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Abstract: In this paper, the influence of predation fear on the dynamics of the three species food chain system is 

formulated mathematically and investigated. It is assumed that the food is transferred from the lower level to the upper 

level according to the Sokol-Howell type of functional response due to the anti-predator property of each prey in the 

system. The boundedness and persistence conditions are established for the proposed food chain system. The local 

and global stability analysis is investigated. The occurrence conditions of local bifurcation including the Hopf 

bifurcation near the equilibrium points are obtained. In the end, numerical simulation is performed to validate the 

theoretical results and present the dynamical behavior of the system. Different mathematical tools such as strange 

attractor, bifurcation diagram, and Lyapunov exponents are used to detect chaos in the proposed system. It is observed 

that the model is capable of exhibiting complex dynamics including chaos. It is also pointed out that a suitable 

predation fear can control the chaotic dynamics and make the system stable. 
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1. INTRODUCTION 

In ecosystems, prey-predator interactions are critical, and understanding the mechanisms that drive 

them is a difficult issue in ecology and evolutionary biology. In prey-predator interactions, 

predation has long been regarded to be the most important factor. A predator eats prey by hunting 

and killing it in the wild. However, increasing evidence suggests that many animals can predict 

the likelihood of predation and adjust their behavior accordingly. When prey becomes aware of 

the possibility of predation, it may engage in anti-predator behaviors like modifying its habits or 

appearance, as well as shifting its foraging and reproductive times.  

 Anti-predator behavior in prey is common, and the fear effect can be large, meaning that fear 

has a big impact on population dynamics. Despite the fact that predators do not kill prey directly, 

the fear of predators on prey has an impact on predator and prey population dynamics. In fact, 

there's evidence that the indirect influence can be just as significant as the direct effect. As a result, 

when researching prey-predator interactions, taking into account solely the direct killing effect is 

insufficient. Hua et al [1] proposed a two-dimensional prey-predator model that incorporates the 

cost of fear into prey growth. Several other prey-predator systems incorporating the fear effect 

have been developed and examined as a result of this research, see [2-12].  

As the prey becomes aware of the threat of predation, it may exhibit anti-predator behaviors such 

as adjusting its habits, foraging times, and reproduction. These responses will have an impact on 

the prey's population density. To avoid being killed immediately, the prey may choose to stay in a 

safer area distant from the high-risk sector when foraging. In terms of foraging time, the prey 

species may choose to restrict its foraging activity at some risk, forcing it to adopt a hungry survival 

mechanism and, as a result, lowering its growth rate. 

On the other hand, prey anti-predator behavior is common, and the fear effect can be significant, 

implying that fear has a significant impact on population dynamics. Wang et al [7-8] created a two-

dimensional prey-predator model adding the cost of fear into prey growth with this motivation. 

Their findings suggest that the anti-predator reaction is critical in maintaining the prey-predator 

balance. They also discovered that in the model incorporating the cost of fear, the Hopf bifurcation 
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can occur and can be both supercritical and subcritical, which differs from previous conventional 

prey-predator models. Pal et al. [11] looked at the fear effect in a prey-predator model in which the 

prey-predator interaction follows the Beddington–DeAngelis functional response. They 

discovered that as the cost of fear rises, the system becomes unstable and provides periodic 

solutions via supercritical Hopf bifurcation. The system, however, experiences another Hopf 

bifurcation and becomes stable as the level of fear increases, similar findings were found in [10-

11]. Recently, Sarkar and Khajanchi [12] designed and examined a prey-predator system with 

Holling type-II functional response that introduced the cost of fear into prey reproduction. They 

showed that powerful anti-predator reactions can stabilize prey-predator interactions by ignoring 

the occurrence of the periodic activity. 

Following these studies, other scientists used the Holling type II function response to represent 

the feeding process in a tri-trophic food chain and food web models. Panday et al [13] suggested 

and explored the influence of fear in a tri-trophic food chain model, in which the growth rate of 

the middle predator is reduced owing to the cost of top predator fear, and the growth rate of prey 

is repressed due to the cost of middle predator fear. Fear, they discovered, may settle the system 

from chaos to stable focus by half the period, similar findings were found in [14]. Later, Ibrahim 

and Naji [15] investigated the influence of fear in the Beddington–DeAngelis food chain model 

with three species. They discovered that fear has a stabilizing influence on the system up to a 

threshold degree; otherwise, it acts as an extinction factor in the system. Mukherjee provided a 

mathematical model that simulates two competing prey and one predator system with the cost of 

fear that impacts both the prey population's reproduction rate and the predator's predation rate in 

[16]. He observed that although a high level of fear can make coexistence impossible, a rise in 

intraspecific competition within the predator population can allow predator and competitive prey 

to coexist. In [17], Abd and Naji devised and analyzed a food chain model that included fear at the 

first and second levels. Alternative food sources for the top predator are also taken into account. 

