0 1R  ; 

therefore the second eigenvalues is negative then this equilibrium is stable. This 

stability can become unstable when we change one or all the parameters  2 , ,q m b .  

The trace of Jacobian matrix near the equilibrium 2 2( , )cE x z is 2rx  (negative); 
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therefore it is stable without any condition. We cannot find the Lyapunov function at 

this point to proof a global asymptotically stable in 2R
, In the following theorem we 

show the basin of attraction of 2 2( , )cE x z . 

Theorem 3. Assume that the equilibrium 2 2( , )cE x z  is locally stable, the basin of 

attraction of this equilibrium is denoted by
2 2( ( , )cB E x z  where

 

 2

2 2 2 2 2 2( ( , ) {( , ) : , ,with }cB E x z x z R x x z z x z z x    
 

Proof. 

Let 1( , )V x z be a function where  

1 2 2 2 2

2 2

( , ) log log
x z

V x z x x x z z z
x z

   
        
   

 ,then 

      
2

2
1

22(1 0)r x x a b m
dV

z z
d

x
t

x       
 

The eigenvalues near 2 2 2( ,0, )P x z are 
 2 2

2 2 22
4 1

2 2

r x q r xrx  
  and 2 2 1q z q   

It is stability when 
 

2

1 2

(1 )
1

r x
m

a q q

 
 



 

When all predators become infected the subsystem become as 

1

(1 ) (1 )

(1 )

x rx x ax m y

y bx m y q y

   


  
                                            (1-b)  

The equilibriums (non trivial) are 
3 3

ˆ(1,0), ( , )c cE E x y where, 

 31
3 3

(1 )
,

(1 ) (1 )

r xq
x y

b m a m


 

   

And the eigenvalues near (1,0)cE are r and 1(1 )b m q  , this is stable when 

11
q

m
b

   and unstable otherwise. 

Let 1R is denotes the basic reproduction number of the infected predator, where 

1

1

(1 )b m
R

q


 and if 1 1R  the infected predator survive, and because in this case 1 1R 
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therefore the second eigenvalues is negative then this equilibrium is stable. This 

stability can transform to unstable when we decrease one or all parameters  1, ,q m b . 

The trace of Jacobian matrix near the equilibrium 3 3
ˆ ( , )cE x y is 3rx  (negative) 

therefore it is stable without any condition. We can find the basin of attraction to this 

point as in the following theorem.  

Theorem 4. Assume that the equilibrium 3 3
ˆ ( , )cE x y  is locally stable, the basin of 

attraction of this equilibrium is denoted by  3 3
ˆ ( , )cB E x y  where 

2

3 3 3 3( ( , ) {( , ) : , }cB E x y x z R x x y y   
 

Proof. 

The proof is same in theorem (3). 

The equilibrium 3 3 3( , ,0)cP x y  is stable with condition
 

3

1 2

(1 )
1

r x
m

a q q

 
 


 .

  

The stability near the equilibrium ( , , )cP x y z    is given by the equation 

 3 2 0A B C       Where

   2 2 20 , (1 ) , 0A rx B ax b m y z y z C r x y z                

   2(1 ) 0AB C rx ax b m y z       
 

From Routh- Hurwitz stability criterion it is stable.  

Theorem 5. Assume that the equilibrium ( , , )cP x y z     is locally stable, the basin of 

attraction of this equilibrium is denoted by  ( , , )cB P x y z   
 where  

3( ( , , ) ) {( , , ) : , , }cB P x y z x y z R x x y y z z      

    
 

Proof. 

The proof is similar to proof of theorem (3). 

3. The random refuge model 

   We write the model as follows, where the parameters are explained in section 2. 
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 

1

2

(1 ) ( )

( )

( )

x rx x a x m y z

y b x m y yz q y

z b x m z yz q z





    


   
    

                                         (2)  

3.1 Nature of solution. 

Theorem 6 .The solution of system (2) is bounded. 

