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Abstract: We formulate and analyze the dynamism of the epidemic problem consisting of the prey-predator 

interaction with a susceptible–infected–susceptible (SIS) epidemic disease in prey species has been suggested for 

study in the present work. It is supposed that the disease was spread in two separate ways by direct contact between 

susceptible prey with infected prey and external sources of infective such as (water, food, contamination 

environment). The uniqueness and boundedness of the trajectory of this model has been discussed and the existence 

of all the fixed points (FPs) are determined. The local and global stability (LS and GS) conditions for all of the 

feasible (EPs) are established. Finally, to confirm the analytic results we solve the model by numerical simulation 

for different values of parameters and represent them graphically. 
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1. INTRODUCTION 

Since there are the presence of several species in the world, which are in constant contact with 

each other in various ways. This helps the disease transfer, show the organism's rapid interest in 

the study of disease prey-predator interaction has increased. On the other hand, from both an 

ecological and an economic viewpoint, the effect of vaccination on the population is very 

significant. Also, in an ecological environment, the presence of disease in the prey-predator or 

both is common. Recently, many diseases have been eradicated due to the progressing in modern 

medicine and the advent in antibiotics and vaccination [1].  

  On the other hand, the health safety of the society is subjected to a serious risk, when resistant 

strains of bacteria or infectious viral species appear. A significant threat to human life or animals 

can occur due to the rapid spread of infectious disease between people groups such as, Spanish 

influenza, AIDS, MERS, the Black death and the recent pandemic of Avian and Swine influenza. 

The effect can be greatly amplified if an infectious disease spreads to densely populated urban 

areas or has long existed in humans [2]. Of this purpose, it is important to consider the 

spatial-temporal dynamics of infection transmission to control and mitigate the risk of disease 

outbreaks. Researchers have sought to analyze disease transmission using mathematical models 

[3,4].  

   The influence of disease on the ecological system is an important issue in mathematical and 

ecological problems. Thus, ecologists and researchers have been paying increasing attention in 

recent times to the development of important tools along with experimental ecology and 

describing how ecological species are being infected. A nonlinear differential equations which 

are known as prey-predator model to describe the population dynamics of two interacting species 

have been proposed by the Italian mathematician Vito Volterra and the chemist Alfred Lotka. The 

Lotka-Volterra model is based on sound mathematical logic and it consists of 4 factors that are (i) 

the growth rate of prey, (ii) mortality rate of predator, (iii) the predation rate and (iv) the 

conversion rate.  

  On the other hand, almost all of the models for infectious disease transmission originated from 
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Kermack's and Mc Kendrick's classic work [5]. Both mathematical ecology and mathematical 

epidemiology in the study of biology and applied mathematics are two separate fields. The study 

of a combination of these two fields is called eco-epidemiology. Many researchers have been 

studied and analyzed eco-epidemiological models and suggested disease in prey species only. Hu 

and Li [6] have proposed and studied prey–predator model with delayed this model consist of 

three dimensional model with disease in the prey. Johri et al. [7], have proposed a prey–predator 

model with disease in the prey that considered a Lotka-Volterra type and has been studied in 

local and global stability.  

   However, Bezabih et al. [8,9] have proposed and studied eco-epidemiological model of prey 

–predator model. Kang et al. [10], formulating and studied a prey-predator system with allee and 

disease effects in the prey. Also, there are a number of authors have recently proposed and debated 

eco-epidemiological models with some assumptions for more information see the following 

references  

   Peter [11] studied and developmental prey-predator model with disease effect in prey on the 

dynamical behavior of this model. Naji and Mustafa [12] described an eco-epidemiological 

model's dynamics with a nonlinear incidence rate. Silva [13] proved the presence of periodic 

solutions for prey disease in eco-epidemic models. Xi et al. [14] has been studied the impulsive 

prey-predator interaction with communicable disease. Sinha et al. [15], has been studied the 

prey-predator interaction in a toxic setting. Furthermore, vaccination is vital in preventing 

infectious disease. A vaccine is a biological preparation that provides the active immunity gained 

for a particular disease. This has become an important way of raising the burden of disease and is 

a vital instrument for sustaining health and welfare. All the animals including the human 

population are given vaccination. Animal vaccines are part of a group of veterinary biologics 

known as animal medicine. The vaccines continue to play an increasingly important role in 

animal management systems for preventive health and disease. The vaccination aims to reduce 

the number of individuals in the community who become sick. Migration is also a major 

demographic phenomenon that is present in all animals. Migration is called the physical transfer 
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from one location to another. One explanation for animal migration is due to the seasonal 

transition. For example, bird migration is the normal seasonal movement, often along a flyway to 

the north and south.  

  The reasons for migration depend on the species and hence, we have taken the effect of 

migration into consideration while formulating the mathematical equations of the prey-predator 

model. The word migration for various species has been clarified by Dingle and Drake [16]. 

They regarded migration as an adaptation to resources that either fluctuate seasonally or less 

predictably on a spatiotemporal basis. Several authors studied the predator-prey model by taking 

migration in prey species. For example, Kant and Kumar [17] have been analyzed the 

eco-epidemiological model with disease in prey and predator with migrating effect. In this study, 

the epidemic problem that consists of prey–predator interaction with SIS–type spread disease in 

prey species was analyzed and studied. The epidemic of disease is contagious by contact and 

external sources. The prey has migration and the prey are given a vaccine to protect them have 

been suggested in this work . The boundedness of the trajectory are studied. The existence for all 

(FPs) as well as, the stability analysis of the our model is studied. 

2. PROBLEM FORMULATION 

   The epidemic problem consists of the prey–predator interaction with an SIS epidemic disease 

in prey species is suggested for study of this paper. This type of disease divides the prey species 

has density 𝑀(𝑇) at time 𝑇 into two class population: The susceptible individuals 𝑆(𝑇) at 

time 𝑇 and the infected individuals 𝐼(𝑇) at time 𝑇. And therefore at time 𝑇 the total prey 

population will be 𝑀(𝑇) = 𝑆(𝑇) + 𝐼(𝑇). The predator species has density 𝑃(𝑇) at time. 

