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Abstract. In this article we are given a mathematical model of smoking with health education effect. The solution

of the model is positive (if the initial population is positive) and bounded. The reproductive number R0 is calculated

from the model, and we show if R0 > 1 the endemic equilibrium point exists and is unique, and if R0 ≤ 1 the

endemic equilibrium point does not exist. Smoking free equilibrium point is stable when R0 < 1, and endemic

equilibrium point is stable when R0 > 1. Numerical simulation has been included to show stability and instability

of equilibrium points. Furthermore, we study the relative change in R0 if the value of the parameter changes, this

is called sensitivity analysis of parameters involving in the reproductive number.
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1. INTRODUCTION

Tobacco smoking is the major issue that cause death and disease (for example, lung cancer)

in many countries. We can mention studies in US and Australia. In US, smoking causes more
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than 400,000 deaths per year [1] and in Australia, 15 % of all deaths were as a result of tobacco

smoking [2]. Eventhough tobacco smoking is a killer disease, in some countries the prevalence

rate of smoking is increased [12].

Thus forming policies minimizing the proportion of people that start smoking or decrease

the duration of smoking is a big problem for public health. Usually people agree that health

education may be an attractive policy to overcome this difficulty because many studies showed

that better educated individuals have a better health and a lower risk of mortality [6].

V. Maralani in [9] studied the link between education and smoking and conclude that edu-

cational inequalities in smoking are better understood as a bundling of advantageous statuses

that develops in childhood. D. Walque in [15] collected data from smoking population, and

concluded that education does affect smoking decisions: educated individuals are less likely to

smoke, and among those who initiated smoking, they are more likely to have stopped.

Studies in [7] find that education decreases the probability of ever having smoked substan-

tially, but the evidence on quitting smoking is mixed. P. Koning and his colleges conducted

a research in Australian twins and conclude that a higher educational attainment increases the

probability of smoking cessation, rather than decreasing the probability of starting smoking [8].

All studies mentioned above showed education affect smoking and thus decreases the number

of smoker and also prevent people to join the smoker state. There are a number of studies on

mathematical model of smoking by taking different assumption. We direct refer the reader to

the papers [3, 4, 13, 14].

In this paper we extend the work of P. Xiao, Z. Zhang, and X. Sun in [17]. In their work

smoker group does not have relation directly to permanent quit group. We propose a model in

which smoker group directly related to the permanent quit group and we drop the assumption

that smoker with associated disease. Furthermore, sensitivity analysis of the reproduction num-

ber and stability of the equilibrium solution will be included. The latter is done by Routh Hurith

Criteria.

We organized the paper as follows. In section two we propose the mathematical model and

we show positivity and boundedness of the solution. We discuss about equilibrium point, free

equilibrium point, reproduction number, sensitivity analysis and endemic equilibrium point in
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section three, four, five, six and seven respectively. In section eight stability of free and endemic

equilibrium point are seen. In section nine we will see the numerical simulation by taking initial

values for the variables, and appropriate values for the parameters. Finally, conclusion and

declaration have been included.

2. METHODS

2.1. Formulation of the model.

Model assumption. To prepare our model we assume the following.

(1) Every state have the same death rate, represented by µ .

(2) New recruitment rate of the system to be same as the death rate.

(3) The new population recruited into the population is divided into two proportions: edu-

cated and uneducated, represented by PE and PN , respectively.

(4) Educated people have lower chance to be come smoker than uneducated people.

(5) Smoker (represented by S) can turn into temporary quitters (represented by QT ) by

getting treatment or self abstaining.

(6) Smoker group has a death rate ε as a result of smoking tobacco in addition to natural

death rate.

(7) Temporary quitters can relapse.

(8) Temporary quitters can turn into permanent quitters (represented by QP).

(9) Smoker can turn into permanent quitters by getting treatment or self abstaining.