Proof. 

Let the function ( , , ) ( ) ( ) ( )w x y z x t y t z t   and take the positive number 

 
20 q 

 Then           1 2(1 ) ( )rx x x a b x m y z q yt zw uw q             

 
 

2 2

2 1

2 2

r r r
r x

r
t uw x

r
w

r

          
                







 
2

1
Let

2

r
v

r

 
 

 

 
   w t uw t v  

       00 , , 1 , , |ut ut

t

v
w x y z e e x y z

u

 

   
 

Theorem 7.The system (2) has no periodic solution  

Proof. 

To show there is no periodic orbit to this system, we use Dulac’s criterion and first 

consider the xy -plane,

 

 

Let   2

1 , ( )h x y rx rx a x m y     2 1, , ( ) ,h x y b x m y q y   and  

 
1

,H x y
xy

 , where ( , )H x z in the positive quadrant of the xy - plane, then  

 
   1 2

2
,

h H h H r am
x y

x y y x

 

 
       

It’s clear that is no change in sign, therefore this system cannot have any periodic 

solution in the xy - plane. 
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Let
1

( , )H x z
xz

 , where ( , )H x z in the positive quadrant of the xz - plane, and 

  2

3 , ( )h x z rx rx a x m z    ,  4 2, ( )h x z b x m z q z    

 
   3 4

2
,

h H h H r am
x z

x z z x

 

 
       

There is no change in sign; therefore there is no periodic solution in xz - plane. 

Hence the system has no periodic solution.
  

 

3.2 Equilibrium 

 Again by letting  0x y z   we get the equilibriums (non trivial): 

 i   A predator free-equilibrium 1(1,0,0)rP , in the absent of the predator, the prey 

grows and tends to its carrying capacity. 

( )ii  A disease free equilibrium 2 2 2( ,0, )rP x z , in this case the disease disappears from 

the system

 

and 2 2 2
2 2

2

(1 )
,

( )

q rx x
x m z

b a x m


  


 

( )iii The disease become an epidemic i.e. all predators become infected, the 

equilibrium in this case 3 3 3( , ,0)rP x y , where

 

3 31
3 3

3

(1 )
,

( )

rx xq
x m y

b a x m


  


 

( )iv The positive equilibrium ( , , )rP x y z    all population coexists and survives, 

where 1 2q q
y z




  .Then 

2 4

2

R R H
x

 
  

    Where  1 21
a

R q q
r

 
   
 

and  1 2

am
H q q

r
   

    

2 1( ) ( )
,

b x m q q b x m
y z

 

 
    
   

    It exists with conditions 

     1 2( )
r

i q q
a


 

 

1 2( )
q q

ii x m x
b b

    
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3.3. Stability  

   The Jacobian matrix of system (2) is given by 

  

1

2

2 ( ) ( ) ( )

( )

( )

r

r rx a y z a x m a x m

J by b x m z q y

bz z b x m y q

 

 

       
 

   
 
     

 

 

The first subsystem (without disease) is  

2

(1 ) ( )

( )

x rx x a x m z

z b x m z q z

   


  
                                            (2-a)

 

                                                                                                    

 

The equilibrium (non trivial) are 2 2(1,0), ( , )r rE E x z and the eigenvalues near the first 

equilibrium are r and  2(1 )b m q   .This is stable when 21
q

m
b

   and unstable 

otherwise. Let 0R   denote  the basic reproduction number of the susceptible 

predator where 
0

2

( )b x m
R

q

  and if 0 1R   the susceptible predator survive, and 

because in this equilibrium there is no susceptible predator, so 0 1R   ;therefore it is 

necessary that 21
q

m
b

  ,then the  second eigenvalues is negative; this equilibrium 

is stable with condition 21
q

m
b

  . This stability can be transformed to unstable 

when we change one or all of the parameters 2( , , )b q m . The Jacobian matrix near the 

equilibrium 2 2( , )rE x z is 

 

