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Abstract: Wuhan, China reported the outbreak of COVID-19 in December 2019. The disease has aggressively spread 

around the world, including Indonesia. The emergence of COVID-19 has serious implications for public health and 

socio-economic development worldwide. No country is prepared to face COVID-19. Because of the rapid transmission 

of COVID-19, the early warning systems (EWS) in each country are not prepared to deal with it. Controlling and 

preventing COVID-19 transmission in an effective and efficient manner is critical not only for public health, but also 

for economic sustainability and long-term viability. Consequently, an efficient and effective EWS for COVID-19 is 

required. The EWS for COVID-19 must be capable of monitoring and forecasting the spatiotemporal transmission of 

COVID-19. This study demonstrates how an EWS could be a proactive system that would be able to predict the 

spatiotemporal distribution of COVID-19 and detect its sudden increase in small areas such as cities. Early COVID-

19 data in Bandung, Indonesia from 17 March 2020 to 22 June 2020 was used to demonstrate the construction of an 

effective and efficient EWS using the spatiotemporal model. We observed that the relative risk of COVID-19 
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fluctuates geographically and temporally, gradually increasing throughout the estimate phase (17 March 2020-22 June 

2020) and increasing slightly during the prediction period (23 June–06 July 2020). We discovered that human mobility 

is a major aspect that must be addressed in order to minimize COVID-19 transmission during the early pandemic 

phase. 

Keywords: Bayesian; Bandung; COVID-19; early warning system; spatiotemporal. 

2010 AMS Subject Classification: 93A30. 

 

 

1. INTRODUCTION 

Toward the end of December 2019, the coronavirus (COVID-19) made headlines worldwide. 

Wuhan, China reported the outbreak of COVID-19 for the first time on 31 December 2019 [1-3]. 

Due to its rapid global spread, WHO announced COVID-19 to be a pandemic on 11 March 2020 

[4]. The outbreak rapidly spread from Wuhan into at least 200 countries during early pandemic 

[5,6]. COVID-19 infected every country in the world, with no exception. The emergence of 

COVID-19 has serious implications for public health and socio-economic development worldwide 

[7]. By the end of June 2020, there have been over 4.3 million confirmed cases of the COVID-19 

pandemic and over 290,000 deaths [7]. 

No country is fully prepared for COVID-19 [8]. WHO issued an alert during the early 

coronavirus pandemic, but its message was ignored [9]. Most countries believe they are well-

prepared to deal with the coronavirus. By contrast, they greatly underestimated COVID-19. As a 

result, the global health system and economy were almost on the verge of collapsing. Each 

country's early warning systems (EWS) are unable to respond to the COVID-19 outbreak due to 

its rapid spread, lack of disease risk information, and less knowledge of geographical evolution [9] 

According to the WHO, it is still possible to halt coronavirus spread if countries implement robust 

measures to identify disease early, treat cases, track contacts, and advocate social isolation [9]. 

Consequently, an efficient and effective surveillance and EWS for COVID-19 is required [10]. 

EWS is a surveillance system that collect and analysis epidemic or pandemic-prone diseases data 

to alert public health authorities. It assists countries during times of crisis when their routine public 
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health surveillance systems are insufficient, disrupted, or non-existent [11,12]. EWS fills 

temporary gaps while regular systems recover from disasters or crises. Rapid response to epidemic 

or pandemic is critical, particularly among refugees and displaced people. However, developing 

such systems for infectious disease epidemic or pandemic has received little attention.  

According to UNISDR (2005) [13], an efficient and effective EWS includes four 

interrelated elements: (i) risk awareness, (ii) monitoring and early warning service, (iii) 

communication and dissemination, and (iv) response capability (see Figure 1) [13]. 

 

Source: UNISDR (2009)  

Figure 1.  Four elements of an early warning system 

 A failure in any of these elements could cause the system to fail (see [14,15] for detail). The first 

and second components entail the monitoring and forecasting of the geographic evolution of 

disease risk in the environment. It has a strong relationship with the statistical model on which we 

will be concentrating. The EWS for COVID-19 must be capable of monitoring and forecasting the 

spatiotemporal transmission of COVID-19. It is discussed in this article how an EWS could be a 

proactive system that would be able to predict the spatiotemporal distribution of COVID-19 and 

detect its sudden increase.  
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 COVID-19 study is typically conducted in large areas, such as regional areas [16] and 

countries [17, 18]. There has been very little research conducted on such a small region as a city. 