Description of variables and parameters. In table (1), variables and parameters are described

to form mathematical model that shows the dynamics of smoking.
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TABLE 1. Variables and its descriptions

Variables/

No Parameters Description Value

The number people who do not smoke and do not get

1 PN health education, may become smoker in the future PN ≥ 0

The number people who get health education and

2 PE do not smoke, may become smoker in the future PE ≥ 0

3 S The number of people who smoke tobacco S≥ 0

The number of people who are currently abstaining

4 QT smoking, but may not succeed QT ≥ 0

The number of people who are permanently quitting

5 QP smoking, never smoke again QP ≥ 0

6 µ Natural death rate or new recruitment rate of the system 0 < µ < 1

The proportion ξ of new recruitment is uneducated

7 ξ and 1−ξ is educated 0 < ξ < 1

Reflects educated people have lower chance to become

8 δ smoker 0 < δ < 1

Infection rate from educated and uneducated state to

9 β smoker state 0≤ β ≤ 1

10 κ Infection rate from temporary quitters to smoker 0≤ κ ≤ 1

The rate at which smoker to temporary quitters and

11 α permanent quitters P to S 0≤ α ≤ 1

The proportion of ζ of abstaining smoking enters to

12 ζ temporary quitters and 1−ζ to permanent quitters 0≤ ζ ≤ 1

The number people transferred from temporary quitters

13 ν to permanent quitters 0≤ ν ≤ 1

14 ε Death rate as a result of smoking 0 < ε < 1
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The dynamic system. As we observe in figure(1),

(1) PN and PE are increases by µξ and µ(1−ξ ) respectively.

(2) PN decreases due to natural death(µPN and the influence of factors that cause a person

to move to smoker state (βPNS).

(3) PE decreases due to natural death(µPN and the influence of factors that cause a person

to move to smoker state (βδPES).

(4) S increases by the impact of βPNS, βδPES, and κQT .

(5) S decreases due to natural death (µS), death rate as a result of smoking εS, the in-

fluence of factors that cause a person to leave the population active smokers and

join the population of people who have stopped smoking both temporary(αζ S) and

permanently(α(1−ζ )S).

(6) QT increases due to the influence of factors that cause a person to leave the popu-

lation active smokers and join the population of people who have stopped smoking

temporary(αζ S).

(7) QT decreases due to κQT , natural death (µQT ) and stopping smoking permanently

(νQT ).

(8) QP increases by α(1−ξ )S and νQT .

(9) QP decreases by natural death rate (µQP).

FIGURE 1. Smoking Model
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dPN

dt
= µξ −µPN−βPNS(1)

dPE

dt
= µ(1−ξ )−µPE −βδPES(2)

dS
dt

= βPNS+βδPES+κQT −µS− εS−αS(3)

dQT

dt
= αζ S−κQT −µQT −νQT(4)

dQP

dt
= α(1−ζ )S+νQT −µQP(5)

Positivity and boundedness of the Solution.

Theorem 2.1. If the initial population sizes of the model are positive, then the population sizes

at any time are non negative. In other words, if PE(0)> 0,PN(0)> 0,S(0)> 0,QT (0)> 0 and

QP(0)> 0 then PE(t)> 0,PN(t)> 0,S(t)> 0,QT (t)> 0 and QP(t)> 0 for all t.

Proof. Equation (1) can be expressed as an in equality

dPN

PN
≥−(µ +βS)dt.

Integrated both sides from 0 to t the solution is obtained as

PN(t)≥ PN(0)e−
∫
(µ+βS)dt .

Since PN(0) > 0,PN(t) > 0. In the same manner from equation (2),(3),(4) and (5) we obtain

respectively

PE(t) ≥ PE(0)e−
∫
(µ+βδS)dt > 0,

S(t) ≥ S(0)e−
∫
(βPN+βδPE−µ−ε−α)dt > 0,

QT (t) ≥ QT (0)e−
∫
(κ+µ+ν)dt > 0, and

QP(t) ≥ QP(0)e−
∫
(µ)dt > 0.

