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Abstract: In this paper, we describe a theoretical discussion about confidence intervals for longitudinal data based 

on local linear estimator. The confidence interval represents the range of possible values in the estimating process. 

The confidence intervals for the parameter in nonparametric regression can be used to determine the predictor 

variables that have a significant effect on the response variable. In this research, we theoretically discuss estimation 

of the confidence interval of the parameter on multipredictor biresponse nonparametric regression model for 

longitudinal data based on local linear estimator which is applied to data of the case increase and case fatality rates 

COVID-19 in Indonesia. The estimation result can be used to determine the predictor variable, e.g. temperature 

which has a significant effect on the case increase and case fatality rates COVID-19 in Indonesia so that it can be 

advised to the ministry of health to control the case increase and case fatality rates COVID-19 in Indonesia.     
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1. INTRODUCTION 

Regression analysis is a method that can be used to explain the relationship pattern between 

response variables and predictor variables. If the pattern does not follow a certain pattern, such 

as linear, quadratic, then modeling using nonparametric regression approach is appropriate to 

solve it [1]. Several researchers who have studied some estimators in nonparametric regression 

analysis are [2–11] used splines estimators; [12,13] used both smoothing spline and kernel 

estimators; [14–18] used local polynomial estimators; [19–25] used local linear estimators, and 

[26] used local linear estimator and stated that it is better than kernel estimator because it has 

mean square prediction less than that kernel estimator. 

In real life, there are usually many cases involving regression models with two response 

variables that are correlated with each other and influenced by more than one predictor variable, 

so that the problem can be solved by using multipredictor biresponse nonparametric regression. 

Several researchers who have studied biresponse nonparametric regression, for examples, [27,28] 

studied splines estimators for biresponse nonparametric regression applied to hormone data using 

spline estimator; [29,30] studied biresponse nonparametric regression using local linear estimator; 

[31] studied multipredictor biresponse nonparametric regression using local linear estimator. 

However, these researchers are only limited to study point estimation. 

One of the most important parts of statistical inference is the confidence interval. The 

confidence interval represents the range of possible values in which, with some certainty, we can 

find the statistical size of the population [32]. Confidence intervals for parameters in 

nonparametric regression can be used to determine the predictor variables that have a significant 

effect on the response variable. The conclusion is decided by looking at whether the parameter 

confidence interval contains a zero value. If the confidence interval contains a value of zero, then 

the predictor variable has no significant effect on the response variable. There are several 

researchers who have discussed confidence intervals. They are, for examples, [33] used spline 

estimator; [34] used local polynomial estimator for estimating confidence intervals. 

Although much research has been studied on confidence intervals however the research was 
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applied to cross-section data. Therefore, the aim of this research is to create a confidence interval 

of parameter for nonparametric regression model with two response variables and more than one 

predictor variable which is applied to longitudinal data, namely data of case increase and case 

fatality rates COVID-19 in Indonesia. Hence, in this research, we discuss theoretically how to 

estimate the confidence interval of the parameter on nonparametric regression model by using a 

local linear estimator. The linear local estimator has the advantage of estimating the function at 

each point so that the model we get is closer to the actual data pattern then can be used to 

construct a confidence interval of case increase and case fatality rates COVID-19 in Indonesia. 

   

2. PRELIMINARIES 

Multi-predictor biresponse nonparametric regression model on longitudinal data is a 

nonparametric regression model that describes the relationship pattern of two correlated response 

variables and more than one predictor variable with a dataset collected from several subjects in a 

certain period. Suppose we have a paired longitudinal data 
(1) (2)

1 2( , , , , , ),i k i k ipk ik ikx x x y y  where

1,2,..., ;  1,2,..., ;ii n k m= =  and p is the number of predictor variables. The nonparametric 

regression model can be expressed as follows [28]: 

1 2

1

(1)         ( ) ( ) ( )

( )

ik j i k j i k j ipk ik

p

j ijk ik

j

y f x f x f x

f x




=

= + + + +

= +
 

where ( )(1) 2,
T

y y y= , ( )(1). (2).( ) ( ), ( )
T

j ijk j ijk j ijkf x f x f x= , and ( )(1) (2), .
T

  =    is random error which 

assumed to follow a normal distribution with mean 0  and variance Σ . Matrix Σ  can be expressed as 

2 1 −=Σ W , W  is a weighted matrix obtained from the inverse variance-covariance matrix of the 

first response variable error and second response variable error.  

