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Abstract. In this study, we analyze the transmission dynamics of several variants of Covid-19 that have appeared

around the world. Our aim is to propose a discrete mathematical model that describes the dynamics of different

infectious compartments, namely, Susceptible (S), Exposed (E), Individuals infected with the Alpha variant (I1),

Individuals infected with the Beta variant (I2), Individuals infected with the Gamma variant (I3), Individuals in-

fected with the Delta variant (I4), Hospitalized (H), Quarantined (Q) and Recovered (R). We also focus on the

importance of people infected with the Alpha, Beta, Gamma and Delta variants, with the aim of finding optimal

strategies to minimize the number of people infected with the different variants of Covid-19. We used three con-

trols which represent: 1) awareness programs through media and civil society to urge uninfected people to stay

away from infected people, as well as to encourage individuals to be vaccinated, 2) encouraging people infected

with Covid-19 variants to self-isolate at home or join quarantine centers and encouraging severe cases go to hospi-

tals and in the last control we use medical and psychological treatment to increase the immunity of people infected

with different variants and reduce the number of people in hospitals and in isolation centers. We use the principle

of the Pontryagin’s maximum principle in discrete time to characterize these optimal controls. The resulting opti-

mality system is solved numerically using Matlab. Therefore, the results obtained confirm the performance of the

optimization strategy.
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1. INTRODUCTION

Throughout history, the world has witnessed many deadly diseases and epidemics, some of

which were epidemics confined to certain countries or geographic areas, and some of them were

global epidemics.These epidemics claimed tens if not hundreds of millions of lives and caused

demographic, social and economic changes around the world. The Black Plague was one of

the most famous and deadly of these epidemics in ancient and medieval times as well as the

Plague of Justinian and the Plague of Emmaus in the Levant region. In the modern era, we find

Cholera, Smallpox and the Spanish flu. The methods of confronting these epidemics differed

according to the different times and available possibilities. The effects of these epidemics on

the societies they invaded also varied. The world is currently facing the worst pandemic in

history. The Coronavirus or Covid-19 pandemic, also known as the Coronavirus pandemic, is

an ongoing global pandemic caused by severe acute respiratory syndrome Coronavirus (SARS-

CoV-2). The disease first broke out in the Chinese city of Wuhan in early December 2019. The

virus has now affected the world in a way or another with over 185 million cases of Covid-19

reported in over 188 countries and territories as of July 9, 2021, with over 4.01 million deaths

and over 1 million recoveries. See the figure (1). It represents the number of cases infected with

Covid-19, and the weekly number of deaths in the world according to WHO [22].

FIGURE 1. Covid-19 cases reported weekly by WHO Region, and global deaths,

as of 27 June 2021
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Several mathematical modeling studies have been conducted to understand the Coronavirus

with its variants and to describe its dynamics. For example, [4] studied the transmission of

(Covid-19) in the human population and used a compartmental model to describe the spread of

this infectious disease. [5] formulated a mathematical model to study the impact of a new, more

communicable disease. SARS-CoV-2 variant on the prevalence, hospitalizations and deaths

associated with the SARS-CoV-2 virus, [6] constructed a dynamic model based on detailed

data from the World Organization (WHO) mortality and the spread actual epidemic, [7] for-

mulated a mathematical model that addresses the transmission of two variants of SARS-CoV-2

to hospitalizations observed Covid-19, hospital bed occupancy and intensive care and deaths ;

SARS-CoV-2 PCR prevalence, [8].

Additionally, most of this previous research has focused on continuous-time modeling. In this

research, we will adopt a discrete-time modeling because statistical data is collected at discrete

times (day, week, month and year) as well as the treatment and vaccination of some patients is

done in discrete time. It is therefore more direct, more practical and more precise to describe

the phenomena using discrete-time modeling than continuous-time modeling and the use of

discrete-time models make it possible to avoid certain mathematical complexities such as the

choice of a space of functions and the regularity of the solutions. Therefore, equation differ-

ences appear to be a more natural way to describe epidemic patterns. Moreover, the numerical

solutions of differential equations use discretization, which encourages the direct use of the

difference equations. Numerical exploration of discrete-time models is quite simple and can

therefore be easily implemented by non-mathematicians. In addition to this work, we will study

the dynamics of a mathematical model of Covid-19 variants. SEI1I2I3I4QHR.

The population is divided into nine compartments: susceptible individuals (S), exposed indi-

viduals (E), individuals infected with the Alpha variant (I1), individuals infected with the Bêta

variant (I2), individuals infected with the Gamma variant (I3 ) and individuals infected with the

Delta variant (I4). The SARS-CoV-2 virus has a genome, which is a ribonucleic acid or RNA

molecule. When it enters an organism, the virus replicates to infect new cells and its genetic

makeup is reproduced. Sometimes there is an error in the replication of the virus resulting in

mutations. This is called a variant virus. Variants can give it new properties. This is the case of
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the variants currently circulating around the world. The World Health Organization (WHO) has

classified the variants into two categories: The worrying variants (VOC): they are characterized

by an increase in the transmissibility or detrimental evolution of the epidemiology of Covid-19,

an increase in virulence or modification of the clinical picture or a ”decrease in the effective-

ness of the measures health and social care tools or diagnostic tools, vaccines and treatments

available, currently the Alpha (English), Beta (South African), Gamma (Brazilian) and Delta

(Indian) variants: The Alpha variant, previously referred to as B.1.1.7, was first detected in the

UK in September 2020, according to the World Health Organization, and by December 2020

it had made its appearance in the US. It has spread to at least 114 countries, according to the

Global Virus Network. It is also responsible for around 95% of new corona cases in the UK.