They obtained that the system has many dynamics, including chaos, which can be decreased by 

increasing the fear rate. Maghool and Naji recently suggested and investigated the dynamics of a 
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tri-trophic Leslie-Gower food-web system under the influence of fear [18]. They discovered that 

the fear factor acts as a system stabilizer up to a certain point, after which it causes the predator to 

become extinct.  

In contrast to prior researches, this publication considers the impact of fear from predator predation 

in the upper level of the food chain throughout the levels of the food chain in which the prey 

species has an anti-predator capability such as group defense. The following is the outline of the 

paper: Section 2 describes the model and its dimensionless form. Section 3 defines the equilibrium 

points and describes the conditions that must be met for them to be stable locally. The model's 

persistence is discussed in Section 4, and the research of global behavior is discussed in Section 5. 

Section 6 investigates the feasibility of local bifurcation, while section 7 determines the criteria 

for Hopf bifurcation to occur. Moreover, section 8 applies numerical simulation to test our 

theoretical findings and discovers chaos by producing bifurcation diagrams and Lyapunov 

exponent bifurcation diagrams. Finally, the conclusion and discussion of this work are given in 

section 9. 

 

2. THE MODEL FORMULATION  

In the present section, the real-world three-species food chain system is formulated mathematically. 

It is assumed that fear affects negatively the growth rates of the prey and middle predator. 

Furthermore, the middle predator's fear of predation from the upper predator reduces the middle 

predator's foraging too. Accordingly, the predation rate of the middle predator and the growth rate 

of the prey at the first level, and that of the middle predator at the second level are multiplied by a 

decreasing function of upper predator population density. On the other hand, it is assumed that the 

preys have an anti-predator technique capability against predation by the predator at the upper 

level. Consequently, the dynamics of the above described food chain system can be represented by 

the following set of first order nonlinear differential equations. The terms 
1

1+𝑛1𝑌
 , and 

1

1+𝑛2𝑍
 

represent the reduction in the growth rate of the prey, and the reduction in the growth rate and 

foraging of the middle predator due to the fear. While the Sokol-Howell type of functional 
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responses are used to describe the predation process due to the existence of the anti-predator 

technique. Therefore, the above described real world food-chain system can be represented 

mathematically using the following system of differential equations. 

𝑑𝑋

𝑑𝑇
=

𝑟𝑋

(1+𝑛1𝑌)
− 𝑏𝑋2 −

𝑎0𝑋𝑌

1+𝑚0𝑋2
(

1

1+𝑛2𝑍
),   

𝑑𝑌

𝑑𝑇
=

𝑎1𝑋𝑌

1+𝑚0𝑋2
  (

1

1+𝑛2𝑍
) −

𝑎2𝑌𝑍

1+𝑚1𝑌2
− 𝑑0𝑌,

𝑑𝑍

𝑑𝑇
=  

𝑎3𝑌𝑍

1+𝑚1𝑌2
− 𝑑1𝑍,                                  

                              (1) 

with 𝑋(0) ≥ 0, 𝑌(0) ≥ 0, 𝑎𝑛𝑑  𝑍(0) ≥ 0, where  𝑋(𝑇) represents the prey density at the time 

𝑇, 𝑌(𝑇) is the middle predator density at the time 𝑇, while 𝑍(𝑇) is the top predator density at 

time 𝑇. The parameters in the system (1) are assumed to be positive and are detailed in the Table 

(1) below. 

 

Table 1: The description of the model (1) parameters 

Parameter Description 

𝑟 The intrinsic growth rate of the prey population. 

𝑏 Intraspecific competition of the prey. 

𝑎0, 𝑎2 Maximum attack rates of the middle predator and top predator respectively. 

𝑎1, 𝑎3 Conversion rates to the middle predator and top predator respectively. 

𝑛1, 𝑛2 Fear levels from the middle predator and top predator respectively. 

𝑚0, 𝑚1 Preference rates for the middle predator and top predator respectively. 

𝑑0, 𝑑1 Natural mortality rates of middle predator and top predator respectively. 

 

Clearly, system (1) has eleven parameters in all. Therefore for easier mathematical analysis, the 

number of parameters is reduced using the following transformations. 