Regression function ( ) ( ); 1,2rf x r =  in equation (1) would be estimated using local linear estimator 

and it can be written as follows:   
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(2) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )

1 01 1 01 2 02 2 02 0 0

( )

( ) 0 0

r r r

p p p p

r

r x x x x x x x x xf x x    + − + − + + −=  

For two response variables, equation (2) can be written as follows: 

(3) 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

(1) (1) (1)

1 01 1 01 2 02 2 02 0 0

(2) (2) (2)

1 01 1 01 2 02 2 02 0 0

(1)

(1) 0 0

(2)

(2) 0 0

p p p p

p p p p

x x x x x x x x x

x x x x x x x x x

f x x

f x x

  

  





+ − + − + + −

+ − + − + + −

= 


= 

 

Hence, equation (3) can be expressed as follows: 

(4) 
*

0 0( ) ( )f x x= X  

where  ( ) ( )(1) (2)

T

f f x f x =    ( ) ( ) ( )( )
*(1)

* *( )

1 01 2 02 0*(2)

0
;  1    

0

r

p p

x
x x x x x x x

x

 
= = − − − 
 

X  

(1) (2) 
T

   =   , ( ) ( ) ( )( ) ( ) ( ) ( )

0 0 1 01 0      
T

r r r r

p px x x    =
 

 

Furthermore, the estimated parameter of multi-predictor biresponse nonparametric regression 

model in equation (4) is obtained using the weighted least square method, and therefore we have 

the estimated parameter as follows [30]:  

(5) 
1

0 0 0 0 0 0
ˆ( ) [ ( ) ( ) ( )] ( ) ( )T Tx x x x x x y −= h hX WK X X WK   

 

3. MAIN RESULTS 

The first step to construct the confidence interval of the parameter on multi-predictor biresponse 

nonparametric regression model is by determining the mean and variance of y . The obtained 

result would be used to determine the mean and variance of 0
ˆ( )x . By assuming 

( )2 1~ N , ,  −0 W  and since y  is a linear combination of ,  then y  is also to follow a 

normal distribution. Hence, we have:  

(6) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )0 0 0 0 0 0( )E y E x x x x E x x    = + = + =X X X  

(7) ( ) ( ) ( )( ) ( ) 2 1

0 0var var vary x x    −= + = + =X 0 W  

Based on (6) and (7), we get y  which follows a normal distribution with mean ( ) ( )0 0x xX  

and variance 2 1 −W . The mean and variance values of 0
ˆ( )x  are as follows:  
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( ) ( )0 0
ˆ(8)        ( )E x x =  

( ) ( )2

0 0
ˆ(9)        var ( )x v x =   

where ( ) ( ) ( )
1 1

T T T

0 0 0 0 0 0 0 0 0 0 0( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )h h h hv x x x x x x x x x x x
− −

= X K WX X K WK X X K WX
  

 

Next, from equation (8) and (9), we get: 

(10) ( ) ( )( )2

0 0 0
ˆ( ) ~ ,x N x v x    

Then, we will construct the confidence interval of 0( ) ,  1,2, ,2( 1)gx g p = +  using pivotal 

quantity. The pivotal quantity of the parameter on multi-predictor biresponse nonparametric 

regression model is U(x) as follows:   

(11) 
( )

( )

0 0

0

ˆ ˆ( ) ( )
( )

ˆvar ( )

g
g

gg

x E x
U x

x

 



−
=  

Next, by substituting equation (8) and (9) into equation (11), we get: 

( )

( )

( )

0 0 0 0

21
T T

0
0 0 0 0 0 02

1
T

0 0 0 0

ˆ ˆ( ) ( ) ( ) ( )
(12)         ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

g g g g

ggh h h

h
gg

x x x x
U x

v xx x x x x x

x x x x

   