In addition, the following principal hypotheses are followed when formulating the model's 

dynamic equations: 

1. The prey species (𝑆(𝑇) 𝑎𝑛𝑑 𝐼(𝑇)) are grows ,according to logistic fashion with intrinsic 

growth rate ɑ1 > 0 and ɑ2 > 0 respectively and carrying capacity δ. Furthermore, the 

disease prevents the 𝐼(𝑇) from competing with the 𝑆(𝑇), but the 𝑆(𝑇) have the ability 

to compete. 
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2. The disease in prey species is transmitted through direct contact between 𝑆(𝑇) 𝑎𝑛𝑑 𝐼(𝑇) 

according to mass action law with force of infection 𝛽1 > 0 or indirect way from 

Outside sources for examples food, water, air,….with indirect infection 𝛽2 > 0. The 

disease epidemic disappears and infected individuals are again susceptible at recovery rate 

𝑐 > 0. Furthermore, the disease can cause death in 𝐼(𝑇) with the death rate of the disease 

𝑑1 > 0. 

3. The predator's functional response to the prey is presumed to be of modified Holling type 

II with maximum attack rate 𝛼1 > 0 𝑎𝑛𝑑 𝛼2 > 0 from (𝑆(𝑇) 𝑎𝑛𝑑 𝐼(𝑇)) respectively 

and the constant 𝛾 > 0  represented the half-saturation constant. Moreover, 𝜃 > 0 

describes the preference rate between the prey 𝑆(𝑇) 𝑎𝑛𝑑 𝐼(𝑇)) of the predator. In addition 

that it is converted from prey (𝑆(𝑇) 𝑎𝑛𝑑 𝐼(𝑇) to predator with conversion rate 𝑐1 > 0 and 

𝑐2 > 0 respectively. 

4. In the absence of prey species, the predator species decay exponentially at a normal death 

rate of 𝑑2 > 0. 

5. The species  of prey has migration rates of 𝜇1𝑎𝑛𝑑 𝜇2  corresponding to the prey 

(𝑆(𝑇) 𝑎𝑛𝑑 𝐼(𝑇)), respectively. 

6. A vaccine is provided to the prey species to immunize them from the disease incidence 

with a vaccination rate of  0 < 𝑚 < 1 and (1 − 𝑚) represented the liability to the 

disease. 

7. Prey (susceptible and infection) may have out migration ,they can migrate to other 

geographical zone. Let 𝑚1  and 𝑚2  are the rate of migration of susceptible and 

infective populations, respectively. Also ecology suggested that 𝑚1 > 𝑚2. It is natural 

factor that susceptible (healthy/ sound). Prey are more strong as compared to infected one 

therefore the probability of migration of healthy prey is more than that of infected prey 

and hence based on these assumptions for epidemic prey–predator interaction, the model 

of differential equations that represent this model can be written as:     
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𝑑𝑆

𝑑𝑇
= ɑ1𝑆 (1 −

𝑆

𝛿
) −

𝛼1𝑆𝑃

𝛾+𝜃𝐼+𝑆
− (1 − 𝑚)(𝛽1𝐼 + 𝛽2)𝑆 − 𝑚1𝑆 + 𝑐𝐼,               

𝑑𝐼

 𝑑𝑇
= ɑ2𝐼 (1 −

𝑆+𝐼

𝛿
) −

𝛼2𝐼𝑃

𝛾+𝜃𝐼+𝑆
+ (1 −𝑚)(𝛽1𝐼 + 𝛽2)𝑆 − 𝑚2𝐼 − 𝑐𝐼 − 𝑑1𝐼,

𝑑𝑃

𝑑𝑇
=

𝑐1𝛼1𝑆𝑃

𝛾+𝜃𝐼+𝑆
+

𝑐2𝛼1𝐼𝑃

𝛾+𝜃𝐼+𝑆
− 𝑑2𝑃.                                                                              

       (1) 

Clearly, the model (1) contains 14 parameters which make the model (1) very difficult for 

mathematical analysis. The dimensions-less variables are being used to simplify the model 

proposed 

    
𝑡 = 𝑇𝑎1, 𝑥 =

𝑆

𝛿
, 𝑦 =

𝐼

𝛿
, 𝑧 =

𝑃

𝛿
,   𝑔1 =

𝛼1

𝑎1
,   𝑔2 =

𝛾

𝛿
, 𝑔3 =

𝛽1𝛿

𝑎1
,  𝑔4 =

𝛽2

𝑎1
,

 𝑔5 =
𝑚1

𝑎1
,   𝑔6 =

𝑐

𝑎1
, 𝑔7 =

𝑎2

𝑎1
,  𝑔8 =

𝛼2

𝑎1
, 𝑔9 =

𝑚2

𝑎1
, 𝑔10 =

𝑑1

𝑎1
,  𝑔11 =

𝑑2

𝑎1
.   
  

Where 𝑔1, 𝑔2, 𝑔3, 𝑔4, 𝑔5, 𝑔6, 𝑔7,𝑔8 , 𝑔9, 𝑔10, 𝑔11 are the dimensionless parameters of model 2. 

The model (1) can be expressed in the form of the following dimensionless: 

 

𝑑𝑥

𝑑𝑡
= 𝑥(1 − x) −

𝑔1𝑥𝑧

𝑔2+𝜃𝑦+𝑥
− (1 −𝑚)(𝑔3𝑦 + 𝑔4)𝑥 − 𝑔5𝑥 + 𝑔6𝑦,                              

𝑑𝑦

𝑑𝑡
= 𝑔7𝑦(1 − (x + y)) −

𝑔8𝑦𝑧

𝑔2+𝜃𝑦+𝑥
+ (1 −𝑚)(𝑔3𝑦 + 𝑔4)𝑥 − 𝑔9𝑦 − 𝑔6𝑦 − 𝑔10𝑦,

𝑑𝑧

𝑑𝑡
=

𝑐1𝑔1𝑥𝑧

𝑔2+𝜃𝑦+𝑥
+

𝑐2𝑔8𝑦𝑧

𝑔2+𝜃𝑦+𝑥
− 𝑔11𝑧.                                                                                        

         (2) 

In the right side of the model (2), the interaction functions are continuous and also continuous 

partial derivatives then are Lipschitizian functions and the model (2) has a unique trajectory. The 

necessary condition for the uniformly bounded trajectory of the model (2) is provide in the 

theorem (2.1). 