COVID-19 will spread more densely in a limited region due to its high level of mobility, which 

results in a high degree of spatial dependence. Small area characteristics should be taken into 

account while building an EWS. Additionally, significant risk factors should be identified during 

the pandemic's early stages. Numerous studies have indicated that human mobility may have an 

effect on COVID-19 transmission. However, quantifying human movement is fairly difficult [19, 

20] and some proxies are required. 

The fundamental concept in assessing disease risk in EWS is relative risk. The standard 

method for calculating relative risk is to divide the number of cases by the expected number of 

case, called as standardized case ratio (SIR) [21-25]. However SIR provides unreliable estimate of 

the relative risk for small area with small number of case and population at risk [26-29]. Bayesian 

smoothing is frequently used to solve the unreliability problem associated with SIR. A hierarchical 

Bayesian spatiotemporal model is used to smooth, model, forecast, and map disease risk for 

spatiotemporal data. It provides a reliable estimate of the relative risk over space and time by 

accounting for spatially and temporally structured and unstructured effects, as well as their 

interactions [26, 30]. The reliable estimate of relative risk is required for effective and efficient 

EWS. Additionally, the effectiveness of early intervention techniques remains to be determined by 

an analysis of available surveillance data.  

The purpose of this retrospective analysis is to gain a better understanding of the disease 

patterns associated with COVID-19 in this region and, as a result, to guide future pandemic 

response.  

The remainder of the paper is divided into the following sections. The next section 

discusses the materials and methods used in this study. Following that is the Application section, 

which details the COVID-19 EWS in Bandung, Indonesia. The last part discusses, summarizes, 

and makes recommendations for additional research. 
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2. MATERIAL AND METHODS 

2.1. Data sources  

We use COVID-19 data in Bandung city, Indonesia  to demonstrate the construction of an 

effective and efficient EWS using the spatiotemporal model for small areas and identify the critical 

risk factors. The COVID-19 dataset was obtained from a website in Bandung that provides real-

time information on COVID-19 pandemic disease outbreaks (https://covid19.bandung.go.id/). The 

website keeps track of newly confirmed cases in Bandung by district and date. Between 17 March 

2020 and 22 June 2020, we extensively observed COVID-19 press announcements and situation 

reports produced by 30 Bandung district health agencies. Because we are dealing with a small area, 

confirmed cases are extremely rare on a daily basis. As a result, to avoid a large number of zero 

cases, we take the cumulative cases every week. It is based on COVID-19's incubation period. 

Symptoms may appear 2-14 days after virus exposure [31]. As proxy measures of human mobility, 

we used population density and poverty rate. The population at risk, population density and the 

poverty rate on 2019 were extracted from Bandung Data (https://data.go.id/).  Table 1 displays 

detailed data are used in this study for each district. 
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Table 1 Data from the Districts in Bandung 

 

id District No. Total Cases Population Population Density 

(inhabitants/km2) 

Poverty rate 

(%)a 

1 Andir 22 87,604 26.33 16.40 

2 Antapani 17 92,245 19.67 11.00 

3 Arcamanik 13 66,349 11.63 16.40 

4 Astanaanyar 17 62,651 23.87 14.70 

5 Babakan Ciparay 16 153,417 19.87 21.90 

6 Bandung Kidul 6 70,653 9.79 19.60 

7 Bandung Kulon 27 146,106 22.18 20.30 

8 Bandung Wetan 6 28,374 9.13 9.80 

9 Batununggal 9 110,385 24.07 22.00 

10 Bojongloa Kaler 20 113,213 39.99 29.40 

11 Bojongloa Kidul 8 86,618 13.80 21.10 

12 Buah Batu 10 103,406 12.02 17.70 

13 Cibeunying Kaler 12 64,925 15.82 13.00 

14 Cibeunying Kidul 10 97,755 20.60 15.80 

15 Cibiru 16 83,910 11.13 18.70 

16 Cicendo 43 99,644 14.56 12.80 

17 Cidadap 7 61,916 9.56 12.80 

18 Cinambo 3 27,958 6.73 18.80 

19 Coblong 22 128,371 17.96 16.20 

20 Gedebage 9 38,716 3.75 13.70 

21 Kiaracondong 18 127,032 21.59 21.10 

22 Lengkong 7 65,901 12.14 11.00 

23 Mandalajati 2 76,987 9.47 17.60 

24 Panyileukan 5 47,271 7.71 13.60 

25 Rancasari 6 81,394 10.30 11.80 

25 Regol 20 79,655 19.07 15.90 

27 Sukajadi 11 106,940 25.23 17.20 

28 Sukasari 4 80,370 13.08 9.40 

29 Sumur Bandung 9 32,235 10.56 9.50 

30 Ujungberung 9 85,887 11.79 20.40 

 

 

384 2,507,888 15.78 16.32 
aTotal number of very poor, poor, near poor vulnerable to poverty household divided by total number of household  
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2.2 Method 

Moran’s I 

For an effective monitoring and controlling COVID-19, the prior information on spatiotemporal 

autocorrelation of COVID-19 risk transmission is required [3]. Spatiotemporal Moran’s I statistic 

on case rate is used. It is defined as [24]. 