 2 0 2
2

1 2

2

( 1)
1 2

0

r

q bm R q
r x a

J bq b

bz

   
    
   
 

 
  

 

 2 02

2 2 2

2

( 1)
1 2

q bm R
r x aq z

bq
 

  
     
 
   

 2 0

2

2

( 1)
Let 1 2

q bm R
B r x

bq

  
   
 
   
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2

2 24

2

B B aq z


 


 

It is locally asymptotically stable if 1( ) 0rTr J    or 2
2

0

1 2 1

( 1)

x
q m

bR

 
   
     

and 

unstable otherwise. We cannot find the Lyapunov function at this point to proof global 

asymptotically stable in 2R
, so in the following theorem we show the basin of 

attraction of 2 2( , )rE x z  . 

Theorem 8. Assume that the equilibrium 2 2( , )rE x z  is locally stable; the basin of 

attraction of this equilibrium is 

  2

2 2 2 2 2 2( ( , ) {( , ) : , , }rB E x z x z R x x z z with x z z x      

Proof . 

 Let

 
4 2 2 2 2

2 2

( , ) log log
x z

V x z x x x z z z
x z

   
        
     

Then         
2 2 2

2 22 2

2

4 x z z x
r x x a x x a

dV
b z z x x

dt
m

xx

 
      

 
    

The 2 2 2( ,0, )P x z is stability with condition and 
 

2 2
2

1 2

(1 )r x x
m x

a q q

 
 

  

The second subsystem when all population infected become as 

1

(1 ) ( )

( )

x rx x a x m y

y b x m y q y

   


  
                                            (2-b) 

The equilibrium (non trivial) are (1,0)E and 3 3
ˆ ( , )rE x y , the first is stable when 

11
q

m
b

   and unstable otherwise. Let 1R   denotes the basic reproduction number of 

the infected predator where 

1

1

(1 )b m
R

q

  and if 1 1R   the infected predator survive; but near this equilibrium no 

infected predator that means 1 1R   therefore this implies  11
q

m
b

  then the second 

eigenvalues is negative so this equilibrium is stable with condition  11
q

m
b

  . This 
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stability can be transformed to unstable when we change one or all of the 

parameters 1( , , )q b m . 

The equilibrium 3 3
ˆ ( , )rE x y is stable when 3

1

0

1 21

( 1)

x
q m

b R

 
   
     

Theorem 9. Assume that the equilibrium 3 3
ˆ ( , )rE x y  is locally stable; the basin of 

attraction of this equilibrium is  

 2

3 3 3 3 3 3
ˆ( ( , )) {( , ) : , , }rB E x y x y R x x y y with xy x y      

Proof. The proof as theorem (8) .  

The equilibrium 3 3 3( , ,0)rP x y is stable with conditions 

3
1

0

1 21

( 1)

x
q m

b R

 
   
   

 and 
 

3 3
3

1 2

(1 )r x x
m x

a q q

 
 


 

The stability near the equilibrium ( , , )rP x y z    is given by the equation  

3 2 0A B C      Where 1 22 ( ) ,
a

A r rx q q


 
     

 
 

  2 21 2
1 2( ) and 2 ( )

q qab
B x m q q y z C r rx a y z 

 

      
        

   

It is stable if the conditions of Routh- Hurwitz stability criterion are satisfied i.e. 

0 , 0 0A C and AB C     

Theorem 10. Assume that the equilibrium ( , , )rP x y z    is locally stable; the basin 

of attraction of this equilibrium is 

 3( ( , , ) ) {( , , ) : , , }rB P x y z x y z R x x x y y x x z z x     

    
 

Proof . 