Theorem 2.1: All the trajectories of the model (2) are bounded uniformly.  

Proof: Let 𝑀 = 𝑥 + 𝑦 + 𝑧,  where 𝑥, 𝑦, 𝑧  be any trajectory of the model (2), then take 

derivative of 𝑀 at the time along the trajectory of the model (2) we will get :     

 𝑑𝑀

𝑑𝑡
≤ 1 + 𝑔5 − ℒ𝑞 = ℋ − ℒ𝑞. 

Here     

ℒ = 1 + 𝑔7, 

ℋ = 1 + 𝑔5, 

𝑞 = 𝑚𝑖𝑛{ℋ    , 𝑔7 + 𝑔9 + 𝑔10, 𝑔11}. 

Using Gronwell lemma [18], you get the following: 
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0 < 𝑀(𝑡) ≤ 𝑀(0)𝑒−ℒ𝑡 +
ℋ

ℒ
. 

Thus    lim
𝑡→∞

𝑀(𝑡) ≤
ℋ

ℒ
. 

3. THE EXISTENCE AND THE LOCAL STABILITY (LS) ANALYSIS OF FIXED POINTS 

(FPS)  

    The existence of (FPs) and (LS) of the model (2) are discussed. The model (2) has at most 

three of (FPs)  

• The vanishing fixed point is denoted by (𝑉𝐹𝑃) = (0,0,0) always exists. 

• The predator free fixed point is denoted by (𝑃𝐹𝐹𝑃) = (�̃�, �̃�, 0), where 

    �̃� =
�̃�[1−(�̃�+(1−𝑚)𝑔4+𝑔5    )]

(1−𝑚)𝑔3�̃�−𝑔6
,                                 (3) 

�̃� has been represented a non-negative root in the 3rd order of the following equation: 

�̃�1x
3 + �̃�2x

2 + �̃�3x + �̃�4 = 0.                            (4) 

Here     

�̃�1 = (1 −𝑚)𝑔3[𝑔7 − (1 −𝑚)𝑔3(1 − (1 −𝑚)𝑔4)] − 𝑔7,                                                                          

�̃�2 = (1 −𝑚)[(−2 + (1 −𝑚)𝑔4 + 𝑔5)𝑔3 𝑔7 − 2𝑔4 + 𝑔3((1 − 𝑚)𝑔3 + 𝑔6 − (1 −𝑚)𝑔3𝑔5 + 𝜎)]

+𝑔7(2 − 𝑔6 − 2𝑔5),                                                                                                                           

�̃�3 = (1 −𝑚)(𝑔7(𝑔3[1 − (1 −𝑚)𝑔4 − 𝑔5] − 𝑔4[𝑔6 + 2 − (1 −𝑚)𝑔4 − 2𝑔5])                                  

+𝑔3𝑔6 ((1 −𝑚)𝑔4 + 𝑔5 − 2(1 −𝑚)𝑔4 − 1) + 𝜎𝑔3((1 − 𝑚)𝑔4                                         

+𝑔5 − 1)) + 𝑔7[(2 − 𝑔5)(𝑔5 + 𝑔6) − 1] − 𝑔6𝜎,                                                                       

�̃�4 = 𝑔6[𝑔4(1 − 𝑚)(𝑔7 + 𝑔6 − 𝜎) + 𝑔7(𝑔5 − 1) + 𝑔6𝜎[1 + 𝑔5],                                                              

 

 with 

    𝜎 = 𝑔4 + 𝑔6 + 𝑔10.                                    (5) 

The (PFFP) exists uniquely in Intℜ+
3  If one of the following conditions are satisfied. 

�̃� + (1 −𝑚)𝑔4 + 𝑔5 < 1    and    𝑔6 < (1 −𝑚)𝑔1�̃�,         
𝑂𝑅

�̃� + (1 −𝑚)𝑔4 + 𝑔5 > 1    and        𝑔6 > (1 −𝑚)𝑔1�̃�.     
}                  (6a) 

As well as, one of the following cases 

�̃�1 > 0, �̃�2 > 0    𝑎𝑛𝑑    �̃�4 < 0,

�̃�1 > 0, �̃�2 < 0    𝑎𝑛𝑑    �̃�4 < 0,

�̃�1 < 0, �̃�2 > 0    𝑎𝑛𝑑    �̃�4 > 0,

�̃�1 < 0, �̃�2 < 0    𝑎𝑛𝑑    �̃�4 > 0.

     

}
 
 

 
 

                                 (6b) 
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• The positive fixed point is denoted by (𝑃𝐹𝑃) = (𝑥∗, 𝑦∗, 𝑧∗), where     

𝑥∗ =
𝑎1𝑦

∗+𝑔2𝑔11

𝑎2
,                                      (7) 

 𝑧∗ =
[𝑎2(𝑔2+𝜃𝑦

∗)+𝑎1𝑦
∗+𝑔2𝑔11][𝑔7𝑦

∗((1−𝑦∗)−(𝑎1𝑦
∗+𝑔2𝑔11 ))+(1−𝑚)(𝑔3𝑦

∗+𝑔4)(𝑎1𝑦
∗+𝑔2𝑔11)−ℊ𝑎2𝑦

∗]

𝑎2
2    𝑔8𝑦

∗ .      (8) 

Here 

𝑎1 = 𝑔11𝜃 − 𝑐2𝑔8   𝑎𝑛𝑑    𝑎2 = 𝑐1𝑔1 − 𝑔11, 

while,  𝑦∗ represents a non-negative root of the following fourth order polynomial equation     