MoranST =
𝑛𝑇 ∑ ∑ ∑ ∑ �̃�(𝑖𝑡,𝑗𝑠)(𝑝𝑖𝑡 − �̅�)(𝑝𝑗𝑠 − �̅�)𝑇

𝑠=1
𝑛
𝑗=1

𝑇
𝑡=1

𝑛
𝑖=1

∑ ∑ ∑ ∑ �̃�(𝑖𝑡,𝑗𝑠) ∑ ∑ (𝑝𝑖𝑡 − �̅�)2𝑇
𝑡

𝑛
𝑖=1

𝑇
𝑠=1

𝑛
𝑗=1

𝑇
𝑡=1

𝑛
𝑖=1

   (1) 

for 𝑖 = 1, . . , 𝑛 and 𝑡 = 1, … , 𝑇  with 𝑛  and 𝑇  denote the number of districts and total time 

periods. 𝑖 and 𝑗  were district indices indicating the adjacency of districts 𝑖 and 𝑗, �̃�(𝑖𝑡,𝑗𝑠) is 

the weight accounting for the spatiotemporal autocorrelation between 𝑝𝑖𝑡 and 𝑝𝑗𝑠, defined as:  





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where 𝑤𝑖𝑗 is one if regions 𝑖 and 𝑗 are neighbours, and zero otherwise. This study considered 

the queen's adjacency as a spatial weight matrix. 𝑝𝑖𝑡  and 𝑝𝑗𝑡  denoted the prevalence rate in 

district 𝑖 and 𝑗 over period 𝑡, and �̅� was the average of the prevalence rate in the entire region 

over time period. The prevalence rate 𝑝𝑖𝑡 is defined as: 

𝑝𝑖𝑡 =
𝑦𝑖𝑡

𝑁𝑖𝑡
× 100.000 (2) 

where 𝑦𝑖𝑡 and 𝑁𝑖𝑡 denote the number of new cases and population at risk at district 𝑖 and period 

𝑡 respectively. Zero spatiotemporal Moran's I (MoranST) indicated that the data lacked spatial 

autocorrelation [32]. A positive spatiotemporal Moran's I value suggested that adjacency values 

were clustered together, whereas a negative spatiotemporal Moran's I value indicated that different 

values were clustered together. The high value of spatiotemporal Moran's I reflects the intensity of 

spatial autocorrelation, indicating that the COVID-19 has been transmitted to surrounding 

locations over time. 

2.3. Bayesian hierarchical spatiotemporal-model 

Bayesian hierarchical models have been used often to evaluate spatiotemporal disease transmission 
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extending [33-35]. It has been successfully to forecast disease risk and monitor the disease 

transmission [24] which are crucial components in developing EWS. Here we adopt the one 

defined by Knorr-Held (2000) [36] in which the spatial, temporal and spatiotemporal interaction 

components are model as random effects. The interaction components were included in the model 

to consider the variation of temporal trend over districts. The Bandung city is divided becomes 𝑛 

districts over 𝑇  periods. For the district 𝑖  in periode 𝑡  we assume COVID-19 cases 𝑦𝑖𝑡 

follows Poisson distribution1[24]: 

𝑦𝑖𝑡~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖𝑡) 

where 𝜆𝑖𝑡 denotes the expectation and variance of 𝑦𝑖𝑡 at district 𝑖 and time 𝑡. In order to study 

of the relative risk, 𝜆𝑖𝑡 is defiend as a product of expected number of cases  (𝐸𝑖𝑡) and the relative 

risk (𝜃𝑖𝑡);  𝜆𝑖𝑡 = 𝐸𝑖𝑡𝜃𝑖𝑡, 𝑖 = 1, … , 𝑛 and 𝑡 = 1, … , 𝑇. The expected number of confirmed case is 

defined as [24, 25]: 

𝐸𝑖𝑡 = 𝑁𝑖𝑡

∑ ∑ 𝑦𝑖𝑡
𝑇
𝑡=1

𝑛
𝑖=1

∑ ∑ 𝑁𝑖𝑡
𝑇
𝑖𝑡=1

𝑛
𝑖=1

  𝑖 = 1, … , 𝑛 and 𝑡 = 1, … . , 𝑇 (3) 