 

𝑥 =
𝑏𝑋

𝑟
 , 𝑦 =

𝑎0𝑌

𝑟
, 𝑧 =

𝑎1𝑍

𝑟
 , 𝑡 = 𝑟𝑇, 𝑢1 =

𝑛1𝑟

𝑎0
,    𝑢2 =

𝑚0𝑟
2

𝑏2
, 𝑢3 =

𝑛2𝑟

𝑎1
,

  

𝑢4 =
𝑎1

𝑏
, 𝑢5 =

𝑎2

𝑎1
, 𝑢6 =

𝑚1𝑟
2

𝑎02
, 𝑢7 =

𝑑0

𝑟
, 𝑢8 =

𝑎3

𝑎0
, 𝑢9 =

𝑑1

𝑟
.

           

Therefore, the non-dimensional system that corresponds to the system (1) is given by:  
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𝑑𝑥

𝑑𝑡
= 𝑥 [

1

1+𝑢1𝑦
− 𝑥 −

𝑦

1+𝑢2𝑥2
(

1

1+𝑢3𝑧
)] = 𝑥𝑓1(𝑥, 𝑦, 𝑧),       

𝑑𝑦

𝑑𝑡
= 𝑦 [

𝑢4𝑥

1+𝑢2𝑥2
  (

1

1+𝑢3𝑧
) −

𝑢5𝑧

1+𝑢6𝑦2
− 𝑢7] = 𝑦𝑓2(𝑥, 𝑦, 𝑧),

𝑑𝑧

𝑑𝑡
= 𝑧 [

𝑢8𝑦

1+𝑢6𝑦2
− 𝑢9] = 𝑧𝑓3(𝑥, 𝑦, 𝑧).                                    

                          (2) 

Here, the interaction functions are define on ℝ+
3 = {(𝑥, 𝑦, 𝑧): 𝑥(𝑡) ≥ 0, 𝑦(𝑡) ≥ 0, 𝑧(𝑡) ≥ 0} . 

Moreover, since the interaction functions in the right-hand side of the system (2) are continuous 

and have a continuous partial derivatives, hence they are Lipschitzian functions. Thus, the solution 

of the system (2) exists and is unique.  

Theorem 1: All the solutions of the system (2), which initiate in ℝ+
3 are uniformly bounded. 

Proof. Let (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡))  be the solution of system (2), then from the first equation, it is 

obtained that 
𝑑𝑥

𝑑𝑡
≤ 𝑥 − 𝑥2, then as 𝑡 → ∞ the following is obtained 𝑥 ≤ 1. 

Define the function 𝑀(𝑡) = 𝑢4𝑥(𝑡) + 𝑦(𝑡) +
𝑢5
𝑢8
𝑧(𝑡). 

Differentiating the function 𝑀(𝑡), yields: 

𝑑𝑀

𝑑𝑡
= 𝑢4

𝑑𝑥

𝑑𝑡
+
𝑑𝑦

𝑑𝑡
+ 𝑢5

𝑢8

𝑑𝑧

𝑑𝑡
=

𝑢4𝑥

1+𝑢1𝑦
− 𝑢4𝑥

2 − 𝑢7 −
𝑢5𝑢9

𝑢8
𝑧. 

Then       

      
𝑑𝑀

𝑑𝑡
≤ 2𝑢4𝑥 − [𝑢4𝑥 − 𝑢7𝑦 −

𝑢5𝑢9

𝑢8
𝑧] ≤ 2𝑢4 − 𝛿𝑀, 

where 𝛿 = min {1, 𝑢7, 𝑢9}. Consequently, as 𝑡 → ∞, it is obtain that 

𝑀(𝑡) ≤
2𝑢4

𝛿
. 

Hence the solutions of the system (2) with non-negative initial point are uniformly bounded in the 

region ℵ = {(𝑥, 𝑦, 𝑧) ∈ ℝ+
3, 0 < 𝑢4𝑥(𝑡) + 𝑦(𝑡) +

𝑢5
𝑢8
𝑧(𝑡) ≤

2𝑢4

𝛿
}. 

 

3. EQUILIBRIUM POINTS AND LOCAL STABILITY ANALYSIS  

The system (2) has at most four non-negative equilibrium points, the form of points with their 

existence conditions are stated below. 

1. The trivial equilibrium point (TEP) that is denoted by 𝑒0 = (0,0,0) always exists. 

2. The axial equilibrium point (AEP) that is denoted by 𝑒1 = (1,0,0) always exists. 
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3.  The top predator free equilibrium point TPFEP, which is denoted by 𝑒2 = (�̅�, �̅�, 0), of the 

system (2) can be obtained by solving the following system of equations

 
𝑢1𝑦

2 + (1 + 𝑢1𝑥 + 𝑢1𝑢2𝑥
3)𝑦 − (1 − 𝑥)(1 + 𝑢2𝑥

2) = 0

𝑢2𝑢7𝑥
2 − 𝑢4𝑥 + 𝑢7 = 0                                                           

    

Straightforward computation shows that the above system has a unique positive solution in 

the interior of 𝑥𝑦 −plane that is given by Eq. (3) provided that the conditions given by Eq. 