 𝑘1𝑦
∗4 + 𝑘2 𝑦

∗3 + 𝑘3 𝑦
∗2 + 𝑘4𝑦

∗ + 𝑘5 = 0.                        (9) 

where 

𝑘1 = 𝑎1𝑔1(𝑎1 + 𝑎2𝜃)[𝑔7(𝑎1 + 𝑎2) − 𝑎1𝑔3(1 − 𝑚)] − 𝑎1𝑔8(𝑎1 + 𝑎2𝜃)[𝑎1 + 𝑎2𝑔3(1 − 𝑚)],       

𝑘2 = −𝑎1𝑔2𝑔8 (𝑎2 + 𝑔11)[𝑎1 + 𝑎2𝑔3(1 − 𝑚)] + (𝑎1 + 𝑎2𝜃)[𝑎1𝑔8(𝑎2−2𝑔2𝑔11)                            

−𝑎1𝑔1𝑔7(𝑎2−𝑔2𝑔11) − 𝑎2𝑔8(𝑎1𝑔5 − 𝑎2𝑔6) + 𝑎1𝑎2𝜎𝑔1 + (𝑔2𝑔3 𝑔11 + 𝑎1𝑔4)(1 − 𝑚)

(𝑎2𝑔8 − 𝑎1𝑔1)] + [𝑔1𝑔2(𝑎2(𝑎1 + 𝑔11𝜃) + 2𝑎1𝑔11][𝑔7(𝑎1 + 𝑎2) + 𝑎1(1 − 𝑚)𝑔3],

𝑘3 = (𝑎2+𝑔11)[𝑔2𝑔8(𝑎1(𝑎2−2𝑔2𝑔11) − 𝑎2(𝑎1𝑔5 − 𝑎2𝑔6))(𝑔7(𝑎1 + 𝑎2)                                      

−𝑎1𝑔3(1 − 𝑚)] − 𝑔2(1 − 𝑚)(𝑔2𝑔3𝑔11 + 𝑎1𝑔4)[𝑎2𝑔8(𝑎2+𝑔11)                                  

+𝑔11(𝑎1(𝑎2+2𝑔11    )+𝑔11𝑎2𝜃] − 𝑔2𝑔11(𝑎1 + 𝑎2𝜃)[𝑎2𝑔8((1 − 𝑚)𝑔4 + 𝑔5)           

+𝑎1𝑔4𝑔1(1 −𝑚)] + 𝑎2𝜎𝑔1𝑔2[𝑎1(𝑎2+2𝑔11)+𝑔11𝑎2𝜃],                                                   

𝑘4 = 𝑔2
2𝑔11(𝑎2+𝑔11)[(𝑎2−𝑔2𝑔11)(𝑔8−𝑔1𝑔7) − 𝑎2𝑔8((1 − 𝑚)𝑔4 + 𝑔5) + 𝑔1(−𝑎1𝑔4(1 −𝑚)

+𝑎2𝜎) − 𝑔1(1 − 𝑚)(𝑔2    𝑔3    𝑔11 + 𝑎1𝑔4)] − 𝑔1𝑔4𝑔2
2𝑔11

2 (𝑎1 + 𝑎2𝜃)(1 −𝑚)],        

𝑘5 = −𝑔1𝑔2
3𝑔11

2 𝑔4(1 − 𝑚)(𝑎2 + 𝑔11).                                                                                                        

    

 

The positive fixed point (PFP) = (𝑥∗, 𝑦∗, 𝑧∗), exists if and only if the one of the following cases 

is holds 

𝑘1 > 0, 𝑘2 > 0  𝑎𝑛𝑑    𝑘3 > 0,
𝑘1 > 0, 𝑘2 > 0  𝑎𝑛𝑑    𝑘4 < 0,
𝑘1 > 0, 𝑘3 < 0  𝑎𝑛𝑑    𝑘4 < 0 .

}                                  (10) 

The next, the (LS) analysis of the above (FPs) of the model (2) is discussed by using a 

linearization method. Note that the Varational Matrix (V) of the model (2) at 

 (𝑉𝐹𝑃) = (0,0,0) can be written as 

    𝑉0 = 𝑉(𝑉𝐹𝑃) = (𝑒𝑖𝑗)3×3   . 𝑖, 𝑗 = 1,2,3.                          (11) 

where 

𝑒11 = 1 − (1 −𝑚)𝑔4 − 𝑔5    ;     𝑒22 = 𝑔7 − 𝜎;
𝑒33 = −𝑔11 < 0    ,    𝑒12 = 𝑒13 = 𝑒21 = 𝑒23 = 𝑒31 = 𝑒32 = 0.
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Then the eigenvalues of  𝑉0 is: 

    𝛾0𝑥 = 1 − (1 −𝑚)𝑔4 − 𝑔5    ,    𝛾0𝑦 = 𝑔7 − 𝜎    ,    𝛾0𝑧 = −𝑔11 < 0     

If the following two conditions are satisfied then (𝑉𝐹𝑃) is (LS) in the Intℜ+
3 : 

   1 < (1 − 𝑚)𝑔4 + 𝑔5,                                (12) 

    𝜎 < 𝑔7.                                           (13) 

Now, the (V) of model (2) at (𝑃𝐹𝐹𝑃) = (�̃�, �̃�, 0) can be written in the form: 

    𝑉1 = 𝑉(PFFP) = (𝑟𝑖𝑗)3×3
    ,    𝑖, 𝑗 = 1,2,3.                       (14) 

where 

𝑟11 = −�̃� (1 +
𝑔6�̃�

�̃�2
) < 0    ;     𝑟12 = �̃� (−𝑔3(1 − 𝑚) +

𝑔6

�̃�
)

𝑟13 =
−𝑔1�̃�

�̃�
< 0    ;     𝑟21 = �̃� (−𝑔7 +

(𝑔3�̃�+𝑔4)(1−𝑚)

�̃�
)            

𝑟22 = −(𝑔7 +
𝑔4(1−𝑚)�̃�

�̃�2
) �̃�    ;     𝑟23 =

−𝑔8�̃�

�̃�
                               

𝑟31 = 𝑟32 = 0    ;     𝑟33 =
(𝑐1𝑔1�̃�)(𝑐2𝑔8�̃�)

�̃�2
 − 𝑔4                            

    

where    �̃� = 𝑔2 + 𝜃�̃� + �̃� 

The characteristic equation of 𝑉1 is: 

(𝛾1 − 𝑟33)[�̂�
2 − 𝑇𝛾1 + 𝐷] = 0. 