 Let 1 2 3, andC C C  positive number and let the function 3( , , )V x y z as 
 

3( , , ) log log log
x y z

V x y z x x x y y y z z z
x y z

     

  

    
            
      

         3
1 2 3

( )
(1 ) ( ) ( )

x mdV
C x x C y y C zr x a y z b x m z b x

x
z

dt
m y    

      
 


      
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Choose 2 3C C  and 
1 2

b
C C

a


 

   
2

3
2 2 0

y y z z
r x x

dV b
C C b

x x
m x x

t a x xd


 



 

 
       

 


 

4. Numerical simulation 

  Here we study several cases of the constant and random refuges to show the effect 

these have on the behavior of the two systems. First, we study the constant refuge. To 

enable all population survive, we fixed the parameters as 

( 0.5 , 0.4  , 0.3 , 0.08 ,r a b    
1 20.1 , 0.0125 , (0) (0) (0) 0.5)q q x y z       

and we show the following 

Case 1: 0.108.m   Initially there are large oscillations, which then decrease in size 

very quickly to point equilibrium. Initially the value of m  is very small which 

means that large number of prey is outside the refuge, so the predator can attack 

them quickly and this leads to sharp decrease in prey while the predator grows 

rapidly. As a result, the predator population decreases because lacks of food while 

the prey increase, but slowly.  This cycle is repeated and is faster than previously 

but of smaller size. This shows it going to point equilibrium as in figure 1(a, b, c, d) 

  

 

            (a)                         (b)                        (c) 

 

Figure 1(the behavior reached the equilibrium)  
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Case 2: when 0.5m  we show there is little oscillations because  1 0.5 0.5  mean 

the amount of prey is less than the first case and also tends to equilibrium as 

Figure 2 (a, b, c, d) 

     

            (a)                         (b)                         (c) 

 

Figure 2 (the behavior reached the equilibrium) 

Case 3: Increasing m  to become  0.85m   shows sizeable oscillations that go to 

the equilibrium.  The number of prey outside the refuge is small,  the predator 

in the initial attack but after that the prey need more time to increasing and when 

prey increasing the predator attack them and continuous but weak vibration and 

become a limit cycle around equilibrium point figure 3(a, b, c, d) 

      

(a)                               (b)                                (c) 
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         Figure 3 (low density prey indeed to the limit cyclic) 

Second we study the random refuge. To keep all population survive we fixed the 

parameters as  0.5, 0.4, 0.3, 0.08,r a b     1 20.1, 0.0125)q q  and show the 

following  

Case 1:  m=0.02 in this case the  x m is good quality food to predator so the 

predator attack it therefore the prey decreasing and predator increasing and same 

as case 1 of system (1) see figures 3 (a, b, c, d). 

   

(a)                              (b)                                    (c) 

           

Figure 4 (high density of prey in refuge, the behavior reached the equilibrium) 

Case 2: increase m to 0.8m  , in this case the prey outside the refuge is very little so 

there is no enough food to predator so the oscillations is little and weak than the 
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first and recur more quickly and in a volume less than go in order to form the 

orbits around the equilibrium .see figure 4(a, b, c, d) 

   

(a)                                   (b)                                 (c) 

           

Figure 5 (low density of prey, the behavior as the limit cycle) 

From above we can say that when high density of prey outside the refuge, the 

behavior of the systems in the initial start from a big oscillations and quickly tend 

to small oscillations and the equilibrium. When low density of prey outside the 

refuge, the oscillations tend to make circles around the equilibrium. Also we 

show that a small m in constant refuge is useful because this value give an  

oscillations area satisfying continuous harvesting, all population survive with 

increasing susceptible predator, decreasing infected predator and  a control on 

disease see Fig(1.c). But the area in random refuge does not control disease 

because in small m, the infected predator increase and susceptible predator 

decrease see Fig (4.b). 

Conclusion  

In this paper we discussed and analysis model prey predator interaction with 

harvesting of predator and prey in refuge. We studied bounded solution, and discussed 

equilibriums points with its conditions. Show the role   affected constant and 

random refuges on stability then we calculate the basin attraction of some of these 
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points. In the numerical simulation we noticed behavior of models in the high size of 

prey in refuges tend to limit cycle around equilibrium. Finally constant refuge give us 

an area where continued harvest, all population survive and also to control the disease, 

but the random refuge does not guarantee us control the disease where infected 

predator increases while the susceptible predator decreasing. 