Now we will examine the Poisson distribution's mean, which we will decompose using the natural 

logarithm link function [24, 25]: 

log(𝜆𝑖𝑡) = log(𝐸𝑖𝑡) + log(𝜃𝑖𝑡) (4) 

The second component in Eq. (4), 𝜂𝑖𝑡 = log(𝜃𝑖𝑡), is the focus of further research. Specifically: 

𝜂𝑖𝑡 = 𝛼 + 𝜔𝑖 + 𝜐𝑖 + 𝜙𝑡 + 𝛾𝑡 + 𝛿𝑖𝑡 (5) 

where 𝛼  is the intercept representing the overall relative risk ;  𝜔𝑖,  𝜐𝑖 , 𝜙𝑡  and 𝛾𝑡  are the 

random effect components that are spatially structured and unstructured effects, and temporally 

structured and unstructured effects, respectively. 𝛿𝑖𝑡  is a representation of spatiotemporal of 

interaction. The random effect of region i  (𝜔𝑖)   is described spatially structured using the 

intrinsic conditional autoregressive (iCAR) prior [33]: 

 
1To address the issue of overdispersion that occurs when data contains an excess of zeroes, a negative binomial (NB) 

distribution [50, 51]  or a  zero-inflated Poisson (ZIP) distribution [52] or a  zero-inflated negative binomial (ZINB) 

distribution [53]. 
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𝜔𝑖|𝝎−𝑖, 𝜏𝜔 , 𝐖~𝒩 (
∑ 𝑤𝑖𝑗𝜔𝑗

𝑛
𝑗=1

∑ 𝑤𝑖𝑗
𝑛
𝑖=1

,
1

𝜏𝜔 ∑ 𝑤𝑖𝑗
𝑛
𝑖=1

) (6) 

where 𝝎−𝑖  refers to the elements in 𝝎  except the 𝑖th  element, 𝐖 = (𝑤𝑖𝑗)  is queen spatial 

weight matrix. 𝜏𝜔  is the precision parameter of 𝜔𝑖 . The random effect of region 𝑖 (𝑣𝑖)  is 

spatially unstructured and follows an exchangeable normal distribution (i.e. a sequence of random 

variables that are independently and identically normal distributed) [24, 25]: 

𝜐𝑖|𝜏𝜐~𝒩 (0,
1

𝜏𝜐
) (7) 

where 𝜏𝜐 is the precision parameter of 𝑣𝑖.  A prior for temporal trend (𝜑𝑡) is a random walk 

of order one (RW1) [24]: 

𝜑𝑡+1 − 𝜑𝑡|𝜏𝜑~𝒩 (0,
1

𝜏𝜑
) (8) 

with 𝜏𝜑 being the precision parameter. We may use a random walk of order two (RW2) instead 

of a RW1. This RW2 priors is commonly used if the data has a pronounced linear trend. The 

temporal trend (𝜑𝑡) of a RW2 is [24, 37]: 

𝜑𝑡 − 2𝜑𝑡+1 + 𝜑𝑡+2|𝜏𝜑~𝒩 (0,
1

𝜏𝜑
) (9) 

Temporally unstructured effect 𝛾𝑡 is assumed to follows exchangeable normal distribution [24, 

25]: 

𝛾𝑡|𝜏𝛾~𝒩 (0,
1

𝜏𝛾
) (10) 

with 𝜏𝛾  being the precision parameter of 𝛾𝑡 . The interaction effect 𝛿𝑖𝑡  follows for different 

structures I-IV which describe the product of spatially and temporally structured and unstructured 

effects (see [24, 36] for detail). 

We specify a vague Gaussian prior distribution with zero mean and a large variance 𝜎𝛼
2 =

τ𝛼
−1 for 𝛼, i.e. 𝛼~𝒩(0, 106) and half Cauchy (HC) prior for hyperparameters. We proposed 25 

as scale parameter for the HC hyper-prior. It is possible that not all components in the model (5) 
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must be included in the model. For the purpose of evaluating our model using deviance information 

criterion (DIC). The main objective of this paper is to explore the spatiotemporal distribution of 

COVID-19 and make a relative risk prediction for two weeks ahead. Forecasting with INLA can 

be easily implemented by imputation missing value scenarios. We can enter ‘Not Available (NA)’ 

for the observations that need to be forecasted [38].   

For the visual representation of the geographical distribution of COVID-19 we present 

choropleth maps. 