Between May 23 and June 5, 2021, Alpha caused about 60% of all cases. The Beta variant

previously called B.1.351, was first discovered in South Africa in May 2020 and identified as

a variant of concern in December 2020. It has spread to at least 48 countries and 23 US states,

according to Global Virus Network. Additionally, it contains eight distinct mutations that can

affect the way the virus invades human cells. The Gamma variant is also known as P.1, appeared

in Brazil in November 2020, according to data from the World Health Organization. Scientists

first discovered the Gamma variant in Japan in early January 2021, when four travelers tested

positive for the virus after traveling to Brazil. The researchers then found evidence that the

Gamma variant was indeed prevalent in Brazil. According to the United Nations website, the

mutant has appeared in 74 countries around the world and was first discovered in the United

States in January 2021, and it has spread to at least 30 American states. The Delta variant previ-

ously called B.1.617.2 first appeared in India in October 2020 and was classified as a variant of

concern in May 2021, according to the World Health Organization. The Delta variant quickly

spread to over 100 countries and quickly became the dominant variant around the world. Ad-

ditionally, the Delta variant accounted for more than half of all cases in the United States. The

variants of interest: they are characterized by genetic markers that can affect the transmission of

the virus, its diagnosis, its treatment or even the immune response; evidence that these variants

cause an increase in the number of cases or clusters; a distribution which is limited to a single
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country. These are the variants: Epsilon (American), Zeta (another Brazilian variant), Eta (sev-

eral countries), Theta (Philippines), Lota (another American variant), Kappa (another Indian

variant) and Lambda (Peruvian). Throughout this research, we seek to find optimal strategies

to reduce the number of infected individuals, limit and prevent the movement of individuals

infected with the different variants of Covid-19. We use three optimal controls that represent

awarness programs through media and civil society to urge uninfected people to stay away from

infected and likely people as well as encouraging the susceptible individuals to be vaccinated,

government efforts to urge people infected with Covid-19 variants to self-isolate at home or

join quarantine centers and also encourage severe cases to be hospitalized and in the final con-

trol, we use medical treatment and psychological support. The objective of this control is to

increase the immunity of people infected with the different variants and to reduce the number

people in hospitals and in isolation centers. This article is organized as follows. In section 2,

we present our discrete mathematical model of Covid-19 variants which describes the dynamics

of propagation and transmission of Corona virus variants. In section 3, we present the optimal

control problem for the proposed model and we characterize these optimal controls using the

Pontryagin’s maximum principle in discrete time. Numerical simulations and cost-effectiveness

analysis are presented in section 4. Finally, we conclude the article in section 5.

2. A MATHEMATICAL MODEL AND BASIC PROPERTIES

2.1. A Mathematical Model. In this section, we present a discrete

Sk,Ek ,I1,k,I2,k,I3,k,I4,k,Hk,Qk,Rk. We propose a discrete model to describe the interaction

within a population where the disease Covid-19 variant exists. The population under study is di-

vided into eight compartments: Susceptible individuals exposed to have new Corona virus S(t),

Asymptomatic infected cases or cases with mild symptoms E(t),I1(t),I2(t),I3(t)and I4(t) multi-

ple variants ,I1(t): represents individuals infected with the Alpha variant (detected in UK), I2(t)

: represents individuals infected with the Béta variant (detected in South African ), I3(t): repre-

sents individuals infected with the Gamma variant (detected in Brazilian), I4(t): represents indi-

viduals infected with the Delta variant (detected in Indian), Hospitalized cases H(t),Quarantaine

cases Q(t), the recovered cases R(t). The total number of the population at time t is given by

N(t)= S(t)+E(t)+I1(t)+I2(t)+I 3(t)+I 4(t)+H(t)+Q(t)+R(t) : In this section, we present
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a discrete Sk, Ek, I1,k, I2,k, I3,k, I4,k, Hk, Qk, Rk. We propose a discrete model to describe the

interaction within a population where the disease Covid-19 variant exists. The population under

study is divided into eight compartments: Susceptible individuals exposed to have new Corona

virus S(t), Asymptomatic infected cases or cases with mild symptoms E(t), I1(t), I2(t), I3(t)

and I4(t) multiple variants, I1(t): represents individuals infected with the Alpha variant (de-

tected in UK), I2(t): represents individuals infected with the Béta variant (detected in South

African), I3(t): represents individuals infected with the Gamma variant (detected in Brazilian),

I4(t): represents individuals infected with the Delta variant (detected in Indian), Hospitalized

cases H(t),Quarantaine cases Q(t), the recovered cases R(t). The total number of the population

at time t is given by N(t) = S(t)+E(t)+ I1(t)+ I2(t)+ I3(t)+ I4(t)+H(t)+Q(t)+R(t):

The following diagram will show the direction of movement of individuals between compart-

ments in figure 2

Figure 2: Schematic diagram of the nine compartments in the model.