(4) hold together.   

�̅� =
𝑢4−√𝑢42−4𝑢2𝑢72

2𝑢2𝑢7
, �̅� =

−𝐵+√𝐵2+4𝐴𝐶

2𝐴
,                              (3)     

where   𝐴 = 𝑢1, 𝐵 = 𝑢1�̅� + 𝑢1𝑢2�̅�
3 + 1, and 𝐶 = −(�̅�− 1)(1 + 𝑢2�̅�

2). 

 
4𝑢7

2𝑢2 < 𝑢4
2,

�̅� < 1.               
                                       (4) 

4. The coexistence equilibrium point (CEP), that is denoted by 𝑒3 = (𝑥
∗, 𝑦∗, 𝑧∗) , exists 

uniquely in the interior of positive octant if and only if there is a unique solution to the 

following set of algebraic equations. 

1

1+𝑢1𝑦
− 𝑥 −

𝑦

1+𝑢2𝑥2
(

1

1+𝑢3𝑧
) = 0,       

𝑢4𝑥

1+𝑢2𝑥2
  (

1

1+𝑢3𝑧
) −

𝑢5𝑧

1+𝑢6𝑦2
− 𝑢7 = 0,

𝑢8𝑦

1+𝑢6𝑦2
− 𝑢9 = 0.                                   

                               (5) 

Although the third equation has two positive solutions given by the equation (6), the algebraic 

system (7) that results from the first two equations of (5) after substituting the value of 𝑦𝑖
∗; 𝑖 = 1,2 

may or may not have a unique intersection point depending on the value of the parameters.  

𝑦1,2
∗ =

𝑢8∓√𝑢82−4𝑢6𝑢92

2𝑢6𝑢9
.                           (6) 

𝐻1(𝑥, 𝑧) =
1

1+𝑢1𝑦𝑖
∗ − 𝑥 −

𝑦𝑖
∗

(1+𝑢2𝑥2)(1+𝑢3𝑧)
= 0,     

𝐻2(𝑥, 𝑧) =
𝑢4𝑥

(1+𝑢2𝑥2)(1+𝑢3𝑧)
  −

𝑢5𝑧

1+𝑢6𝑦𝑖
∗2
− 𝑢7 = 0.

                                (7) 

For instance, for the parameter values:   

𝑢1 = 0.25, 𝑢2 = 2, 𝑢3 = 0.25, 𝑢4 = 1, 𝑢5 = 1, 𝑢6 = 2, 𝑢7 = 0.1, 𝑢8 = 1, 𝑢9 = 0.1.   (8) 

From equation (6), there are two positive values of 𝑦 , given by 𝑦1
∗ = 0.102084  and 𝑦2

∗ =
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4.89792 . However system (7) has a unique solution given by (𝑥∗, 𝑧∗) = (0.94, 0.22)  at 𝑦1
∗ , 

while it has no solution at 𝑦2
∗, see Figure (1a) and (1b) respectively. Therefore for the set of data 

(8), the system (2) has a unique CEP given by 𝑒3 = (0,94,0.1,0.22). 

 

Figure 1: Existence of CEP. (a) The unique solution of system (7) when 𝑦1
∗ = 0.102084 . (b) 

There is no solution when 𝑦2
∗ = 4.89792 

 

In the following the local stability analysis of the system (2) near the above equilibrium points is 

investigated using the linearization technique. 

The Jacobin matrix of system (2) at the point (x, y, z) can be written as:  

𝐽 =

(

 
 

𝑥
𝜕𝑓1

𝜕𝑥
+ 𝑓1 𝑥

𝜕𝑓1

𝜕𝑦
𝑥
𝜕𝑓1

𝜕𝑧

𝑦
𝜕𝑓2

𝜕𝑥
𝑦
𝜕𝑓2

𝜕𝑦
+ 𝑓2 𝑦

𝜕𝑓2

𝜕𝑧

𝑧
𝜕𝑓3

𝜕𝑥
𝑧
𝜕𝑓3

𝜕𝑦
𝑧
𝜕𝑓3

𝜕𝑧
+ 𝑓3)

 
 