�
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Theorem 2.2. All the solutions PE(t),PN(t),S(t),QT (t) and QP(t) of the system (1),(2),(3),(4)

and (5) are bounded.

Proof. We denote the total population size at time t by N(t.) Then N(t) = PE(t) + PN(t) +

S(t)+QT (t)+QP(t). We assume N(t) is constant, and PE(t),PN(t),S(t), QT (t) and QP(t) are

proportions of N(t) where PE(t) + PN(t) + S(t) +QT (t) +QP(t) = 1. Since the variable QP

does not appear in the first four equations of the dynamic system, we will only consider the

subsystem:

dPN

dt
= µξ −µPN−βPNS(6)

dPE

dt
= µ(1−ξ )−µPE −βδPES(7)

dS
dt

= βPNS+βδPES+κQT −µS− εS−αS(8)

dQT

dt
= αζ S−κQT −µQT −νQT(9)

In this subsystem

dPN

dt
+

dPE

dt
+

dS
dt

+
dQT

dt
= µ−µ(PN +PE +S+QT )−

(εS+αS(1−ζ )+νQT )

≤ µ−µ(PN +PE +S+QT )(10)

If we let N1(t) = PN(t)+PE(t)+S(t)+QT (t), then (10) becomes

dN1(t)
dt

≤ µ−µN1(t).

The solution of the initial value problem

φ
′
= µ−µφ

φ(0) = N1(0)

is φ(t) = (N1(0)−1)e−µt +1, and limt→∞ φ(t) = 1. Hence N1(t)≤ φ(t), it follows that

lim
t→∞

supN1(t)≤ 1.

Thus, the solution of the system (1),(2),(3),(4) and (5) is bounded. �
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Therefore, the region we consider here is

Ω = {(PN ,PE ,S,QT ) ∈ R4 : PN +PE +S+QT ≤ 1,PE > 0,PN > 0,S≥ 0,QT > 0}.

2.2. Equilibrium point. Taking the right hand side of equations (1)-(5) zero we get the fol-

lowing.

PN =
µξ

µ +βS
(11)

PE =
µ(1−ξ )

µ +βδS
(12)

S =
κQT

µ +α + ε−βPN−βδPE
(13)

QT =
αζ S

κ +µ +ν
(14)

QP =
α(1−ζ )S+νQT

µ
(15)

The point (PN ,PE ,S,QT ,QP) is called equilibrium point of the dynamic system (1)-(5) where

PN ,PE ,S,QT and QP as described in (11)-(15).

Free equilibrium point. It is obtained by taking S = 0 in the equilibrium point. So the point

(PN0,PE0, 0,0,0), where PN0 = ξ ,PE0 = 1− ξ is free equilibrium point of the dynamic system

(1)-(5).

Reproduction number. In this section we will calculate reproduction number using the next

generation method. We have applied the method as follows. Let X = (S,QT ,QP,PN ,PE). Then

dX
dt

= F(X)−V (X),

where terms that describe appearances of new infections belong in

F(X) =



βPNS+βδPES

0

0

0

0


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and terms that describe a transfer of existing infections belong in

V (X) =



(µ +α + ε)S−κQT

(ν +µ +κ)QT −αζ S

µQP−νQT −α(1−ζ )S

βPNS+µPN−µξ

βδPES+µPE −µ(1−ξ )


Let M0 = (0,0,0,PN0,PE0). Then the Jacobian matrix of F(X) and V (X) at M0 are respectively

DF(M0) =

 F3×3 O3×2

O2×3 O2×2

 and DV (M0) =

 V3×3 O3×2

J2×3 T2×2

 ,

where

F =


βPN0 +βδPE0 0 0

0 0 0

0 0 0

 , V =


µ +α + ε −κ 0

−αζ ν +µ +κ 0

−α(1−ζ ) −ν µ

 ,

J =

 βPN0 0 0

βδPE0 0 0

 and T =

 µ 0

0 µ

 .

Here

det(DV ) = µ[(µ +α + ε)(ν +µ +κ)−ακζ ].