 

3. APPLICATION: SPATIOTEMPORAL MODELING OF COVID-19 IN BANDUNG CITY, 

INDONESIA   

3.1 Descriptive statistics  

As of 22 June 2020, Indonesia had officially confirmed 56,385 cases of COVID-19, including 

2,876 deaths. Bandung is the main city of West Java province, which ranks second in terms of 

COVID-19 cases after Jakarta. In a similar time period, West Java confirmed 2,864 cases. Bandung 

confirmed 384 cases, representing 13.41 % of all cases in West Java and a prevalence rate of 12.75 

cases per 100,000 inhabitants (https://covid19.bandung.go.id/). Figure 2 shows the number of new 

cases and number of total COVID-19 cases, respectively. 

 

Figure 2. Number of new cases and number of total COVID-19 cases from 17 March to 22 June 
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Figure 2 shows that a pandemic curve of confirmed cases was no obvious temporal pattern. The 

number of newly reported instances changes over time. During the early phases of the pandemic, 

the situation was very modest, with only a few confirmed cases reported daily in Bandung. The 

greatest spike in new COVID-19 infections occurred on 2 April 2020, when 42 new cases were 

reported on a single day. This could be due to the fact that the number of tests varies and no 

preventive actions were provided in early pandemic. The total number of cases follows a 

significantly nonlinear quadratic pattern, with the added number of new cases being relatively low 

between 12 May and 22 June 2020. 

 

3.2 Bayesian spatiotemporal model  

Preparing to run the spatiotemporal model (5), we calculate the spatiotemporal Moran's I of the 

COVID-19 case rate. We discovered that the spatiotemporal Moran's I is approximately 0.71(p-

value 0.001). This implies that COVID-19 instances are clustered spatially and temporally in 

Bandung. As a result, the spatiotemporal model is the best candidate for evaluating and forecasting 

COVID-19 transmission.  

We analyze six different sub-models of model (5) that are based on the interaction of 

spatially and temporally structured and structured effects. By combining four alternative likelihood 

functions (Poisson, Negative Binomial, Zero Inflated Poisson, and Zero Negative Binomial) with 

two different priors for temporal trend, the six sub-models were developed into 48 variant sub-

models (RW1 and RW2). We use deviance information criterion (DIC), Watanabe Akaike 

information criterion (WAIC), marginal predictive likelihood (MPL), mean absolute error (MAE), 

root mean square error (RMSE), and person correlation (r) criteria for selected the best model. The 

best model should have the smallest DIC, WAIC, MAE, RMSE, and the smallest MPL and r [24]. 
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Table 2. Deviance information criterion (DIC), Watanabe Akaike information criterion (WAIC), 

marginal predictive likelihood (MPL), mean absolute error (MAE), root mean square error 

(RMSE), and person correlation (r) criteriaa 

 

Model Likelihood 
Temporal 

Structured 
DIC WAIC MPL MAE RMSE r 

M1 P RW1 894.306 904.922 -453.395 0.668 1.037 0.713 

  
RW2 893.865 904.671 -453.268 0.668 1.038 0.711 

 
NB RW1 890.079 893.046 -447.217 0.674 1.050 0.723 

  
RW2 889.663 893.361 -447.397 0.673 1.050 0.719 

M2 P RW1 894.710 905.438 -453.693 0.668 1.036 0.718 

  
RW2 894.607 905.324 -453.627 0.668 1.037 0.717 

 
NB RW1 891.070 893.357 -447.437 0.673 1.052 0.739 

  
RW2 890.885 893.169 -447.282 0.674 1.051 0.727 

M3 P RW1 871.689 874.265 -449.640 0.522 0.750 0.761 

  
RW2 871.713 874.988 -449.212 0.526 0.757 0.761 

 
NB RW1 876.774 880.205 -1998.686 0.552 0.807 0.747 

  
RW2 875.912 880.078 -8550.494 0.552 0.806 0.745 

M4 P RW1 888.314 896.232 -453.863 0.597 0.879 0.759 

  
RW2 901.229 906.236 -495.950 0.583 0.845 0.807 

 
NB RW1 894.831 896.205 -450.953 0.624 0.944 0.767 

  
RW2 905.380 904.839 -651.006 0.593 0.870 0.819 

M5 P RW1 885.592 897.924 -457.177 0.580 0.880 0.806 

  
RW2 877.689 886.150 -450.828 0.564 0.837 0.753 

 
NB RW1 891.332 895.722 -451.924 0.596 0.927 0.839 

  
RW2 881.955 887.460 -447.566 0.585 0.885 0.753 

M6 P RW1 885.481 897.814 -457.122 0.580 0.880 0.806 

  
RW2 903.376 915.842 -605.881 0.558 0.831 0.861 

 
NB RW1 891.451 895.840 -451.984 0.596 0.927 0.839 

  
RW2 909.597 912.145 -714.508 0.568 0.881 0.916 

aDue to the limited space, the DIC, WAIC, MPL, MAE, RMSE, and r values for the Zero inflated Poisson and Negative 