2.2. Model Equations. Adding the rates at which the stages of Covid-19 variants enter the

compartment and also by subtracting the rates at which people leave a compartment, we obtain

a difference equation for the rate at which patients change in each compartment during separate

times. Therefore, we present the model of Covid-19 variants with the following system of

difference equations:
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(1)



Sk+1= Λ+(1−µ)Sk−β 1
SkEk

N −β 2
SkI1,k

N −β 3
SkI2,k

N −β 4
SkI3,k

N −β 5
SkI4,k

N

Ek+1= (1−µ−θ −α1−α2−α3−α4)Ek+β 1
SkEk

N

I1,k+1= (1−µ−δ 1−λ 1−γ1)I1,k+α1Ek+β 2
SkI1,k

N

I2,k+1= (1−µ−δ 2−λ 2−γ2)I2,k+α2Ek+β 3
SkI2,k

N

I3,k+1= (1−µ−δ 3−λ 3−γ3)I3,k+α3Ek+β 4
SkI3,k

N

I4,k+1= (1−µ−δ 4−λ 4−γ4)I4,k+α4Ek+β 5
SkI4,k

N

Hk+1= (1−µ−δ 5−λ )Hk+γ1I1,k+γ2I2,k+γ3I3,k+γ4I4,k

Qk+1= (1−µ−δ 6−ϕ)Qk+λ 1I1,k+λ 2I2,k+λ 3I3,k+λ 4I4,k

Rk+1= (1−µ)Rk+λHk+θEk+ϕQk

where S0 ≥ 0,E0 ≥ 0, I1,0 ≥ 0, I1,0 ≥ 0, I2,0 ≥ 0, I3,0 ≥ 0, I4,0 ≥ 0,Q0 ≥ 0,H0 ≥ 0,and R0 ≥ 0,

are the given initial states.

Comartement “S”: represents people likely to be infected with the disease Covid-19 or one

of the variants of this epidemic.

This compartment is increased by the recruitment rate noted Λ. It is reduced by a µ natural

mortality rate. It is also reduced by effective contact with exposed individuals ”E” with a β1

rate. It is also reduced by effective contact by patients with the following variants:

– I1by a β2 rate (the rate of patients who become infected with the variant Alpha of Covid-

19).

– I2 by a β3 rate (the rate of patients who become infected with the variant Béta of Covid-19).

– I3 by a β4 rate (the rate of patients who become infected with the variant Gamma of Covid-

19)..

– I4 by a β5 rate (the rate of patients who become infected with the variant Delta of Covid-19).

Comartement “E”: represents individuals carrying the disease without symptoms; it is in-

creased by the rate β1 (rate of effective contact with susceptible individuals ”S”). It is reduced

by a natural mortality rateµ and by the rates α1, α2 ,α3 and α4 (which represent respectively

the rates of attack by the variants I1, I2,I3 and I4 and also by theta (the rate of individuals

recovered).
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Comartement “I1”: represents patients infected with the Alpha variant. It is reduced by

a natural mortality rate µ and by the mortality rate δ1 due to the Alpha variant, and it is also

decreased by the rate of hospitalization λ1 and also by the rate of quarantine γ1. It is increased

by the rate α1due to exposed individuals.

Comartement “I2”: represents patients infected with the Béta variant. It is reduced by a

natural mortality rate µ and by the mortality rate δ2 due to the Béta variant, and it is also

decreased by the hospitalization rate λ2 and also by the quarantine rate γ2. It is increased by the

rate α2 due to exposed individuals.

Comartement “I3”: represents patients infected with the Gamma variant. It is reduced by

a natural mortality rate mu and by the mortality rate δ3 due to the Gamma variant, and it is also

decreased by the rate d hospitalization λ3 and also by the quarantine rate γ3. It is increased by

the rate α3 due to exposed individuals.

Comartement “I4”: represents patients infected with the Delta variant. It is reduced by a

natural mortality rate µ and by the mortality rate δ4 due to the Delta variant, and it is also

decreased by the hospitalization rate λ4 and also by the quarantine rate γ4. It is increased by the

rate α4 due to exposed individuals.

Comartement “H”: represents hospitalized patients; It is decreased by a natural mortality

rate µ and by the mortality rate δ5 due to the variant, and it is also decreased by the rate of

recovered individuals λ . H is increased by the rates λ1,λ2,λ3 and λ4 due to those infected with

the variants.

Comartement “Q”: represents confined patients; It is decreased by a natural mortality rate

µ and by the mortality rate δ6 due to the variant, and it is also decreased by the rate of recovered

individuals ϕ .Q is increased by the levels γ1, γ2, γ3 and γ4 due to those infected with the variants.

Comartement “R”: represents the recovered patients. It is reduced by a natural mortal-

ity rate mu. It is increased by the θ , λ and ϕ rates due respectively to exposed individuals,

hospitalized patients and confined individuals.