Hence

DV−1 =
1

det(DV )


µ(ν +µ +κ) κµ 0

αµζ µ(µ +α + ε) 0

A B C

 ,

where
A = ανζ +α(1−ζ )(ν +µ +κ),

B = ν(µ +α + ε)−κα(1−ζ ) and

C = (µ +α + ε)(ν +µ +κ)−ακζ .

And

DFDV−1 =
1

det(DV )


Zµ(ν +µ +κ) Zαµζ 0

0 0 0

0 0 0

 ,
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where Z = βPN0 +βδPE0.

Here

R0 = ρ(DFDV−1) =
(βPN0 +βδPE0)(ν +µ +κ)

(µ +α + ε)(ν +µ +κ)−ακζ

Endemic equilibrium point. To determine the endemic equilibrium point of the dynamic system

(1)-(5) where at least one of the infected components is non-zero, we need to take the following

steps:

From (13) we have

(16) S(µ +α + ε−βPN−βδPE)−κQT = 0.

Substituting (14) in (16) we get

(17) S(µ +α + ε−βPN−βδPE −κ
αζ

κ +µ +ν
) = 0.

If S 6= 0, equation (17) becomes

(18) βPN +βδPE = µ +α + ε−κ
αζ

κ +µ +ν
.

Substituting (11) and (12) in (18) we have

β
µξ

µ +βS
+βδ

µ(1−ξ )

µ +βδS
= µ +α + ε−κ

αζ

κ +µ +ν
.

Let

G(S) =
ξ (µ +βδS)+δ (1−ξ )(µ +βS)

(µ +βS)(µ +δβS)
− 1

µβ

[
(µ +α + ε)(κ +µ +ν)−καζ

κ +µ +ν

]
= 0.

We now have the following lemma.

Lemma 2.3. (1) G(S) is decreasing for S > 0,

(2) limS→0+ G(S) =
[(µ +α + ε)(κ +µ +ν)−καζ ]

µβ (κ +µ +ν)
(R0−1) and

(3) G(1)< 0.
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Proof. (1) Differentiating G with respect to S, we have

G
′
(S) =

β

(µ +βS)2(µ +δβS)2


δ [(µ +βS)(µ +δβS)]−

[ξ (µ +βδS)+δ (1−ξ )(µ +βS)]×

[(µ +βδS)+δ (µ +βS)]


=

β [δ 2(ξ −1)(µ +βS)2−ξ (µ +βδS)2]

(µ +βS)2(µ +δβS)2

< 0 since 0≤ ξ ≤ 1

It follows that G is decreasing for S > 0.

(2) Now,

lim
S→0+

G(S) =
ξ +δ (1−ξ )

µ
− 1

µβ

[
(µ +α + ε)(κ +µ +ν)−καζ

κ +µ +ν

]
=

β (ξ +δ (1−ξ ))(κ +µ +ν)− [(µ +α + ε)(κ +µ +ν)−καζ ]

µβ (κ +µ +ν)

=
[(µ +α + ε)(κ +µ +ν)−καζ ]

µβ (κ +µ +ν)

[
β (ξ +δ (1−ξ ))(κ +µ +ν)

(µ +α + ε)(κ +µ +ν)−καζ
−

1]

=
[(µ +α + ε)(κ +µ +ν)−καζ ]

µβ (κ +µ +ν)
(R0−1)

(3) We note that

(µ +βS)(µ +δβS)> βS(µ +δβS)(19)

ξ (µ +βδS)+δ (1−ξ )(µ +βS)≤ µ +βδS(20)

For if ξ (µ + βδS) + δ (1− ξ )(µ + βS) > µ + βδS, then (ξ − 1)(µ + βδS) > (ξ −

1)δ (µ + βS). This gives µ + βδS < δ (µ + βS), which is impossible. Substituting

inequalities (19) and (20) in G(S), we have

G(S)<
1

βS
− 1

µβ

[
(µ +α + ε)(κ +µ +ν)−καζ

κ +µ +ν

]
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So,

G(1) <
1
β
− 1

µβ

[
(µ +α + ε)(κ +µ +ν)−καζ

κ +µ +ν

]
=
−1
β

[
α(µ +ν)+ακ(1−ξ )+ ε(µ +ν +κ)

µ(κ +µ +ν)

]
< 0

�

Lemma 2.4. If R0 > 1, G(S) has a unique root in (0,1). However, if R0 ≤ 1, G(S) has no a root

in (0,1).