= (𝑎𝑖𝑗)3×3,            (9)                                                                                

where 𝑎11 = −𝑥 +
2𝑢2𝑥

2𝑦

𝜂1
2𝜂3

+ (
1

𝜂2
− 𝑥 −

𝑦

𝜂1𝜂3
) , 𝑎12 =

−𝑢1𝑥

𝜂2
2 −

𝑥

𝜂1𝜂3
 , 𝑎13 =

𝑢3𝑥𝑦

𝜂1𝜂3
2 , 𝑎21 =

𝑢4𝑦(1−𝑢2𝑥
2)

𝜂1
2𝜂3

 , 𝑎22 =
2𝑢5𝑢6𝑦

2𝑧

𝜂4
2 + (

𝑢4𝑥

𝜂1𝜂3
−
   𝑢5𝑧

𝜂4
− 𝑢7) , 𝑎23 =

−𝑢3𝑢4𝑥𝑦

𝜂1𝜂3
2 −

𝑢5𝑦

𝜂4
 , 𝑎31 = 0 , 𝑎32 =

𝑢8𝑧(1−𝑢6𝑦
2)

𝜂4
2  , 𝑎33 =

𝑢8𝑦

𝜂4
− 𝑢9 , with 𝜂1 = 1 + 𝑢2𝑥

2 , 𝜂2 = 1 + 𝑢1𝑦 ,  𝜂3 = 1 + 𝑢3𝑧  , and  𝜂4 =

1 + 𝑢6𝑦
2. 
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Therefore, the following can be obtain: 

The Jacobian matrix at TEP has the eigenvalues 𝜆01 = 1, 𝜆02 = −𝑢7, 𝜆03 = −𝑢9, and hence 𝑒0 

is a saddle point. 

The Jacobian matrix at AEP has the eigenvalues  𝜆11 = −1, 𝜆12 =
𝑢4

1+𝑢2
−𝑢7, and 𝜆13 = −𝑢9, 

hence 𝑒1 is a locally asymptotically stable provided that  

𝑢4

1+𝑢2
< 𝑢7.                     (10) 

The Jacobian matrix at TPFEP is reduced to: 

 𝐽𝑒2 = (𝑏𝑖𝑗)3𝑥3,                                    (11a) 

where 𝑏11 = −�̅�+
2𝑢2�̅�

2�̅�

�̅�1
2  , 𝑏12 =

−𝑢1�̅�

�̅�2
2 −

�̅�

�̅�1
,  𝑏13 =

𝑢3�̅� �̅� 

�̅�1
 , 𝑏21 =

𝑢4�̅�(1−𝑢2�̅�
2)

�̅�1
2  , 𝑏22 = 0 , 𝑏23 =

−𝑢3𝑢4�̅��̅�

�̅�1
−

𝑢5�̅�

�̅�4
, 𝑏31 = 0, 𝑏32 = 0, 𝑏33=

𝑢3�̅�

�̅�4
− 𝑢9, with �̅�1 = 1 + 𝑢2�̅�

2, �̅�2 = 1 + 𝑢1�̅�, �̅�4 = 1 + 𝑢6�̅�
2. 

Therefore, the characteristic equation of 𝐽𝑒2 can be written as:  

[𝜆2 − 𝑏11𝜆 − 𝑏12𝑏21](𝑏33 − 𝜆) = 0.                                    (11b) 

Clearly, the eigenvalues of the Eq. (11b) can be written as: 

𝜆21 =
𝑏11+√(𝑏11)2+4𝑏12𝑏21

2
 , 𝜆22 =

𝑏11−√(𝑏11)2+4𝑏12𝑏21

2
 , 𝜆23 =

𝑢3�̅�

�̅�4
− 𝑢9 .             (12) 

It is easy to verify that, all the eigenvalues of 𝐽𝑒2  are negative, and hence 𝑒2  is locally 

asymptotically stable, provided that the following conditions hold: 

2𝑢2�̅��̅�

�̅�1
2 < 1,                       (13a) 

�̅�2 <
1

𝑢2
,                                            (13b) 

𝑢3�̅�

�̅�4
< 𝑢9.                                      (13c) 

The Jacobian matrix of the system (2) at the CEP can be written as: 

𝐽𝑒3 = (𝑐𝑖𝑗)3𝑥3,                            (14) 

where: 

𝑐11 = −𝑥
∗ +

2𝑢2𝑥
∗2𝑦∗

𝜂1∗
2 𝜂3∗

, 𝑐12 = −
𝑢1𝑥

∗

𝜂2∗
2 −

𝑥∗

𝜂1∗𝜂3∗
, 𝑐13 =

𝑢3𝑥
∗𝑦∗

𝜂1∗𝜂3∗
2 , 
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𝑐21 =
𝑢4𝑦

∗(1−𝑢2𝑥
∗2)