Acknowledgements  

This work was fully supported by School of Mathematical sciences, Universiti Sains 

Malaysia, Penang Malaysia. 

 

REFERENCES 

[1]  Anderson, R., R. May, et al.The invasion, persistence and spread of infectious diseases within  

animal and plant communities .Philosophical Transactions of the Royal Society of London. B, 

Biological Sciences., 314(1167) (1986), 533-570. 

[2]  Azar, C., J. Holmberg, et al. Stability analysis of harvesting in a predator-prey model. Journal of 

Theoretical Biology., 174(1) (1995), 13-19. 

[3]  B.M,R.B, Effect of prey refuges on a predator –prey model with a class of functional 

responses:The role of refuges (218)(2012), 73-79. 

[4]  Chattopadhyay, J. and O. Arino.A predator-prey model with disease in the prey. Nonlinear 

analysis ., 36(1999), 747-766. 

[5]  Chen, L. and F. Chen .Qualitative analysis of a predator-prey model with Holling type II  

functional response incorporating a constant prey refuge.Nonlinear Analysis: Real World 

Applications ., 11(1)(2010), 246-252. 

[6]  Chevé, M., R. Congar, et al. (2010). Resilience and stability of harvested predator-prey systems to 

infectious diseases in the predator. 

[7]  Dubey, B., P. Chandra, et al. A model for fishery resource with reserve area. Nonlinear  Analysis: 

Real World Applications., 4(4)( 2003),  625-637. 

[8]  González-Olivares, E. and R. Ramos-Jiliberto.Dynamic consequences of prey refuges in a   

simple model system: more prey, fewer predators and enhanced stability. Ecological Modelling., 

166(1)(2003), 135-146. 



PREDATOR-PREY INTERACTIONS                        19 

[9]   Haque, M. and E. Venturino.The role of transmissible diseases in the Holling–Tanner 

predator–prey model. Theoretical Population Biology., 70(3)( 2006), 273-288. 

[10]  Hassell, M. P. and R. M. May. Stability in insect host-parasite models. The Journal of Animal 

Ecology., (1973), 693-726. 

[11]  Hochberg, M. E. and R. D. Holt. Refuge evolution and the population dynamics of coupled 

host—parasitoid associations. Evolutionary Ecology., 9(6)(1995), 633-661. 

[12]  Ma, Z., W. Li, et al. Effects of prey refuges on a predator-prey model with a class of functional 

responses: The role of refuges. Mathematical biosciences., 218(2)( 2009), 73-79. 

[13]  McNair, J. N. The effects of refuges on predator-prey interactions: a reconsideration.   

Theoretical Population Biology., 29(1)(1986), 38-63. 

[14]  Rosenzweig, M. L. and R. H. MacArthur.Graphical representation and stability conditions of 

predator- prey interactions. American Naturalist., (1963), 209-223. 

[15]  Ruxton, G.Short term refuge use and stability of predator-prey models. Theoretical Population 

Biology., 47(1)(1995), 1-17. 

[16]  S.A.Wuhaib,Y.Abu Hasan, (2012).Apredator Infected Prey Model With Harvesting Of   

Infected Prey .ICCEMS2012: 59-63 

[17]  Taylor, R. J. (1984). Predation. CHAPMAN AND HALL, NEW YORK, NY(USA).(1984). 

[18]  Venturino, E. Epidemics in predator–prey models: disease in the predators. Mathematical 

Medicine and Biology., 19(3)( 2001), 185-205. 

[19]  Y.X,L.Chen. Modelling and analysis of a predator prey model with disease in the prey. 

Mathematical Biosciences., 171(2001), 59-82. 

 