Proof. If R0 > 1, then limS→0+ G(S)> 0. Since G is decreasing for S > 0, there is a unique root

in (0,1). However, if R0 ≤ 1, then limS→0+ G(S)< 0 and hence G has no a root in (0,1). �

In (2.4) we have seen the existence of endemic equilibrium point for R0 > 1. Thus the en-

demic equilibrium point will be

(P∗N ,P
∗
E ,S
∗,Q∗T ,Q

∗
P) = (PN ,PE ,QT ,QP),

where PN ,PE ,S,QT and QP are given as in (11),(12),(14)and (15), respectively; and S is the

unique zero of G(S). We immediately have the following theorem.

Theorem 2.5. If R0 > 1, the endemic equilibrium point exist and unique. If R0 ≤ 1, then the

endemic equilibrium point does not exist

Stability of Free Equilibrium Point. The Jacobian matrix of the given system is


−µ−βS 0 −βPN 0

0 −µ−βδS −βδPE 0

βS βδS βPN +βδPE −µ−α− ε κ

0 0 αζ −κ−µ−ν


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At the free equilibrium point the Jacobian matrix becomes
−µ 0 −βPN0 0

0 −µ −βδPE0 0

0 0 βPN0 +βδPE0−µ−α− ε κ

0 0 αζ −κ−µ−ν


The characteristic equation is

(γ +µ)2[γ2 +(N +M−L)γ +(D−MN)(R0−1)] = 0,

where

L = βPN0 +βδPE0, M = µ +α + ε, N = κ +µ +ν , D = ακζ .

Let P(γ) = γ2 +(N +M− L)γ +(D−MN)(R0− 1) = 0. If R0 > 1, all roots of γ have not

negative real part. Thus the free equilibrium point is unstable. If R0 < 1 and N +M > L, then

the two roots of γ have negative real part. In this case the free equilibrium point is stable.

Furthermore, if R0 < 1, then N +M > L; and when κ +2µ +ν +α ≤ β (ξ +δ −δξ ),R0 ≥ 1.

This discussion gives the following result.

Theorem 2.6. If R0 < 1, then the free equilibrium point is stable. If R0 > 1, then the free

equilibrium point is unstable.

Stability of Endemic Equilibrium Point. Evaluating the Jacobian matrix at the endemic equilib-

rium point we obtain
−µ−βS∗ 0 −βP∗N 0

0 −µ−βδS∗ −βδP∗E 0

βS∗ βδS∗ βP∗N +βδP∗E −µ−α− ε κ

0 0 αζ −κ−µ−ν


The characteristic equation of this Jacobian matrix is

P(γ) = γ
4 +Uγ

3 +V γ
2 +Wγ +X = 0,
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where

U = −[H + I + J+K]

V = HI + JK +HJ+HK + IJ+ IK +β 2P∗NS∗−καζ

W = −[HIJ+HIK + JKH + JKI−καζ H−καζ I +β 2δ 2S∗P∗E+

β 2S∗P∗NI +β 2S∗P∗NK]

X = HIJK +β 2δ 2S∗P∗EK +β 2S∗P∗NIK−καζ HI

H = −µ−βS∗

I = −µ−βδS∗

J = βP∗N +βδP∗E −µ−α− ε

K = −κ−µ−ν

All the roots of P(γ) have negative real part if

(21) U > 0,UV −W > 0,

∣∣∣∣∣∣∣∣∣
U W 0

1 V X

0 U W

∣∣∣∣∣∣∣∣∣> 0, and

∣∣∣∣∣∣∣∣∣∣∣∣

U W 0 0

1 V X 0

0 U W 0

0 1 V X

∣∣∣∣∣∣∣∣∣∣∣∣
> 0.