3. THE OPTIMAL CONTROL PROBLEM

The control strategies we are adopting consist of an awareness program through media and

civil society to urge uninfected people to stay away from infected and likely infected people as
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well as encouraging people to be vaccinated, government efforts to urge people infected with

Covid-19 variants to self-isolate at their homes or join quarantine centers and also encouraging

severe cases to hospitalized and in th last control we use treatment with medication and psy-

chological support. Our main objective in adopting these strategies is to minimize the number

of infections caused by the different variants of Covid-19, during the time steps k = 0 to T-1

and also by minimizing the costs of implementing these strategies. In this model we include

the three controls uk,vk and wk which consecutively represent awareness programs through me-

dia and civil society, second control represents the encouragement of individuals infected with

Covid-19 variants to join hospitals and quarantine centers or to undergo self-isolation in their

their homes, the last control is devoted to treatment with drugs and psychological support, these

checks also seem to be effective against Covid-19 variants followed as measures at time k. Thus,

the controlled mathematical system is given by the following system of difference equations:

(2)



Sk+1 = Λ+(1−µ)Sk−(β 1
SkEk

N +β 2
SkI1,k

N +β 3
SkI2,k

N +β 4
SkI3,k

N +β 5
SkI4,k

N )(1−uk)

Ek+1= ((1−µ−θ −α1−α2−α3−α4)Ek+β 1
SkEk

N (1−uk)

I1,k+1= (1−µ−δ 1−γ1−λ 1)I1,k+α1Ek+β 2
SkI1,k

N (1−uk)−vkI1,k

I2,k+1= (1−µ−δ 2−γ2−λ 2)I2,k+α2Ek+β 3
SkI2,k

N (1−uk)−vkI2,k

I3,k+1= (1−µ−δ 3−γ3−λ 3)I3,k+α3Ek+β 4
SkI3,k

N (1−uk)−vkI3,k

I4,k+1= (1−µ−δ 4−γ4−λ 4)I4,k+α4Ek+β 5
SkI4,k

N (1−uk)−vkI4,k

Hk+1= (1−µ−δ 5−λ )Hk+γ1I1,k+γ2I2,k+γ3I3,k+γ4I4,k+ρ1vkI1,k

+ρ2vkI2,k+ρ3vkI3,k+ρ4vkI4,k−wkHk

Qk+1= (1−µ−δ 6−ϕ)Qk+λ 1I1,k+λ 2I2,k+λ 3I3,k+(1−ρ1)vkI1,k

+(1−ρ2)vkI2,k+(1−ρ3)vkI3,k+(1−ρ4)vkI4,k−wkQk

Rk+1= (1−µ)Rk+λHk+θEk+ϕQk+wkQk+wkHk

Where S0 ≥ 0,E0 ≥ 0, I1,0 ≥ 0, I2,0 ≥ 0, I3,0 ≥ 0, I4,0 ≥ 0,H0 ≥ 0,Q0 ≥ 0,and R0 ≥ 0, are the

given initial states.

There are tree controls uk = (u0,u1,...,uT−1), vk = (v0,v1,...,vT−1), wk = (w0,w1,...,wT−1),

The first control can be interpreted as the proportion to adopt in awareness programs through

media and civil society and the encouragement of individuals likely to be vaccinated. Thus,

we note that (1-uk) ((Sk E k) / N) is the proportion of contacts between susceptible individuals
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and exposed individuals at time step k and also as a control between susceptible individuals

and individuals infected with variants of covid-19 (1-uk) ((Sk I1,k) / N), (1-uk) ((Sk I2,k) / N),

(1-uk) ((Sk I3,k) / N) and (1-uk) ((Sk I4,k) / N). The second control represents the encouragement

of individuals infected with covid-19 variants to join hospitals and quarantine centers or to

undergo self-isolation in their their homes to reduce the rate of spread in time step k. The third

control entails the effort made by the government to provide effective treatment by drugs and

psychological support to improve the morale and finally increase the immunities of the patients

and recover the infected people as soon as possible. Thus, the occupancy rate of people infected

with covid-19 variants in hospitals and quarantine centers will be reduced at time step k. The

challenge that we face here is how to minimize the objective functional:

J(vk,vk,wk) = AT ET +BT I1,T +CT I2,T ++DT I3,T +FT I4,T +PT HT +GT QT

+
T−1

∑
k=0

(
AkEk +BkI1,k +CkI2,k +DkI3,k +FkI4,k +PkHk +GkQk

)
+

T−1

∑
k=0

(
Mk

2
u2

k +
Nk

2
v2

k +
L
2

w2
k)(3)

Where the parameters Ak > 0, Bk > 0,Ck > 0, Dk > 0, Fk > 0, Pk > 0,Gk >, Mk > 0, Nk > 0,

and Lk > 0 are the cost coefficients, they are selected to weigh the relative importance of Sk,

Ek, I1,k, I1,k, I2,k,I3,k, I4,k ,uk, vk and wk at time k. T is the final time.

In other words, we seek the optimal controls uk, vk and wk such that:

(4) J(u∗k ,v
∗
k ,w
∗
k) = min

(u,v,w)∈Uad

J(uk,vk,w,k),

Where Uad is the set of admissible controls defined by:where Uad is the set of admissible

control defined by

Uad = {(u,v,w) : u = (u0,u1, ...,uT−1),v = (v0,v1, ...,vT−1),w = (w0,w1, ...,wT−1) :

ai ≤ ui,k ≤ bi ; ci ≤ vi,k ≤ di;ei ≤ wi,k ≤ fi;k = 0,1,2...T −1}(5)

The sufficient condition for the existence of optimal controls u, v and w for problems (2) and

(3) come from the following theorem.
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Theorem 1. There exists the optimal controls (u∗k ,v
∗
k ,w
∗
k) such that:

(6) J(u∗k ,v
∗
,k,w

∗
k) = min

(u,v,w)∈Uad

J (u,v,w)

subject to the control system (2) with initial conditions.