Binomial are available upon request. 
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P: Poisson 

NB: Negative Binomial 

RW: Random walk 

M1: 𝜂𝑖𝑡 = 𝛼 + 𝜔𝑖 + 𝜐𝑖  

M2: 𝜂𝑖𝑡 = 𝛼 + 𝜔𝑖 + 𝜐𝑖  

M3: 𝜂𝑖𝑡 = 𝛼 + 𝜔𝑖 + 𝜐𝑖 + 𝜙𝑡 + 𝛾𝑡 + 𝛿𝑖𝑡  (Type I) 

M4: 𝜂𝑖𝑡 = 𝛼 + 𝜔𝑖 + 𝜐𝑖 + 𝜙𝑡 + 𝛾𝑡 + 𝛿𝑖𝑡  (Type II) 

M5: 𝜂𝑖𝑡 = 𝛼 + 𝜔𝑖 + 𝜐𝑖 + 𝜙𝑡 + 𝛾𝑡 + 𝛿𝑖𝑡  (Type III) 

M6: 𝜂𝑖𝑡 = 𝛼 + 𝜔𝑖 + 𝜐𝑖 + 𝜙𝑡 + 𝛾𝑡 + 𝛿𝑖𝑡  (Type IV) 

 

Table 2 shows that all of the models M1–M6 variants have a nearly identical value for the model 

selection criteria. M3 with Poisson probability and RW1 temporal trend, on the other hand, was 

determined to fit the model selection criterion. It has a low DIC, WAIC, MAE, and RMSE but a 

high MPL and r. As a result, for the following analysis, we will use this model, which we will refer 

to as M3. The posterior means of the hyperparameters are presented in Table 3.  

 

Table 3. Posterior mean of the hyperparameter of spatially and temporally structured effects and 

their interaction  

 

Hyperparameters Mean q(0.025) q(0.975) Fraction variance (%) 

Spatial autoregressive coefficient (𝜌) 0.459 0.046 0.890 
 

Variance of spatially structured effect (𝜎𝜔
2) 0.135 0.033 0.494 4.573 

Variance of spatially unstructured effect (𝜎𝜐
2) 0.082 0.011 0.358 2.773 

Variance of temporally structured effect (𝜎𝜙
2) 1.277 0.075 7.738 43.198 

Variance of temporally unstructured effect (𝜎𝛾
2) 1.293 0.293 5.443 43.719 

Variance of interaction type I effect (𝜎𝛿
2) 0.170 0.063 0.406 5.738 
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The spatial autoregressive coefficient  (𝜌 ) of 0.46 suggests that spatial dependence between 

adjacent districts is moderate. A random effect's posterior mean of variance quantifies its 

contribution to the spatiotemporal variation in COVID-19 risk. As shown in Table 3, the posterior 

means of the random effects' variances range significantly, ranging from 0.082 for the spatially 

unstructured effect to 1.293 for the temporally unstructured effect's variation. Additionally, Table 

3 illustrates the fraction variance of the hyperparameters. The spatiotemporal variance in COVID-

19 risk in Bandung is best explained by temporally structured and unstructured effects with total 

fraction variance is around 86.92%. This shows that there are risk variables that vary over time 

and play a significant role in COVID-19 transmission, such as human mobility. 

 

Figure 3. Number of new cases and number of total COVID-19 cases from 17 March to 22 June 

2020 (Note: id on the map refers to id in Table 1) 
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Figure 3 shows the estimated relative risk for weeks 1 to 14 (17 March - 22 June 2020) and the 

forecasted relative risk for weeks 15 (17 March - 16 June 2020) to 16 (23 Jun -06 Jul 2020). The 

medium risk was recorded in Cicendo during the first and second weeks  (17 March – 30 March 

2020). It is possible that this is due to the fact that the Cicendo district is a district with high human 

movement. In addition, the airport, as well as the train station, are both located in this area.  