From this discussion we now have the following theorem.

Theorem 2.7. If R0 > 1 and (21) is satisfied, the endemic equilibrium point is stable.

3. RESULTS AND DISCUSSION

3.1. Sensitivity analysis. Sensitivity analysis permits to investigate how uncertainty in the in-

put parameters affects the model outputs. C.J Silva and D.F.M Torres in [11] and H.S Rodrigues

and his colleges in [10] did sensitivity of the basic reproduction number for a tuberculosis model

and dengue epidemiological model, respectively. B.Fekede and B.Mebrate discussed sensitivity

analysis in recent paper[16] on secondhand smoker. The sensitivity analysis of R0 with respect

to the parameter p is defined by
p

R0

[
∂R0

∂ p

]
[5]. We denote it by S R0

p . Thus,

S R0
p =

p
R0

[
∂R0

∂ p

]
.
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We now calculate the sensitivity analysis of R0 with respect to the parameters involved in R0 as

follows.

S R0
β

=
β

R0

(PN0 +δPE0)(ν +µ +κ)

(µ +α + ε)(ν +µ +κ)−ακζ
> 0(22)

S R0
ν =

ν

R0

(βPN0 +βδPE0)(−ακζ )

[(µ +α + ε)(ν +µ +κ)−ακζ ]2
< 0(23)

S R0
δ

=
δ

R0

βPE0(ν +µ +κ)

(µ +α + ε)(ν +µ +κ)−ακζ
> 0(24)

S R0
α =

α

R0

−(ν +µ +κ−κζ )(βPN0 +βδPE0)(ν +µ +κ)

(µ +α + ε)(ν +µ +κ)−ακζ
< 0(25)

S R0
κ =

κ

R0

(βPN0 +βδPE0)αζ (ν +µ)]

[(µ +α + ε)(ν +µ +κ)−ακζ ]2
> 0(26)

S R0
µ =

µ

R0

(βPN0 +βδPE0)[−ακζ − (ν +µ +κ)2]

[(µ +α + ε)(ν +µ +κ)−ακζ ]2
< 0(27)

S R0
ζ

=
ζ

R0

ακ(βPN0 +βδPE0)(ν +µ +κ)

[(µ +α + ε)(ν +µ +κ)−ακζ ]2
> 0(28)

S R0
ξ

=
ξ

R0

(β −δβ )(ν +µ +κ)

(µ +α + ε)(ν +µ +κ)−ακζ
> 0(29)

S R0
ε =

ε

R0

−(βPN0 +βδPE0)(ν +µ +κ)2

(µ +α + ε)(ν +µ +κ)−ακζ
< 0(30)

As we see in (22), (24), (26), (28) and (29), the partial derivative of R0 with respect to β ,δ ,κ,ζ

and ξ greater than zero. It follows that R0 is sensitive to those parameters. Thus if R0 increases

or decreases, theses parameters increases or decreases, respectively. This means R0 proportional

to these parameters. However, in (23), (25) and (27),the partial derivative of R0 with respect to

ν ,α,µ and ε less than zero. Hence, an increases or decreases in R0 yields decreases or increases

in the parameter involved in R0, respectively. The relationship between R0 and the parameters
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within it can be described graphically as showen in figure (2).

For the purpose of numerical simulation we provide the following initial values(IV) for

FIGURE 2. Parameters versus reproductive number

PN ,PE ,S,QT , and QP as follows.