Proof: Since the coefficients of the state equations are bounded and there is a finite

number of time steps, S = (S0,S1, ...,ST ),E = (E0,E1, ...,ET ), I1 = (I1,0, I1,1, ..., I1,T ), I2 =

(I2,0, I2,1, ..., I2,T ), I3 = (I3,0, I3,1, ..., I3,T ), I3 = (I4,0, I4,1, ..., I4,T ),

H = (H0,H1, ...,HT ),Q = (Q0,Q1, ...,QT ) and R = (R0,R1, ...,RT ) are uniformly bounded

for all (u,v,w) in the control set Uad; thus J (u,v,w) is bounded for all (u,v,w)Uad.

Since J (u,v,w) is bounded, infJ (u,v,w) is finite, and there exists a sequence

(u j;v j;w j) ∈Uad such that lim
j→+∞

J(u j;v j;w j) = infJ (u,v,w) and corresponding sequences

of states S j,E j, I j
1, I

j
2, I

j
3, I

j
4,H

j,Q j and R j. Since there is a finite number of uniformly bounded

sequences, there exist (u∗,v∗,w∗) ∈Uad and S∗,E∗, I∗1 , I
∗
2 , I
∗
3 , I
∗
4 ,Q

∗,H∗and R∗ ∈ IRT+1 such

that on a subsequence, (u j;v j;w j)→ (u∗,v∗,w∗) , S j → S∗,E j → E∗, I j
1 → I∗1 , I j

2 → I∗2 , I
j

3 →

I∗3 , I
j

4 → I∗4 ,H
j → H∗, Q j → Q∗and R j → R∗. Finally, due to the finite dimensional structure

of system (2) and the objective function J (u,v,w); (u∗,v∗,w∗) is an optimal control with corre-

sponding states S∗, E∗, I∗1 , I
∗
2 , I
∗
3 , I
∗
4 ,H

∗,Q∗ and R∗. Therefore inf
(u,v,w)∈Uad

J (u,v,w) is achieved.

4. CHARACTERISATION OF THE OPTIMAL CONTROL

We apply the discrete version of Pontryagin’s Maximum Principle [1], [3], [4], [5], [6],

[9],[14], [15], [19]. The key idea is introducing the adjoint function to attach the system of

difference equations to the objective functional resulting in the formation of a function called

the Hamiltonian. This principle converts the problem of finding the control to optimize the

objective functional subject to the state difference equation with initial condition to find the

control to optimize the Hamiltonian pointwise (with respect to the control).

We have the Hamiltonian Hk at time step k, defined by:

Hk = AkEk +BkI1,k +CkI2,k +DkI3,k +FkI4,k +PkHk +GkQk

+
Mk

2
u2

k +
Nk

2
v2

k +
Lk

2
w2

k +
9

∑
j=1

λ j,k+1 f j,k+1,(7)
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Where fi,k+1 is the right side of the system of difference equations (2) of the ith state variable

at time step k+1.

Theorem 2. Given the optimal controls (u∗k ,v
∗
k ,w
∗
k)∈U3

ad and the solutions S∗, E∗, I∗1, j, I
∗
2, j, I

∗
3, j,

I∗4, j,H
∗,Q∗ and R∗ of the corresponding state system (2), there exist adjoint functions λ1,k,

λ2,k, λ3,k, λ4,k,λ5,k,λ6,k ,λ7,k ,λ8,k, and ,λ9,k satisfying

λ1,k = λ1,k+1((1−µ)− (β1
Ek

N
+β2

I1,k

N
+β3

I2,k

N
+β4

I3,k

N
)+β5

I4,k

N
)(1−uk))

+λ2,k+1(β1
Ek

N
)(1−uk)+λ3,k+1(β2

I1,k

N
)(1−uk)+λ4,k+1(β3

I2,k

N
)(1−uk)

+λ5,k+1(β4
I3,k

N
)(1−uk)+λ6,k+1(β5

I4,k

N
)(1−uk)

λ2,k = Ak−λ1,k+1(β1
Sk

N
)(1−uk)+λ2,k+1((1−µ−α1−α2−α3−α4−θ)

+β1
Sk

N
(1−uk))+λ3,k+1α1 +λ4,k+1α2 +λ5,k+1α3 +λ6,k+1α4 +λ9,k+1θ

λ3,k = Bk +λ1,k+1(β2
Sk

N
)(1−uk)+λ3,k+1(1−µ−δ1−λ1− γ1− vk)

+λ7,1+k((γ1 +ρ1vk)+λ8,k+1(λ1 +(1−ρ1)v1,k)

λ4,k = Ck +λ1,k+1(β3
Sk

N
)(1−uk)+λ4,k+1(1−µ−δ2−λ2− γ2− vk)

+λ7,1+k((γ2 +ρ2vk)+λ8,k+1(λ2 +(1−ρ2)vk)

λ5,k = Dk−λ1,k+1(β4
Sk

N
)(1−uk)+λ5,k+1(1−µ−δ3−λ3− γ3− vk)

+λ7,1+k((γ3 +ρ3vk)+λ8,k+1(λ3 +(1−ρ3)vk)

λ6,k = Fk−λ1,k+1(β5
Sk

N
)(1−uk)+λ6,k+1(1−µ−δ4−λ4− γ4− vk)

+λ7,1+k((γ4 +ρ4vk)+λ8,k+1(λ4 +(1−ρ4)vk)

λ7,k = Pk +λ7,k+1(1−µ−δ5−λ −wk)−λ9,k+1(λ +wk)

λ8,k = Gk +λ8,k+1(1−µ−δ6−ϕ−wk)+λ9,k+1(ϕ +wk)

λ9,k = λ9,k+1(1−µ)(8)



DISCRETE TIME MODEL OF COVID-19 VARIANTS 13

With the transversality conditions at time T .