Clearly, the eigenvalues of 𝑉1 satisfy the following relations: 

    𝑇 = 𝑟11 + 𝑟12,                                     (15) 

    𝐷 = 𝑟11𝑟22 − 𝑟12𝑟21,                                   (16)     

    𝛾1𝑧 = 𝑟33.                                         (17) 

 

The conditions (18) and (19) give each of the eigenvalues real negative parts,   

    𝑟12𝑟21 < 𝑟11𝑟22                                     (18) 

    𝑟33 < 0                                           (19) 

Thus, (PFFP) is (LS) in Intℜ+
3 .   

Theorem (3.1): The positive fixed point (PFP) = (𝑥∗, 𝑦∗, 𝑧∗) is (LS) if satisfy the following 

conditions: 
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  𝑧∗ < 𝑚𝑖𝑛

{
 

 
𝑏∗
2
(𝑥∗

2
+𝑔6𝑦

∗)

𝑔1𝑥∗
2 ,

𝑏∗
2
(𝑔3(1−𝑚)𝑥

∗−𝑔6)

𝑔1𝜃𝑥∗
,    

𝑏∗
2
(𝑔3𝑦

∗−(𝑔3𝑦
∗+𝑔4)(1−𝑚))

𝑔8𝑦∗
,

𝑏∗
2
(𝑔8𝑦

∗2+𝑔4(1−𝑚)𝑥
∗)

𝑔8𝜃𝑦∗
2                                                                        }

 

 

,         (20) 

    𝑐1𝑔1𝜃𝑥
∗ < 𝑐2𝑔8(𝑔2 + 𝑥

∗),                                              (21) 

√
𝑔8    𝐸1𝑦∗

𝑔1𝐸3
< 𝑥∗ < 𝑚𝑖𝑛 {

𝑔8    𝐸2𝑦
∗2

𝑔1𝐸4
,    

𝐸1𝐸4

𝐸2𝐸3𝑦∗
}.                                  (22) 

where    𝑏∗ = 𝑔2 + 𝜃𝑦
∗ + 𝑥∗. 

Proof: The (V) for (PFP) of the model (2) may be written as follows : 

    𝑉1 = 𝑉(PFP) = (𝑎𝑖𝑗)3×3    ,    𝑖, 𝑗 = 1,2,3.                         (23) 

Here     

𝑎11 =
𝐸1

𝑏∗
2
𝑥∗
 ;  𝑎12 =

𝐸2

𝑏∗
2     ;  𝑎13 =

−𝑔1𝑥
∗

𝑏∗

𝑎21 =
𝐸3

𝑏∗
2  ;  𝑎22 =

𝐸4

𝑏∗
2𝑦∗
 ;  𝑎23 =

−𝑔8𝑦
∗

𝑏∗
   

𝑎31 =
𝐸5𝑧

∗

𝑏∗
2  ;  𝑎32 =

𝐸6𝑧
∗

𝑏∗
2  ;  𝑎33 = 0,            

 

with 

𝐸1 = −𝑏∗
2
(𝑥∗

2
+ 𝑔6𝑦

∗) + 𝑔1𝑧
∗𝑥∗,                                 

𝐸2 = 𝑔1𝜃𝑧
∗𝑥∗ − 𝑏∗

2
(𝑔3(1 −𝑚)𝑥

∗ − 𝑔6),                    

𝐸3 = −𝑏
∗2(𝑔4𝑦

∗ − (𝑔3𝑦
∗ + 𝑔4)(1 − 𝑚)) + 𝑔8𝑧

∗𝑦∗,

𝐸4 = −𝑏
∗2(𝑔7𝑦

∗2 + 𝑔4(1 − 𝑚)𝑥
∗) + 𝑔8𝜃𝑧

∗𝑦∗
2
 ,       

𝐸5 = (𝑔2 + 𝜃𝑦
∗)𝑐1𝑔1,                                                        

𝐸6 = 𝑐2𝑔8(𝑔2 + 𝑥
∗) − 𝑐1𝑔1𝜃𝑥

∗.                                      

                  (24) 

Hence we can write the characteristic equations of 𝑉1  as follows: 

𝛾2
3 + 𝐴1

∗𝛾2
2 + 𝐴2

∗𝛾2 + 𝐴3
∗ = 0. 

Here 

𝐴1
∗ = −(𝑎11 + 𝑎22),                                                                 
𝐴2
∗ = 𝑎11𝑎22 − 𝑎12𝑎21 − 𝑎13𝑎31 − 𝑎23𝑎32,                       

𝐴3
∗ = −𝑎31[𝑎12𝑎23 − 𝑎13𝑎22] + 𝑎32[𝑎11𝑎23 − 𝑎13𝑎21].

 

And     

    ∆= 𝐴1
∗𝐴2

∗ − 𝐴3
∗  

       = −(𝑎11 + 𝑎22)(𝑎11𝑎22 − 𝑎12𝑎21) + 𝑎31(𝑎11𝑎13 + 𝑎12𝑎23) + 𝑎32[𝑎22𝑎23 + 𝑎13𝑎21]. 