IV1 IV2 IV3 IV4 IV5

PN 0.20 0.40 0.15 0.30 0.10

PE 0.30 0.20 0.15 0.10 0.05

S 0.25 0.10 0.40 0.20 0.30

QT 0.10 0.05 0.25 0.20 0.15

QP 0.15 0.25 0.05 0.20 0.40

We will take the parameters µ = 0.017,ξ = 0.3,δ = 0.0135,κ = 0.02,α = 0.035,ζ = 0.5,ε =

0.001 and ν = 0.02. The parameter β can be taken as shown bellow.

β R0

Case 1 0.02 < 1

Case 2 0.7 > 1

Since the free equilibrium does not depend on β , in both cases we have

(PN ,PE ,S,QT ,QP) = (0.3,0.7,0,0,0).

For numerical simulation we use Rung-kutta 4-5 methods and MatLab 2018 software. It will

be seen separately for free and endemic equilibrium point.
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3.2. Free Equilibrium Point. We will construct the graphs in each case as follows.

i)β = 0.3

FIGURE 3. R0 < 1

In the figure (3) it can be seen that (PN ,PE,S,QT ,QP) approaches to free equilibrium point

(0.3,0.7,0,0,0)

for the given initial values as t→ ∞. Hence, the free equilibrium point is stable.

ii)β = 0.7

FIGURE 4. R0 > 1
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In the figure (4) we see that (PN ,PE,S,QT ,QP) does not approaches to free equilibrium point

(0.3,0.7,0,0,0) for the given initial values as t → ∞. Hence, the free equilibrium point is un-

stable.

3.3. Endemic Equilibrium Point. We take β = 0.7. We recall that G(S) has a root between

0 and 1. Since G(S) is continuous on [0,1], by bisection method the root of G(S) can be approx-

imated as S = 0.1045. Thus, we can calculate PN ,PE ,QT and QP respectively 0.0566,0.6616,

0.0321 and 0.1453.

FIGURE 5. R0 > 1

In the figure (5) (PN ,PE,S,QT ,QP) approaches to the endemic equilibrium point

(0.0566,0.6616,0.1045,0.0321,0.1453)

for the given initial values as t→ ∞. Hence, the endemic equilibrium point is stable.

4. CONCLUSION

We have obtained the reproduction number, that is, the average number of people who catch

a smoking habit from a single addicted smoker, is given by

R0 =
(βPN0 +βδPE0)(ν +µ +κ)

(µ +α + ε)(ν +µ +κ)−ακζ
.
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If S = 0 and R0 < 1, then the population of smokers disappears over time. And if S = 0 and

R0 > 1, then the smoking population persists. An increase (or decrease) in β ,ξ ,δ ,κ and ζ

leads an increase(or decrease) the average number of secondary cases of infection in the com-

munity. But, an increase(or decrease) in the parameters ν ,µ,α and ε leads to minimizing(or

maximizing) the endemic nature of smoking in the community.

CONFLICT OF INTERESTS

The author(s) declare that there is no conflict of interests.

REFERENCES

[1] http://www.cdc.gov/tobacco/data statistics/fact sheets/health effects/tobacco related mortality.htm.

[2] http://www.abs.gov.au/ausstats/abs@.nsf/mf/4831.0.55.001.

[3] Z. Alkhudhari, S. Al-Sheikh, S. Al-Tuwairqi, Global Dynamics of a Mathematical Model on Smoking, ISRN

Appl. Math. 2014 (2014), 847075. https://doi.org/10.1155/2014/847075.

[4] M.A. Adhana, T.T. Mekonnen, A mathematical model analysis of smoking tobacco in the case of Haremaya

town; Ethiopia, Int. J. Res. Stud. Sci. Eng. Technol. 6 (2019), 14-24.

[5] N. Chitnis, J.M. Hyman, J.M. Cushing, Determining important parameters in the spread of malaria through

the sensitivity analysis of a mathematical model, Bull. Math. Biol. 70 (2008), 1272–1296. https://doi.org/10

.1007/s11538-008-9299-0.

[6] D. Cutler, A. Lleras-Muney, Education and health: Evaluating theories and evidence, Working Paper 12352,

National Bureau of Economic Research, Cambridge, MA, 2006. https://doi.org/10.3386/w12352.