λ1,T = 0,λ2,T = AT ,λ3,T = BT ,λ4,T =CT ,λ5,T = DT ,λ6,T = FT ,λ7,T = PT ,

λ8,T = GT ,and λ9,T = 0.(9)

Furthermore, for k = 0,1,2...,T −1 the optimal controls u∗k ,v∗k and w∗k are given by:

u∗k = min

b;max


a,β1

SkEk
NMk

(
λ2,k+1−λ1,k+1

)
+β2

SkI1,k
NMk

(
λ3,k+1−λ1,k+1

)
+β3

SkI2,k
NMk

(
λ4,k+1−λ1,k+1

)
+β4

SkI3,k
NMk

(
λ5,k+1−λ1,k+1

)
+β5

SkI4,k
NMk

(
λ6,k+1−λ1,k+1

)



v∗k = min

d;max

c,
1

Nk


(
(
λ3,k+1−λ7,k+1ρ1−λ8,k+1(1−ρ1

)
)I1,k

+(
(
λ4,k+1−λ7,k+1ρ2−λ8,k+1(1−ρ2

)
)I2,k

+
(
λ5,k+1−λ7,k+1ρ3−λ8,k+1(1−ρ3

)
)I3,k

+
(
λ6,k+1−λ7,k+1ρ4−λ8,k+1(1−ρ4

)
)I4,k






w∗k = min

[
f ;max

(
e,

1
Lk

[(
λ7,k+1−λ9,k+1

)
Hk +

(
λ8,k+1−λ9,k+1

)
Qk
])]

(10)

Proof: The Hamiltonian at time step k is given by:

Hk = AkEk +BkI1,k +CkI2,k +DkI3,k +FkI4,k +PkHk +GkQk

+
Mk

2
u2

k +
Nk

2
v2

k +
Lk

2
W 2

k +λ1,k+1 f1,k+1 +λ2,k+1 f2,k+1 +λ3,k+1 f3,k+1

+λ4,k+1 f4,k+1 +λ5,k+1 f5,k+1 +λ6,k+1 f6,k+1 +λ7,k+1 f7,k+1 +λ8,k+1 f8,k+1

+λ9,k+1 f9,k+1

= AkEk +BkI1,k +CkI2,k +DkI3,k +FkI4,k +PkHk +GkQk

+
Mk

2
u2

k +
Nk

2
v2

k +
Lk

2
w2

k(11)

+λ1,k+1

 Λ+(1−µ)Sk− (β1
SkEk

N +β2
SkI1,k

N +β3
SkI2,k

N

+β4
SkI3,k

N )(1−uk)+β5
SkI4,k

N )(1−uk)


+λ2,k+1

[
(1−µ−α1−α2−α3−α4−θ)Ek +β1

SkEk

N
(1−uk)

]
+λ3,k+1

[
(1−µ−δ1− γ1−λ1)I1,k +α1Ek +β2

SkI1,k

N
(1−uk)− vkI1,k

]
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+λ4,k+1

[
(1−µ−δ2− γ2−λ2)I2,k +α2Ek +β3

SkI2,k

N
(1−uk)− vkI2,k

]
+λ5,k+1

[
(1−µ−δ3− γ3−λ3)I3,k +α3Ek +β4

SkI3,k

N
(1−uk)− vkI3,k

]
.

+λ6,k+1

[
(1−µ−δ4− γ4−λ4)I4,k +α4Ek +β5

SkI4,k

N
(1−uk)− vkI4,k

]

+λ7,k+1

 (1−µ−δ5−λ )Hk + γ1I1,k + γ2I2,k + γ3I3,k + γ4I4,k

+ρ1vkI1,k +ρ2vkI2,k +ρ3vkI3,k +ρ4vkI4,k−wkHk



+λ8,k+1


(1−µ−δ6−ϕ)Qk +λ1I1,k +λ2I2,k +λ3I3,k

+λ4I4,k +(1−ρ1)vkI1,k +(1−ρ2)vkI2,k +(1−ρ3)vkI3,k

+(1−ρ4)vkI4,k−wkQk


+λ9,k+1 [(1−µ)Rk +θEk +λHk +ϕQk +wkHk +wkQk]

For k = 0,1...T −1 the optimal controls uk, vk and wk can be solved from the optimality condi-

tion,

(12)
∂Hk

∂uk
= 0,

∂Hk

∂vk
= 0, and

∂Hk

∂wk
= 0

That are,

So, we have

uk = β1
1

NMk

(
λ2,k+1−λ1,k+1

)
SkEk +β2

1
NMm

(
λ3,k+1−λ1,k+1

)
SkI1,k

+β3
1

NMk

(
λ4,k+1−λ1,k+1

)
SkI2,k +β4

1
NMk

(
λ5,k+1−λ1,k+1

)
SkI3,k

+β5
1

NMk

(
λ6,k+1−λ1,k+1

)
SkI4,k

vk =
1

Nk

 (
(
λ3,k+1−λ7,k+1ρ1−λ8,k+1(1−ρ1

)
)I1,k

+(
(
λ4,k+1−λ7,k+1ρ2−λ8,k+1(1−ρ2

)
)I2,k

+
1

Nk

 (
(
λ5,k+1−λ7,k+1ρ3−λ8,k+1(1−ρ3

)
)I3,k+(

λ6,k+1−λ7,k+1ρ4−λ8,k+1(1−ρ4
)
)I4,k


wk =

1
Lk

[(
λ7,k+1−λ9,k+1

)
Hk +

(
λ8,k+1−λ9,k+1

)
Qk
]