−

−

− −
= =

 
 
  
 

X K WX X K WK

X X K WX

    

Here, U(x) represents the pivotal quantity for the parameter of regression model 0( )x , however 

in the case application it is often that 2  is unknown, so we estimate it using mean square error 

(MSE). Therefore, we get pivotal quantity as follows:  

(13) 
( )

0 0

0

ˆ( ) ( )
( )

 MSE 

g g

gg

x x
U x

v x

 −
=  

where ( )0 gg
v x  is the ggth diagonal element of the matrix ( )0v x , and the value of MSE is given 

by: 

(14) 
( ) ( ) ( ) ( )  

T T
Tˆ ˆ

MSE
2R-(2( 1)) 2R-(2( 1)) 2R-(2( 1))

y y y y y y y y y y

p p p

− − − − −
= = =

+ + +

A A I A
  

Based on equation (14), the pivotal quantity in the equation (13) can be written as follows:  
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(15) 
 

( )

( )

 

0 0

00 0

T T

0

ˆ( ) ( )

ˆ( ) ( )
( )

2R-(2( 1)) 2R-(2( 1))

g g

ggg g

gg

x x

v xx x
U x

y y y y
v x

p p

 

 

−

−
= =

− −

+ +

I A I A
  

The next step is determining the distribution of pivotal quantity. If the numerator and 

denominator are divided by the root of the population variance 2  then we will obtain the 

pivotal quantity which follows a t-student distribution with degree of freedom 2R-(2( 1))p +  and 

therefore it can be written as follows:   

(16) ( )( ) ~
a

B
U x t

A

a

=   

where B and A are as follows: 

( )

0 0

2

0

ˆ( ) ( )g g

gg

x x
B

v x

 



−
= ,

 T

2

y y
A



−
=

I A
 

Furthermore, to prove equation (16), we must prove Theorem 1, Theorem 2., and Theorem 3 as 

follows: 

Theorem 1. If ( ) ( )( )2

0 0 0
ˆ( ) ~ ,g g gg

x N x v x    then ~ (0,1)B N  

Proof. Noted that 
( )

0 0

2

0

ˆ( ) ( )
,

g g

gg

x x
B

v x

 



−
= since B is a linear combination of 0

ˆ( )gx  then B follows 

a normal distribution ( )( )~ ( ),var( )B N E B B . 

( )

( ) ( )( )
( )

( )

( )

0 0 0 00 0

2 2 2

0 0 0

ˆˆ ( ) ( ) ( ) ( )( ) ( )
(17)       ( ) 0

g g g gg g

gg gg gg

E x E x x xx x
E B E

v x v x v x

    

  

  − −− = = = =
  
 

  

( ) ( )
( )

( )

( )

2
2

00 0

0 0 22 2
00 0

ˆ( ) ( ) 1 ˆ(18)       ( ) ( ) ( ) 1
g g gg

g g

gggg gg

v xx x
Var B Var Var x x

v xv x v x

 
 

 

   
−   = = − = =

      
   

  

Based on equation (17) and (18), we get: ~ (0,1)B N  
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Theorem 2. If ( ) ( )( )2 1

0 0~ ,y N x x  −
X W  then 

T

2

y y



B
 is 

( ) ( )
T

2

2

1
,
2

a  



 
 
 

X B X
 if and only if B is 

idempotent of rank a .   

Proof. Noted that 
 T T

2 2

y y y y
A

 

−
= =

I A B
 and ( )

1
T T

h h

−

=A X X K WX X K W  . Hence, we get  

( )
1

T T ,h h

−

= −B I X X K WX X K W  Furthermore, it will be proved that B is idempotent matrix as 

follows: 

( )( ) ( )( )
( )

1 1
T T T T

1
T T

(19)       .h h h h

h h

− −

−

= − −

= −

=

BB I X X K WX X K W I X X K WX X K W

I X X K WX X K W

B    

Equation (19) shows that B  is idempotent. The next step is to calculate the ( )rank .B  

( )( )
( ) ( )( )
( ) ( )