11 

A PREY-PREDATOR MODEL WITH HOLLING TYPE II FUNCTIONAL RESPONSE 

So, by substituting the values of 𝑎𝑖𝑗, and the simplifying the resulting terms we obtain: 

    
𝐴1
∗ =

−1

𝑏∗
2 [
𝐸1

𝑥∗
+
𝐸4

𝑦∗
]                                                                                              

𝐴3
∗ =

𝒛∗

𝑏∗
2     [−

𝐸5

𝑦∗
(−𝑔8𝐸2𝑦

∗2 + 𝑔1𝐸4𝑥
∗) +

𝐸6

𝑥∗
(−𝑔8𝐸1𝑦

∗ + 𝑔1𝐸3𝑥
∗2)]

 

And     

    
∆=

−𝟏

𝑏∗𝑥∗𝑦∗
[
𝐸1

𝑥∗
+
𝐸4

𝑦∗
] [𝐸1𝐸2 − 𝐸1𝐸2𝑥

∗𝑦∗] −
𝒛∗

𝑏∗
[𝐸5(𝑔1𝐸1 + 𝑔6𝐸2𝑦

∗)

−𝐸6(𝑔8𝐸4 + 𝑔1𝐸3𝑥
∗)]                                                                   

 

If the conditions (20)-(22) are satisfies then 𝐴𝑖
∗ > 0, 𝑖 = 1,2,3 𝑎𝑛𝑑 ∆> 0. Thus the (PFP) is 

(LS) according to the results of Routh – Hawartiz.   

4. GLOBAL STABILITY ANALYSIS 

   In this section, the region of global stability (basin of attraction) of all (FPs) of the model (2) 

is presented as shown in the following theorems. 

Theorem (4.1): The (𝑉𝐹𝑃) is a globally asymptotically stable provided that the following 

conditions hold 

1 < 𝑔5,                                       (25a) 

𝑔7 < 𝑔9 + 𝑔10.                              (25b)  

Proof: Consider the following positive function 

            𝐿0 = 𝑥 + 𝑦 + 𝑧. 

Clearly, the above function is a continuously differentiable function such that 

 𝐿0(0,0,0) = 0 and 𝐿0(𝑥, 𝑦, 𝑧) > 0  ∀ (𝑥, 𝑦, 𝑧) ≠ (0,0,0) . Further, 

𝑑𝐿0

𝑑𝑡
= [𝑥(1 − x) −

𝑔1𝑥𝑧

𝑔2+𝜃𝑦+𝑥
− (1 −𝑚)(𝑔3𝑦 + 𝑔4)𝑥 − 𝑔5𝑥 + 𝑔6𝑦]     

    + [𝑔7𝑦(1 − (x + y)) −
𝑔8𝑦𝑧

𝑔2+𝜃𝑦+𝑥
+ (1 −𝑚)(𝑔3𝑦 + 𝑔4)𝑥 − 𝑔9𝑦

−𝑔6𝑦    − 𝑔10𝑦] + [
𝑐1𝑔1𝑥𝑧

𝑔2+𝜃𝑦+𝑥
+

𝑐2𝑔8𝑦𝑧

𝑔2+𝜃𝑦+𝑥
− 𝑔11𝑧].                       

  

Now, by doing some algebraic manipulation and using the conditions (25a) and (25b), we get 

𝑑𝐿0
𝑑𝑡

≤ −[𝑥 + 𝑔5 − 1]𝑥 − [𝑔9 + 𝑔10 − 𝑔7]𝑦 − 𝑔11𝑧. 

Consequently, due to condition above is 
𝑑𝐿0

𝑑𝑡
< 0 negative. Thus, the (𝑉𝐹𝑃) is a globally 
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asymptotically stable and the proof is complete. 

Theorem (4.2): The (𝑃𝐹𝐹𝑃) = (�̃�, �̃�, 0), is a globally asymptotically stable provided that the 

following sufficient conditions hold 

    1 < (1 − 𝑚)𝑔4 + 𝑔5 + 𝑥 + �̃� + (1 − 𝑚)𝑔3𝑦,̃                   (26a) 

𝑔7 < 𝑔6 + 𝑔9 + 𝑔10 + 𝑔7(𝑦 + �̃�) + 𝑔7𝑥,                       (26b) 

𝑑12
2 < 4𝑑11𝑑22.                                           (26c) 

Proof: Consider the following positive definite real valued function     

𝐿1 =
(𝑥 − �̃�)2

2
+
(𝑦 − �̃�)2

2
+ 𝑧. 

Then the derivative of this function with respect to time can be written as 

𝑑𝐿1

𝑑𝑡
= (𝑥 − �̃�) [𝑥(1 − 𝑥 −

𝑔1𝑧

𝑔2+𝜃𝑦+𝑥
) − (1 − 𝑚)(𝑔3𝑦 + 𝑔4)𝑥 − 𝑔5𝑥 + 𝑔6𝑦]       

    (𝑦 − �̃�) [(𝑔7 − 𝑔7x − 𝑔7𝑦 −
𝑔8𝑧

𝑔2+𝜃𝑦+𝑥
)𝑦 + (1 − 𝑚)(𝑔3𝑦 + 𝑔4)𝑥

−(𝑔9 + 𝑔6 + 𝑔10)𝑦] + (
𝑐1𝑔1𝑥

𝑔2+𝜃𝑦+𝑥
+

𝑐2𝑔8𝑦

𝑔2+𝜃𝑦+𝑥
− 𝑔11) 𝑧,         

  

      = −[𝑑11(𝑥 − �̃�)
2 + 𝑑12(𝑥 − �̃�)(𝑦 − �̃�) + 𝑑22(𝑦 − �̃�)

2] − 𝑔11𝑧

                −(1 − 𝑐1)
𝑔1𝑥𝑧

𝑔2+𝜃𝑦+𝑥
(𝑥 − �̃�) − (1 − 𝑐2)

𝑔8𝑦𝑧

𝑔2+𝜃𝑦+𝑥
(𝑦 − �̃�).

  

Now, by doing some algebraic manipulation and using the conditions (26a–26c), we get that 

𝑑𝐿1

𝑑𝑡
≤ −[√𝑑11(𝑥 − �̃�) + √𝑑22(𝑦 − �̃�)]

2
− 𝑔11𝑧.                                    