(13)
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∂Hk
∂uk

= Muk +β1
SkEk

N

(
λ1,k+1−λ2,k+1

)
+β2

SkI1,k
N

(
λ1k+1−λ3,k+1

)
+

β3
SkI2,k

N

(
λ1,k+1−λ4,k+1

)
+β4

SkI3,k
N

(
λ1,k+1−λ5,k+1

)
+β5

SkI4,k
N

(
λ1,k+1−λ5,k+1

)
= 0

∂Hk
∂vk

= Nkvk + I1,k(λ7,k+1ρ1 +λ8,k+1(1−ρ1)−λ3,k+1)

+I2,k(λ7,k+1ρ2 +λ8,k+1(1−ρ2)−λ4,k+1)+ I3,k(λ7,k+1ρ3 +λ8,k+1(1−ρ3)−λ5,k+1)

+I4,k
(
λ7,k+1ρ4 +λ8,k+1(1−ρ4

)
−λ6,k+1) = 0

∂Hk
∂w = Lkwk +Hk

(
λ9,k+1−λ7,k+1

)
+Qk

(
λ9,k+1−λ8,k+1

)
= 0

By the bounds in Uad of the controls, it is easy to obtain u∗k , v∗k and w∗k in the form of (10).

With the transversality conditions at time T .

λ1,T = 0,λ2,T = AT ,λ3,T = BT ,λ4,T =CT ,λ5,T = DT ,λ6,T = FT ,λ7,T = PT ,

λ8,T = GT ,and λ9,T = 0.(14)

Furthermore, for k = 0,1,2...,T −1 the optimal controls u∗k ,v∗k and w∗k are given by:

uk = β1
1

NMk

(
λ2,k+1−λ1,k+1

)
SkEk +β2

1
NMm

(
λ3,k+1−λ1,k+1

)
SkI1,k

+β3
1

NMk

(
λ4,k+1−λ1,k+1

)
SkI2,k +β4

1
NMk

(
λ5,k+1−λ1,k+1

)
SkI3,k

+β5
1

NMk

(
λ6,k+1−λ1,k+1

)
SkI4,k

vk =
1

Nk

 (
(
λ3,k+1−λ7,k+1ρ1−λ8,k+1(1−ρ1

)
)I1,k

+(
(
λ4,k+1−λ7,k+1ρ2−λ8,k+1(1−ρ2

)
)I2,k

+
1

Nk

 (
(
λ5,k+1−λ7,k+1ρ3−λ8,k+1(1−ρ3

)
)I3,k+(

λ6,k+1−λ7,k+1ρ4−λ8,k+1(1−ρ4
)
)I4,k


wk =

1
Lk

[(
λ7,k+1−λ9,k+1

)
Hk +

(
λ8,k+1−λ9,k+1

)
Qk
]

(15)

∂Hk
∂uk

= Muk +β1
SkEk

N

(
λ1,k+1−λ2,k+1

)
+β2

SkI1,k
N

(
λ1k+1−λ3,k+1

)
+

β3
SkI2,k

N

(
λ1,k+1−λ4,k+1

)
+β4

SkI3,k
N

(
λ1,k+1−λ5,k+1

)
+β5

SkI4,k
N

(
λ1,k+1−λ5,k+1

)
= 0

∂Hk
∂vk

= Nkvk + I1,k(λ7,k+1ρ1 +λ8,k+1(1−ρ1)−λ3,k+1)

+I2,k(λ7,k+1ρ2 +λ8,k+1(1−ρ2)−λ4,k+1)+ I3,k(λ7,k+1ρ3 +λ8,k+1(1−ρ3)−λ5,k+1)

+I4,k
(
λ7,k+1ρ4 +λ8,k+1(1−ρ4

)
−λ6,k+1) = 0
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∂Hk
∂w = Lkwk +Hk

(
λ9,k+1−λ7,k+1

)
+Qk

(
λ9,k+1−λ8,k+1

)
= 0

By the bounds in Uad of the controls, it is easy to obtain u∗k , v∗k and w∗k in the form of (10).

5. SIMULATION

In this section, we present the results obtained by solving numerically the optimality system.

This system consists of the state system, adjoint system, initial and final time conditions and the

controls characterization.

In this formulation, there were initial conditions for the state variables and terminal conditions

for the adjoints. That is, the optimality system is a two-point boundary value problem with

separated boundary conditions at time steps k = 0 and k = T . We solve the optimality system

by an iterative method with forward solving of the state system followed by backward solving

of the adjoint system. We start with an initial guess for the controls at the first iteration and then

before the next iteration we update the controls by using the characterization. We continue until

convergence of successive iterates is achieved.

6. DISCUSSION

In this section, we study and analyze numerically the effects of the optimal control strategies

such as media awareness programs and education, limiting contact between infected and suscep-

tible individuals, encouraging infected individuals with variants of Covid-19 to go to quarantine

centers or at home and to take severe cases to hospitals,and providing medical treatment and

psychological support to increase the immune system of those infected. The numerical solution

of the model (2) is executed using Matlab with the following parameter values and the initial

values of the state variable in table (1).