1
T T

1
T T

2R 2( 1)

(20)     rank

2R-(2( 1))

h h

h h

p

a

trace trace

trace trace

p

−

−

+

= −

= −

= −

= +

I X X K WX X K W

I X K WX X K WX

I I

 

Then, we calculate the value of   as follows:  

( ) ( )( )( )
T 1

T T

2

1
(21)      0

2
h h  



−

= − =X I X X K WX X K W X  

Based on equation (19), (20) and (21) we then have 
 T

2

(2R-(2( 1)))2
~ p

y y
A 


+

−
=

I A
    

Theorem 3. If ( ) ( )( )2 1

0 0~ ,y N x x  −
X W  then yD  and Ty yB  are independent if and only if 

.=DB 0  

Proof. Noted that ( )
1

T Tˆ
h hy y

−

= =D X X X K WX X K W  then ( )
1

T T

h h

−

=D X X K WX X K W  and 

( )
1

T T

h h

−

= −B I X X K WX X K W  . It will show that DB is as follows: 

( )( ) ( )( )1 1
T T T T(22)       h h h h

− −

= − =DB X K WX X K W I X X K WX X K W 0  
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It means that equation (17) is proven. So, equation (17) can be written as follows:  

(23) 
( )

 
( )

0 0

2

0

2R-(2( 1))T

2

ˆ( ) ( )

( ) ~

2R-(2( 1))

g g

gg

p

x x

v x
U x t

y y

p

 





+

−

=
−

+

I A
 

Therefore, the pivotal quantity in (23) can be written as follows: 

(24) 
 

( )

( )
0 0

2R-(2( 1))T

0

ˆ( ) ( )
( ) ~

2R-(2( 1))

g g

p

gg

x x
U x t

y y
v x

p

 
+

−
=

−

+

I A
  

The next step after obtaining the pivotal quantity is to construct the confidence interval for 

parameters of multi-predictor biresponse nonparametric regression model based on local linear 

estimator for longitudinal data. The confidence interval can be obtained by solving the 

probability as follows. 

(25) ( )( ) 1ijk ijk ijkP a U x b   = −  1,2,..., ; 1,2,..., ; 1,2,..., ii n j p k m= = =  

where ijka  and ijkb  are constants, ijk ijka b  and   is a margin of error. If equation (24) is 

substituted into equation (25), then we get 

(26) 
 

( )

0 0

T

0

ˆ( ) ( )
1

2R-(2( 1))

g g

ijk ijk

gg

x x
P a b

y y
v x

p

 


 
 

− 
  = − 

− 
 + 

I A
  

Equation (26) can be simplified into the form as follows: 

(27) ( )0 0 0
ˆ ˆ( ) ( ) ( ) 1g ijk g ijkP x b L x x a L   −   − = −  

where 
 

( )
T

0
2R-(2( 1)) gg

y y
L v x

p

−
=

+

I A
 

Furthermore, ijk ijka b= −  and ijkb  is obtained from the t-student distribution for 
2


 and degree 

of freedom of 2R-(2( 1))p + . Hence, the confidence interval for the parameter of multi-predictor 
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biresponse nonparametric regression model based on local linear estimator for longitudinal data 

is as follows: 

(28) ( ) ( )0 0 0,2R-(2( 1)) ,2R-(2( 1))
2 2

ˆ ˆ( ) ( ) ( ) 1g g gp p
P x t L x x t L

 
   

+ +

 
−   + = − 

 
 

The confidence interval for parameter of nonparametric regression model in equation (28) can be 

used to determine the predictor variables that have a significant effect on the response variable 

which is applied to data of the case increase and case fatality rates COVID-19 in Indonesia. 

 

4. CONCLUSIONS 

Theoretically, based on equation (28) we can obtain the confidence interval of case increase and 

case fatality rates COVID-19 in Indonesia and then we can determine the predictor variables that 

have a significant effect on the case increase and case fatality rates COVID-19 in Indonesia. The 

estimation result can be advised to the ministry of health to control the case increase and case 

fatality rates COVID-19 in Indonesia. 
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