The COVID-19 showed a considerable increase in the third week (31 Mar – 06 Apr) as the 

first outbreak. All of the districts have been identified as high-risk regions. Week 4 (07 Apr – 13 

Apr) has seen a marked improvement in the situation. However, it was discovered that the number 

of new cases increased significantly from week 5 (14 Apr – 20 Apr) to week 6 (21 Apr – 27 Apr), 

which resulted in an increase in the COVID-19 risk. Because of various limitations in human 

mobility, the number of new cases was somewhat manageable throughout the seventh (28 Apr – 

04 May) to eleventh weeks (26 May – 01 Jun). The increase in new cases during week 12 (02 Jun 

– 08 Jun) results in a significant increase in risk, indicates the second outbreak. During weeks 13 

(09 Jun – 15 Jun) and 14 (16 Jun – 22 Jun), the relative risk was less than one in all districts, with 

the exception of Cicendo district. However, the forecasting period from week 15 (23 Jun – 29 Jun) 

to week 16 (30 Jun – 06 Jul) indicates that the relative risk of COVID-19 is likely to be higher. 

Additionally, as illustrated in Figure 3, the Cicendo district is consistently classified as a high-risk 

area. To determine whether or not the high-risk regions constituted a significant hotspot for 

COVID-19 risk. We next calculated the exceedance probability  Pr(𝜃𝑖𝑡 > 1|𝒚).  

 Figure 4 shows the exceedance probability of estimated and forecasted result of COVID-19 

relative risk. In some regions of Bandung, a spatiotemporal relative risk greater than one can be 

observed with posterior probability more than 0.8, indicating a relatively low level of related 

uncertainty. In general, the relative risk and associated uncertainty vary significantly by geography. 

The biggest relative risk is seen in Bandung's western and southeast districts, including Antapani, 

Astana Anyar, Bandung Wetan, Cicendo, and Gede Bage. 
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Figure 4. Exceedance probability Pr(𝜃𝑖𝑡 > 1|𝒚) 

The exceedance probability Pr(𝜃𝑖𝑡 > 1|𝒚) is depicted in Figure 4. Districts with Pr(𝜃𝑖𝑡 > 1|𝒚) 

more than 0.80 may be classified as high-risk zones or hotspots. Figure 4 demonstrates that during 

weeks 3, 5, 6, and 12, more than 90% of the districts are classified as high-risk or hotspot. It 

indicates that during those weeks the number of new cases were significantly increased. Cicendo 

district has a rather high exceedance probability for the forecast period week 15.  
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Figure 5. Prediction of the number of new cases 

Figure 5 illustrates the number of new cases and total cases from 17 March 2020 and 06 July 2020. 

During the forecast period of 29 June to 06 July 2020, we anticipate an extra 20 cases. In regard 

to the early warning system, we attempted to identify risk variables that should be controlled in 

order to prevent the spread of COVID-19. We consider human movement to be the primary risk 

factor. However, measuring and obtaining human mobility is fairly challenging. According to 

studies conducted by [39] social mobility is significantly related to population density and poverty. 

These two variables are used to account for human movement. 

 

Figure 6. The relationship between population density and poverty rate with the relative risk of 

COVID-19. 
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After obtaining COVID-19 forecasts for the next two weeks, we examine the association between 

population density and poverty rate and estimated of the COVID-19 risk. We done the analysis 

separately to avoid spatiotemporal confounding problem [25]. We discovered a positive correlation 

between population density and COVID-19 risk, but a negative correlation between poverty rate 

and COVID-19 risk. This finding corroborated multiple earlier studies [40]. Human mobility was 

previously measured by population density and poverty rate. Economic growth is frequently 

accompanied by an increase in social mobility [39]. In Bandung areas, densely populated places, 

human mobility is rather high, while it is quite low in impoverished ones.  As a result, it is 

possible to deduce that human movement is a crucial role in COVID-19 transmission [40]. 

 

4. DISCUSSION  

The mapping and forecasting of diseases are inextricably linked to risk assessment and the EWS 

warning service. Disease risk mapping has existed in public health and epidemiology for a long 

period of time [41] Bayesian spatiotemporal disease mapping has been effective in identifying 

areas at risk [42]. Numerous studies on the COVID-19 pandemic focused on confirmed cases 

rather than risk factors, oblivious to the fact that the population at risk varies over time and space. 

It is critical to identify clusters or hotspots of high-risk individuals using the adjusted population 

at risk. The ratio of observed to expected cases is referred to as the relative risk or excess risk. Not 

only can spatial and temporal analysis be used to visualize epidemiological data and aid in intuitive 

disease distribution, but it can also be used to identify spatial and temporal clusters, as well as 

areas of high and low risk [30]. Using new technologies, GIS analysis, and highly structured 

mathematical and statistical techniques, the occurrence of infectious diseases can be described and 

analyzed. Bayesian methods are advantageous for analysing models with complex and flexible 

structures that accurately represent the characteristics of a particular geographical environment or 

disease for small area [43]. 