Table (1): The parameters used for the model (1).

S0 E0 I1,0 I2,0 I3,0 I4,0 Q0 H0 R0 Λ α1 α2

5.103 3.103 1,5.103 1.103 2.103 2.103 1.103 1.103 1.103 5.102 0.45 0.5

α3 α4 β1 β2 β3 β4 β5 λ1 λ2 λ3 λ4 λ

0.04 0.025 0.75 0.45 0.35 0.45 0.85 0.035 0.035 0.045 0.65 0.015

γ1 γ2 γ3 γ4 δ1 δ2 δ3 δ4 δ5 δ6 ϕ θ

0.035 0.035 0.02 0.05 0.03 0.025 0.03 0.03 0.03 0.07 0.25 0.25
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The proposed control strategies in this work help to achieve several objectives:

6.0.1. Objective A: Protecting individuals against the spread of Covid-19 variants, we must

limit and reduce contact between exposed individuals and encourage individuals who are likely

to be vaccinated.

Due to the importance of awareness programs through media and other means for those at risk

not to come into contact to limit the spread of Covid-19 variants, we propose an optimal strat-

egy in wich we activate the optimal control variable u that represents the awareness programs

of exposed individuals so as not to propagate the Covid-19 variants and also to limit the prob-

able infected cases. Figure (3) represents the evolution of exposed individuals without optimal

control u and the evolution of exposed individuals with optimal control u, in which the effect

of awareness programs offered by media was positve in reducting the number of individuals

exposed to Covid-19 variants and prevent exposed individuals from coming into contact with

susceptible individuals.

Figure 3: represents the evolution of exposed individuals with and without optimal control.

From the pace, we observe that the number of exposed individuals decreases in a significant

way when using the control u on the other hand the number of the exposed individuals increase

in the case where there is no control; this explains the importance of control use.

6.0.2. Objective B : Isolation and hospitalization of individuals infected with variants of

covid-19.

When the number of individuals infected with the Covid-19 variants is high, it is mandatory
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to use certain strategies such as encouragement and awareness of individuals infected with the

covid-19 variants to isolate themselves at their homes or in quarantine centers as well as en-

courage severe cases to be hospitalized to limit the spread of Covid-19 variants and reduce the

number of infected individuals. For this, we propose an optimal strategy using the optimal con-

trol v, whose objective is to encourage infected individuals to isolate themselves at home or

in specialized quarantine centers and to sensitize severe cases to go hospitals once the optimal

control is executed, has been established when there is a significant decrease in Covid-19 vari-

ants - compared to a situation when there is no control yet as shown in figure 4(a); 4(b);4(c) and

4(d).

Figure 4 (a): Represents the evolution of individuals infected with the Alpha variant with and

without optimal control.

Figure 4 (b): Represents the evolution of individuals infected with the Bêta variant with and

without optimal control.
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Figure 4 (c): Represents the evolution of individuals infected with the Gamma variant with and

without optimal control.

Figure 4 (d): Represents the evolution of individuals infected with the Delta variant with and

without optimal control.

6.0.3. Objective C: Providing follow-up with psychological support and medical treatment to

increase the immunity of individuals infected with variants of covid-19.

To increase the immunity of individuals infected with the different variants of covid-19 and

reduce their occupancy rate in quarantine centers and hospitals, we use the control strategy

w which consists of treating the number of individuals infected with the different variants of

covid-19 found in hospitals and quarantine centers either with drug treatment or psychological

support. In figure 5 (a) and figure 5 (b), there is a very significant decrease in the number of

hospitalized infected individuals who are in isolation centers. So, this control has a positive
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effect on reducing of the number of infected individuals compared to the case where there is no

control.

Figure 5 (a): Represents the evolution of individuals infected with the different variants who

are isolated with and without optimal control.

Figure 5 (b): Represents the evolution of individuals infected with the different variants who

are hospitalized with and without optimal control.

6.0.4. The optimal strategy used has a positive effect on increasing the number of the recov-

ered individuals.

The optimal strategy used for the optimal control had a positive effect which makes it pos-

sible to increase the number of recovered individuals. Initially, the number of the recovered

individuals

without control is lower compared to the individuals provided with follow-up, psychological

treatment and medication. The proposed strategy has an effective impact on increasing the

immunity of the infected individuals and it also makes it possible to considerably increase the
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number of recovered individuals. Figure 6 (a) shows the evolution of the recovered individuals

with and without optimal control.

Figure 6: represents the evolution of the recovered individuals with and without optimal control.

Note:

Several optimal controls can be combined to achieve other objectives and implement other

strategies depending on the phenomenon and the particularity of each society.

The optimal strategy used has a positive effect on increasing the number of recovered indi-

viduals.

7. CONCLUSION

In this article, we have introduced a discrete modeling of individuals infected with different

covi-19 variants, in order to minimize the number of exposed individuals, individuals infected

with different covid-19 variants. We have also introduced three controls which represent re-

spectively awareness programs by the media and civil society to limit contact with susceptible

individuals and individuals infected with the variants of covid-19, the encouragement of individ-

uals infected with the variants of covid -19 to do isolation in quarantines and hospital hospitals,

treatment with drugs and follow-up psychological support We applied the results of the control

theory and we succeeded in obtaining the characterizations of the optimal controls. Numerical

simulation of the results obtained showed the effectiveness of the proposed control strategies.
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