[7] F. Grimard, D. Parent, Education and smoking: Were Vietnam war draft avoiders also more likely to avoid

smoking? J. Health Econ. 26 (2007), 896–926. https://doi.org/10.1016/j.jhealeco.2007.03.004.

[8] P. Koning, D. Webbink, N.G. Martin, The effect of education on smoking behavior: new evidence from

smoking durations of a sample of twins, Empir. Econ. 48 (2014), 1479–1497. https://doi.org/10.1007/s00181

-014-0842-6.

[9] V. Maralani, Understanding the links between education and smoking, Social Science Research. 48 (2014),

20–34. https://doi.org/10.1016/j.ssresearch.2014.05.007.

[10] H.S. Rodrigues, M.T.T. Monteiro, D.F.M. Torres, Sensitivity Analysis in a Dengue Epidemiological Model,

Conf. Papers Math. 2013 (2013), 721406. https://doi.org/10.1155/2013/721406.

[11] C.J. Silva, D.F.M. Torres, Optimal control for a tuberculosis model with reinfection and post-exposure inter-

ventions, Math. Biosci. 244 (2013), 154–164. https://doi.org/10.1016/j.mbs.2013.05.005.

http://www.cdc.gov/tobacco/data_statistics/fact_sheets/health_effects/tobacco_related_mortality.htm
http://www.abs.gov.au/ausstats/abs@.nsf/mf/4831.0.55.001
https://doi.org/10.1155/2014/847075
https://doi.org/10.1007/s11538-008-9299-0
https://doi.org/10.1007/s11538-008-9299-0
https://doi.org/10.3386/w12352
https://doi.org/10.1016/j.jhealeco.2007.03.004
https://doi.org/10.1007/s00181-014-0842-6
https://doi.org/10.1007/s00181-014-0842-6
https://doi.org/10.1016/j.ssresearch.2014.05.007
https://doi.org/10.1155/2013/721406
https://doi.org/10.1016/j.mbs.2013.05.005


20 HABTE, GIDAF, SIRAW ET AL.

[12] S. Tang, G. Bishwajit, T. Luba, et al. Prevalence of Smoking among Men in Ethiopia and Kenya: A Cross-

Sectional Study, Int. J. Environ. Res. Public Health. 15 (2018), 1232. https://doi.org/10.3390/ijerph15061232.

[13] R. Ullah, M. Khan, G. Zaman, et al. Dynamical features of a mathematical model on smoking, J. Appl.

Environ. Biol. Sci. 6 (2016), 92-96.

[14] V. Verma, M. Agarwal, Global dynamics of a mathematical model on smoking with media campaigns, Res.

Desk, 4 (2015), 500-512.

[15] D. de Walque, Does education affect smoking behaviors?: Evidence using the Vietnam draft as an instrument

for college education, J. Health Econ. 26 (2007), 877–895. https://doi.org/10.1016/j.jhealeco.2006.12.005.

[16] B. Fekede, B. Mebrate, Sensitivity and mathematical model analysis on secondhand smoking tobacco, J.

Egypt. Math. Soc. 28 (2020), 50. https://doi.org/10.1186/s42787-020-00108-1.

[17] P. Xiao, Z. Zhang, X. Sun, Smoking dynamics with health education effect, AIMS Math. 3 (2018), 584–599.

https://doi.org/10.3934/math.2018.4.584.

https://doi.org/10.3390/ijerph15061232
https://doi.org/10.1016/j.jhealeco.2006.12.005
https://doi.org/10.1186/s42787-020-00108-1
https://doi.org/10.3934/math.2018.4.584

	1. Introduction
	2. Methods
	2.1. Formulation of the model
	2.2. Equilibrium point

	3. Results and Discussion
	3.1. Sensitivity analysis
	3.2. Free Equilibrium Point
	3.3. Endemic Equilibrium Point

	4. Conclusion
	Conflict of Interests
	References