Where 

𝑑11 = (1 −𝑚)𝑔4 + 𝑔5 − 1 + 𝑥 + �̃� + (1 − 𝑚)𝑔3�̃�                 

𝑑12 = (1 −𝑚)𝑔3𝑥 + 𝑔7�̃� − 𝑔6 − (1 −𝑚)𝑔3�̃� − (1 − 𝑚)𝑔4
𝑑22 = 𝑔6 + 𝑔9 + 𝑔10 − 𝑔7 + 𝑔7(𝑦 + �̃�) + 𝑔7𝑥                         

  

Obviously, 
𝑑𝐿1

𝑑𝑡
≤ 0 when �̃� ≤ 𝑥  𝑎𝑛𝑑 �̃� ≤  𝑦, with the conditions (26a-26c) are hold. We get 

the (𝑃𝐹𝐹𝑃) is globally asymptotically stable in the sub region. 

Theorem (4.3): The (PFP) = (𝑥∗, 𝑦∗, 𝑧∗) is a globally asymptotically stable in the sub region 

of ℜ+
3  that satisfied the following conditions 

  𝑞12
2 < 𝑞11𝑞22                              (27a) 

  𝑞13
2 < 𝑞11𝑞33                              (27b) 

  𝑞23
2 < 𝑞22𝑞33                              (27c) 
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Proof: Consider the following positive function 

𝐿2 =
(𝑥−𝑥∗)2

2
+
(𝑦−𝑦∗)2

2
+
(𝑧−𝑧∗)2

2
.  

Then the derivative of this function with respect to time can be written as 

𝑑𝐿2

𝑑𝑡
= (𝑥 − 𝑥∗) [𝑥 − 𝑥2 −

𝑔1𝑥𝑧

𝑔2+𝜃𝑦+𝑥
− (1 −𝑚)(𝑔3𝑦 + 𝑔4)𝑥 − 𝑔5𝑥 + 𝑔6𝑦]           

   +(𝑦 − 𝑦∗) [𝑔7𝑦 − 𝑔7xy − 𝑔7𝑦
2 −

𝑔8𝑦𝑧

𝑔2+𝜃𝑦+𝑥
+ (1 −𝑚)(𝑔3𝑦 + 𝑔4)𝑥

−(𝑔9 + 𝑔6 + 𝑔10)𝑦] + (𝑧 − 𝑧
∗) [

𝑐1𝑔1𝑥𝑧

𝑔2+𝜃𝑦+𝑥
+

𝑐2𝑔8𝑦𝑧

𝑔2+𝜃𝑦+𝑥
− 𝑔11𝑧],    

   

        = − [
𝑞11

2
(𝑥 − 𝑥∗)2 + 𝑞12(𝑥 − 𝑥

∗)(𝑦 − 𝑦∗) +
𝑞22

2
(𝑦 − 𝑦∗)2]                       

    − [
𝑞11

2
(𝑥 − 𝑥∗)2 + 𝑞13(𝑥 − 𝑥

∗)(𝑧 − 𝑧∗) +
𝑞33

2
(𝑧 − 𝑧∗)2]               

             

− [
𝑞22

2
(𝑦 − 𝑦∗)2 + 𝑞23(𝑦 − 𝑦

∗)(𝑧 − 𝑧∗) +
𝑞33

2
(𝑧 − 𝑧∗)2]                       

− [
𝑔1(𝜃𝑦

∗𝑥𝑧−𝜃𝑥∗𝑧∗𝑦)

(𝑔2+𝜃𝑦+𝑥)(𝑔2+𝜃𝑦∗+𝑥∗)
] (𝑥 − 𝑥∗) − [

𝑔8(𝑥
∗𝑦𝑧−𝑦∗𝑧∗𝑥)

(𝑔2+𝜃𝑦+𝑥)(𝑔2+𝜃𝑦∗+𝑥∗)
] (𝑦 − 𝑦∗)  

− [
𝑐1𝑔1(𝜃𝑥

∗𝑧∗𝑦−𝜃𝑦∗𝑥𝑧)+𝑐2𝑔8(𝑦
∗𝑧∗𝑥−𝑥∗𝑦𝑧)

(𝑔2+𝜃𝑦+𝑥)(𝑔2+𝜃𝑦∗+𝑥∗)
] (𝑧 − 𝑧∗).                                        

  

Consequently by using (27a)-(27c) conditions we get that 

𝑑𝐿2

𝑑𝑡
≤ −[√

𝑞11

2
(𝑥 − 𝑥∗) + √

𝑞22

2
(𝑦 − 𝑦∗)]

2

−[√
𝑞11

2
(𝑥 − 𝑥∗) + √

𝑞33

2
(𝑧 − 𝑧∗)]

2

                 

       − [√
𝑞22

2
(𝑦 − 𝑦∗) + √

𝑞33

2
(𝑧 − 𝑧∗)]

2

 − [
𝑔1(𝜃𝑦

∗𝑥𝑧−𝜃𝑥∗𝑧∗𝑦)

(𝑔2+𝜃𝑦+𝑥)(𝑔2+𝜃𝑦∗+𝑥∗)
] (𝑥 − 𝑥∗)                

 

            − [
𝑔8(𝑥

∗𝑦𝑧−𝑦∗𝑧∗𝑥)

(𝑔2+𝜃𝑦+𝑥)(𝑔2+𝜃𝑦∗+𝑥∗)
] (𝑦 − 𝑦∗) − [

𝑐1𝑔1(𝜃𝑥
∗𝑧∗𝑦−𝜃𝑦∗𝑥𝑧)+𝑐2𝑔8(𝑦

∗𝑧∗𝑥−𝑥∗𝑦𝑧)

(𝑔2+𝜃𝑦+𝑥)(𝑔2+𝜃𝑦∗+𝑥∗)
] (𝑧 − 𝑧∗).