This is the first study to document the spatiotemporal patterns of the COVID-19 pandemic 

in Bandung, Indonesia, an area critical for EWS. As a baseline, we used Spatiotemporal Moran's I 
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statistics on prevalence rates to assess the variation in disease risk spatial dependence over time. 

To gain a better understanding of the COVID-19 pandemic's spatiotemporal pattern, the Bayesian 

spatiotemporal model was used to smooth the relative risk of COVID-19 [36]. It is useful for 

identifying high-risk clusters and forecasting the COVID-19 pandemic relative risk over a one-

month period. The Poisson model was found to be superior to the Negative Binomial, Zero inflated 

Poisson, and Zero inflated Negative Binomial model using DIC, WAIC, MAE, RMSE and Pearson 

correlation (r). The optimal model included spatially structured and unstructured effects, 

temporally structured and unstructured effects, and interaction type I. We discovered that the order 

1 random walk outperformed the order 2 random walk. To visualize the spatiotemporal pattern of 

COVID-19 pandemic risk, choropleth maps. 

During the second outbreak, COVID-19, new cases were frequently reported in Bandung's 

southwest and northeast regions. Cases spread to Cicendo's neighboring district, with the queen 

neighboring district posing an especially high risk of COVID-19 pandemic from the first to ninth 

periods. The effect eventually spread to all of Bandung's districts. According to Figure 4, the 

number of new cases has decreased since the tenth period because the Bandung government 

imposed broad restrictions on people's mobility from May 5 to June 3, 2020, in order to prevent 

the importation of COVID-19 pandemic cases. Restriction on a large scale is not synonymous with 

lockdown, during which residents of Bandung are still permitted to travel. It merely restricts the 

number of visitors from outside Bandung. Local transmission, as a result, remains a viable option. 

Due to population mobility, the COVID-19 pandemic spread from Cicendo to other districts [44]. 

This possibility lends credence to the study's discovery of spatial dependency. Using a Bayesian 

spatiotemporal model, we discovered clear spatiotemporal transmission of the COVID-19 

pandemic. The disease spread from Bandung's west to southeast. COVID-19 is extremely likely to 

spread between geographically neighboring places, according to the results of the examination 

utilizing geographical neighbourhoods. This could be due to the fact that residents of nearby 

regions frequently interact. Additionally, the district of Gede Bage in the southeast region, which 

has a low number of confirmed cases, was designated as a high-risk region due to the district's 
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small population at risk and a higher than expected number of confirmed cases. When comparing 

risks across space and time, it is necessary to consider the population at risk, even more so when 

the population at risk varies significantly across space and time. Additionally, we discovered that 

human mobility, as defined by population density and poverty rate, is a crucial component in 

COVID-19 transmission during the early pandemic. 

Two additional risk enhancements are visually identified as high-risk clusters in Bandung's 

western and south-eastern regions on the choropleth map. Due to a physician shortage and a lack 

of hospital and health center beds, the Bandung government should prioritize clusters at high risk. 

This data can be used to develop a highly effective and efficient early warning system for COVID-

19 transmission control. Bandung's government should place a greater emphasis on high-risk 

clusters, allocate additional resources to high-risk areas, and implement health protocols such as 

mask use, social distancing, hand washing, and avoiding crowded areas with limit the human 

mobility. Human mobility can be restricted by enforcing local lockdowns in locations regarded as 

hotspots. 

 

5. CONCLUSION 

The COVID-19 pandemic is the century's most extraordinary health problem and the greatest threat 

to humanity since the Second World War. It is rapidly spreading throughout the world, as Wuhan, 

China reported an outbreak on 30 December 2019 [3]. On 1 March 2020, the WHO declared 

COVID-19 to be a pandemic. As of 5 June 2020, the coronavirus COVID-19 was present in 213 

countries and territories worldwide, as well as on two international transports [5]. 

This study demonstrates the COVID-19 pandemic in Bandung, Indonesia, on a small 

spatiotemporal scale. In small regions such as Bandung, the COVID-19 pandemic spread rapidly 

from district to district despite the government's policy of restricting people's mobility. Examining 

the spatiotemporal spread is critical to preventing the local transmission and second wave from 

increasing. This is believed to be the first study to examine the virus's spatiotemporal transmission 

using a combination of Moran's I and Bayesian spatiotemporal models. The forecasting outcome 
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can be used to develop a robust early warning system. 

Future research, such as an examination of the spatiotemporal distribution of this disease 

based on demography, hereditary disease, and patient age, will aid in its control and prevention. 

Through this work, it will be possible to ascertain the factors that influence death and recovery. 

The Bayesian spatiotemporal model can be used to account for covariates and to control 

heterogeneity [45, 46]. 
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