𝜂1∗
2 𝜂3∗

, 𝑐22 =
2𝑢5𝑢6𝑦

∗2𝑧∗

𝜂4∗
2 , 𝑐23 = −

𝑢3𝑢4𝑥
∗𝑦∗

𝜂1∗𝜂3∗
2 −

𝑢5𝑦
∗

𝜂4∗
, 

𝑐31 = 0, 𝑐32 =
𝑢8𝑧

∗(1−𝑢6𝑦
∗2)

𝜂4∗
2 , 𝑐33 = 0. 

with 𝜂1∗ = 1 + 𝑢2𝑥
∗2, 𝜂2∗ = 1 + 𝑢1𝑦

∗, 𝜂3∗ = 1 + 𝑢3𝑧
∗, 𝜂4∗ = 1 + 𝑢6𝑦

∗2 . Consequently, the 

characteristic equation of 𝐽𝑒3 can be written as: 

𝜆3 + 𝐴1𝜆
2 + 𝐴2𝜆 + 𝐴3 = 0,                     (15) 

where 𝐴1 = −(𝑐11 + 𝑐22) , 𝐴2 = 𝑐11𝑐22 − 𝑐12𝑐21 − 𝑐23𝑐32 , and 𝐴3 = 𝑐32[𝑐11𝑐23 − 𝑐13 𝑐21] , 

with ∆= 𝐴1𝐴2 − 𝐴3 = −(𝑐11 + 𝑐22)(𝑐11𝑐22 − 𝑐12𝑐21) + 𝑐32(𝑐22𝑐23 + 𝑐13𝑐21). 

Now, according to Routh-Hurwitz criterion, all the eigenvalues of the characteristic equation (15) 

have negative real parts and then the CEP becomes locally asymptotically stable if and only if 

𝐴1 > 0, 𝐴3 > 0, and ∆ > 0. Accordingly, the following theorem can be proved easily. 

Theorem (2): The CEP is locally asymptotically stable if the following sufficient conditions hold. 

𝑥∗2 <
1

𝑢2
,                                    (16a) 

𝑦∗2 <
1

𝑢6
,                                    (16b) 

2𝑢2𝑥
∗2𝑦∗𝜂4∗

2 +2𝑢5𝑢6𝑦
∗2𝑧∗𝜂1∗

2 𝜂3∗

𝜂1∗
2 𝜂3∗𝜂4∗

2 < 𝑥∗,                         (16c) 

𝑢3𝑢4𝑦
∗𝜂4∗(1 − 𝑢2𝑥

∗2) < (𝜂1∗
2 𝜂3∗ − 2𝑢2𝑥

∗𝑦∗)(𝑢3𝑢4𝑥
∗𝜂4∗ + 𝑢5𝜂1∗𝜂3∗

2 ),         (16d) 

2𝑢5𝑢6𝑦
∗𝑧∗(𝜂1∗

2 𝜂3∗ − 2𝑢2𝑥
∗𝑦∗)𝜂1∗𝜂2∗

2 𝜂3∗ < 𝑢4(𝑢1𝜂1∗𝜂3∗ + 𝜂2∗
2 )(1 − 𝑢2𝑥

∗2)𝜂4∗
2  ,   (16e)         

       𝑢3𝑢4𝑥
∗(1 − 𝑢2𝑥

∗2)𝜂1∗
3 > 2𝑢5𝑢6𝑦

∗𝑧∗𝜂1∗
2 𝜂3∗(𝑢3𝑢4𝑥

∗𝜂4∗ + 𝑢5𝜂1∗𝜂3∗
2 ) .           (16f)  

 

4. PERSISTENCE 

The persistence of the system (2) is studied, it is well known that the system is said to persist if 

and only if each species persist, mathematically this means that the system (2) persists if the 

solution of the system with the positive initial condition does not have omega limit set on the 

boundary of its domain. 

The system (2) has a subsystem lying in the positive quadrant of 𝑥𝑦 −plane, which can be written 
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as follow:  

𝑑𝑥

𝑑𝑡
= 𝑥 [

1

1+𝑢1𝑦
− 𝑥 −

𝑦

1+𝑢2𝑥2
] = µ1 (𝑥, 𝑦),

𝑑𝑦

𝑑𝑡
= 𝑦 [

𝑢4𝑥

1+𝑢2𝑥2
  − 𝑢7] = µ2 (𝑥, 𝑦),           
           

                       (17) 

It is easy to verify that, this subsystem has a positive equilibrium point coincide with the TPFEP 

of the system (2) in the interior of the positive quadrant of the 𝑥𝑦 −plane. Now, to discover the 

possibility of the existence of periodic dynamics around the interior positive point of the subsystem 

(17), the Dulac function approach is used.    