 

  

where 

𝑞11 = 𝑥 + 𝑥
∗ + (1 −𝑚)𝑔4 + 𝑔5 + (1 −𝑚)𝑔3𝑦

∗ +
𝑔1𝑔2𝑧

∗

(𝑔2+𝜃𝑦+𝑥)(𝑔2+𝜃𝑦∗+𝑥∗)
,                            

𝑞12 = (𝑔7 − (1 − 𝑚)𝑔3)𝑦
∗ − (1 −𝑚)𝑔4 + (1 −𝑚)𝑔3𝑥,                                                       

𝑔13 =
𝑔1(𝑔2+𝑥

∗)𝑥−𝑐1𝑔1𝑔2𝑧
∗

(𝑔2+𝜃𝑦+𝑥)(𝑔2+𝜃𝑦∗+𝑥∗)
,                                                                                                               

𝑔22 = 𝑔6 + 𝑔9 + 𝑔10 − 𝑔7 + 𝑔7(𝑦 + 𝑦
∗) + (𝑔7 − (1 −𝑚)𝑔3)𝑥 +

𝑔2𝑔8𝑧
∗

(𝑔2+𝜃𝑦+𝑥)(𝑔2+𝜃𝑦∗+𝑥∗)
,

𝑞23 =
𝑔8(𝑔2+𝜃𝑦

∗)𝑦−𝑐2𝑔2𝑔8𝑧
∗

(𝑔2+𝜃𝑦+𝑥)(𝑔2+𝜃𝑦∗+𝑥∗)
,                                                                                                              

𝑞33 = 𝑔11 −
𝑐1𝑔1(𝑔2+𝑥

∗)𝑥+𝑐2𝑔8(𝑔2+𝜃𝑦
∗)𝑦

(𝑔2+𝜃𝑦+𝑥)(𝑔2+𝜃𝑦∗+𝑥∗)
 .                                                                                        

  

Obviously, 
𝑑𝐿2

𝑑𝑡
≤ 0 when 𝑥 ≥ 𝑥∗, 𝑦 ≥ 𝑦∗, 𝑧 ≥ 𝑧∗  and 𝑞𝑖𝑖 > 0, 𝑖 = 1,2,3 with the conditions 

(27a)-(27c) are hold. Thus, the (PFP) is a globally asymptotically stable in the sub region.  
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5. NUMERICAL SIMULATION 

   To confirm the above analytical findings and understand the effect of varying the parameters 

on the global dynamics of model (2), numerical simulation is done in this section. The objectives 

of this study are confirming our obtained analytical results and detecting the set of control 

parameters that affect the dynamics of the system. Consequently, model (2) is solved numerically 

for different sets of initial conditions and for different sets of parameters. It is observed that for 

the following set of hypothetical parameters the model (2) has a globally asymptotically stable to 

(PFP) as shown in the below figure 1: 

 

𝑔1 = 0.2,   𝑔2 = 0.3, 𝑔3 = 0.2, 𝑔4 = 0.1,  𝑔5 = 0.01
𝑔6 = 0.2, 𝑔7 = 1 , 𝑔8 = 1, 𝑔9 = 0.001,   𝑔10 = 0.005
𝑔11 = 0.1,   𝑐1 = 0.5,   𝑐2 = 0.7, 𝜃 = 0.5,   𝑚 = 0.1  

                (28) 

 

Figure 1: Globally asymptotically stable to (PFP) of model (2). 

  

Clearly, Figure 1, confirm our obtained analytical results in theorem (4.3), regarding to existence 

that (PFP) is a globally asymptotically stable.  

However, for the data by equation (28) with 𝑔1 = 0.1 and 𝑔8 = 0.1, the solution of model (2) 

approaches asymptotically to the (PFFP) with reducing the ratio of maximum attack to the of 

logistic growth rate as shown in the following typical, Figure 2. 
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Figure 2: Globally asymptotically stable of (PFFP) of the model (2). 

 

Now, in order to investigate the effect of varying parameters value at a time on the dynamical 

behavior of the model (2), the following results are observed. According to the Figure 3, it is 

clear that the solution of the model (2) approaches to the periodic of (PFP) for the parameters 

values given in Eq. (28) with varying  𝑔5 ≥ 1.1, see Figure 3. 

 

Figure 3: Periodic attractor of (PFP) of the model (2).  
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Again, we choose the ratio of vaccination and logistic growth rate of infected prey to the logistic 

growth rate of susceptible prey values 𝑔5 = 1.1 𝑎𝑛𝑑 𝑔7 = 0.15, respectively. Keeping other 

parameters fixed as given in equation (28), we get the trajectories of the model (2) approaches to 

the (VFP), see Figure 4. 

  

Figure 4: Globally asymptotically stable of (VFP) of the model (2). 

In addition, varying the parameter 𝑔11 = 3 with other data as in Eq. (28) the solution of the 

model (2) approaches asymptotically to (PFFP) , as shown in the Figure (6). 

 

Figure 5: Time series of the solution of the model (2), for the data given by Eq. (28) with, 

𝑔11 = 3, that approaches asymptotically to (PFFP). 
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6. CONCLUSION AND DISCUSSION 

    In conclusion, the prey–predator interaction with (SIS) kind of epidemic disease is 

suggested and studied in this work. This model consists of prey–predator interactions, the first 

population is called prey species that are infected with the kind SIS epidemic disease while the 

second population is called predator species which is healthy. The suggested model is expressed 

by three differential equations which describes the dynamic of prey–predator interactions. The 

susceptible prey denoted by  𝑆, the infected prey denoted by 𝐼 and the susceptible predator 

denoted by 𝑝. It is supposed that the disease is spreading between the prey population by contact 

and external sources of infective with linear incidence rate. The effect of the disease, the 

migration and the vaccine to protect them in prey on the dynamic behavior of the epidemic 

problem have been analyzed and discussed. The proposed model has three FPs that are the 

vanishing (FP) is denoted (𝑉𝐹𝑃) always exists, the predator free (FP) is denoted (PFFP) and 

the positive (FP) is denoted (PFP) .The existence of the proposed model's trajectory is 

investigated, and the bounds for the trajectory are proved. The existing conditions for all of FPs 

are studied. Finally the (LS) analysis of each possible FP for this model is studied by using the 

linearization method.  
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