Define the function  𝜛 (𝑥, 𝑦) =
1

𝑥𝑦
. Clearly this function is continuously differentiable function 

in the interior of the positive quadrant of the 𝑥𝑦 −plane and  𝜛 (𝑥, 𝑦) > 0, for all (𝑥, 𝑦) ∈ ℝ+
2 . 

Furthermore, direct computation gives that  

∆(𝑥, 𝑦) =
𝜕

𝜕𝑥
(𝜛 ∙ µ1) +

𝜕

𝜕𝑦
(𝜛 ∙ µ2) = −

1

𝑦
+

2𝑢2𝑥

(1+𝑢2𝑥2)2
. 

Therefore, ∆(𝑥, 𝑦) does not change sign and not identically to zero under the following condition: 

 
2𝑢2𝑥𝑦

(1+𝑢2𝑥2)2
< 1.                                            (18) 

Note that, condition (18) is coincide with condition (13a) at the TPFEP, which means the 

subsystem (17) is a globally asymptotically stable in the interior of the positive quadrant of the 

𝑥𝑦 − plane whenever the subsystem has a locally asymptotically stable in the interior of ℝ+
2  . 

Hence, according to the Dulac approach, there is no periodic dynamics in the interior of positive 

quadrant of 𝑥𝑦 −plane for the subsystem.  

Theorem (3): Assume that there are no periodic dynamics in the boundary planes, then the system 

(2) is uniformly persistent provided that the following conditions hold   

𝑢7 <
𝑢4

1+𝑢2
,                                     (19a) 

𝑢9 <
𝑢3�̅�

1+𝑢6�̅�2
,                                 (19b) 

Proof.  Define 𝜙(𝑥, 𝑦, 𝑧) = 𝑥𝑞1𝑦𝑞2𝑧𝑞3 , where 𝑝1, 𝑝2, 𝑝3  are positive constants, and 

𝜙(𝑥, 𝑦, 𝑧) > 0  for all (𝑥, 𝑦, 𝑧) ∈ 𝐼𝑛𝑡 ℝ+
3  with 𝜙(𝑥, 𝑦, 𝑧) = 0  if any one of 𝑥, 𝑦 , or 𝑧 
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approaches zero. Therefore, direct computation gives: 

Ω(𝑥, 𝑦, 𝑧) =
𝜙′(𝑥,𝑦,𝑧)

𝜙(𝑥,𝑦,𝑧)
= 𝑞1𝑓1 + 𝑞2𝑓2 + 𝑞3𝑓3, 

where the functions 𝑓𝑖; 𝑖 = 1,2,3 , are given in the system (2). Now, according to the average 

Lyapunov method, the proof is as follows provided that Ω(𝑥, 𝑦, 𝑧) > 0  for all boundary 

equilibrium points. Therefore,  

Ω(𝑥, 𝑦, 𝑧) = 𝑞1 [
1

1 + 𝑢1𝑦
− 𝑥 −

𝑦

1 + 𝑢2𝑥2
(

1

1 + 𝑢3𝑧
)]                                         

+𝑞2 [
𝑢4𝑥

1 + 𝑢2𝑥2
  (

1

1 + 𝑢3𝑧
) −

𝑢5𝑧

1 + 𝑢6𝑥2
− 𝑢7] + 𝑞3 [

𝑢8𝑦

1 + 𝑢6𝑦2
− 𝑢9] .

 

We have that 

Ω(𝑒0)  = 𝑞1 + 𝑞2[−𝑢7] + 𝑞3[−𝑢9]. 

Obviously, by choosing the arbitrary positive value of 𝑞1 sufficiently large with respect to 𝑞2, 𝑞3, 

it is obtained that Ω(𝑒0) > 0. 

  Ω(𝑒1) = 𝑞2 [
𝑢4

1+𝑢2
  − 𝑢7] + 𝑞3[−𝑢9]. 

Note that, the condition (19a) guarantees that the coefficient of 𝑞2 is positive, then by suitable 

chose of the parameters 𝑞2 and 𝑞3, so that 𝑞2 is sufficiently large with respect to 𝑞3, it is obtain 

that Ω(𝑒1) > 0. Now, regarding to TPFEP, we have: 

Ω(𝑒2) = 𝑞3 [
𝑢8�̅�

1+𝑢6�̅�2
− 𝑢9]. 

Clearly, the condition (19b) guarantees that Ω(𝑒2) > 0. 

Hence the system (2) is uniformly persistent, and the proof is complete. 

 

5. GLOBAL STABILITY ANALYSIS 

In this section, the global stability of the locally asymptotically stable equilibrium points of 

system (2) is investigated using suitable Lyapnuov functions as shown in the following theorems.  

Theorem (4): Assume that the AEP is locally asymptotically stable and the following conditions 

hold then it is a globally asymptotically stable. 

  𝑢4(1 +  𝑢1) < 𝑢7,                                       (20)  
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Proof. Define the real valued function 𝑁1(𝑥, 𝑦, 𝑧) =  𝑢4(𝑥 − 1 − ln 𝑥) + 𝑦 +
 𝑢5

 𝑢8
𝑧.  

Clearly the function 𝑁1(𝑥, 𝑦, 𝑧)  is a positive definite function that is 𝑁1(1,0,0) = 0 , while 

𝑁1(𝑥, 𝑦, 𝑧) > 0 , for all values in the region {(𝑥, 𝑦, 𝑧) ∈ ℝ+
3: 𝑥 > 0, 𝑦 ≥ 0, 𝑧 ≥ 0; (𝑥, 𝑦, 𝑧) ≠

(1,0,0)}. Then using some algebraic manipulation give that: 

𝑑𝑁1
𝑑𝑡

= − 𝑢4(𝑥 − 1)
2 +

 𝑢4(𝑥 − 1)

1 + 𝑢1𝑦
−

 𝑢4(𝑥 − 1)𝑦

(1 + 𝑢2𝑥2)(1 + 𝑢3𝑧)

− 𝑢4(𝑥 − 1) +
𝑢4𝑥𝑦

(1 + 𝑢2𝑥2)(1 + 𝑢3𝑧)
−

𝑢5𝑦𝑧

1 + 𝑢6𝑦2

−  𝑢7𝑦 +
𝑢5𝑦𝑧

1 + 𝑢6𝑦2
−
 𝑢5 𝑢9
 𝑢8

𝑧

   

Consequently, by using additional computation the following is obtained:   

𝑑𝑁1

𝑑𝑡
≤ − 𝑢4(𝑥 − 1)

2 − [ 𝑢7 −  𝑢4(1 +  𝑢1) ]𝑦 −
 𝑢5 𝑢9

 𝑢8
𝑧. 

Now by using the condition (20), it is observed that 
𝑑𝑁1

𝑑𝑡
< 0, which means it is a negative definite. 

Therefore, the AEP is globally asymptotically stable.             ■ 

Theorem (5): Assume that the TPFEP is locally asymptotically stable, then all the trajectories of 

the system (2) starting from points belong to the sub-region of ℝ+
3, which satisfies the following 

sufficient conditions, approach asymptotically to TPFEP. 

𝑢2�̅�(1+�̅�)

�̅�1
< 1,                    (21a) 

[
𝑢1

𝜂2�̅�2
+

1

𝜂1𝜂3
−

1

𝜂1�̅�1𝜂3
+

𝑢2𝑥�̅�

𝜂1�̅�1𝜂3
]
2

< 4 [1 −
𝑢2�̅�(1+𝑥 ̅)

�̅�1
 ],                 (21b) 

0 <
 𝑢4(𝑦−�̅�)

2

[
𝑢5𝑢9
𝑢8

−
𝑢3 𝑢4�̅�

�̅�1
−𝑢5�̅�]

< 𝑧.                                      (21c) 

where the symbols 𝜂𝑖 and �̅�𝑖 for 𝑖 = 1,2,3,4 are given in Eqs. (9) and (11a) respectively. 

Proof. Define the real valued function  

𝑁2(𝑥, 𝑦, 𝑧) =  𝑢4 (𝑥 − �̅� − �̅�ln (
𝑥

�̅�
)) + (𝑦 − �̅� − �̅�ln (

𝑦

�̅�
)) +

 𝑢5

 𝑢8
𝑧.  

Clearly the function 𝑁2(𝑥, 𝑦, 𝑧)  is a positive definite function that is 𝑁2(�̅�, �̅�, 0) = 0 , while 

𝑁2(𝑥, 𝑦, 𝑧) > 0 , for all values in the region {(𝑥, 𝑦, 𝑧) ∈ ℝ+
3: 𝑥 > 0, 𝑦 > 0, 𝑧 ≥ 0; (𝑥, 𝑦, 𝑧) ≠
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(�̅�, �̅�, 0)}. Then for any initial point (𝑥, 𝑦, 𝑧) that belongs to the sub-region satisfying the above 

condition, it is obtained that: 

𝑑𝑁2
𝑑𝑡

=  𝑢4(𝑥 − �̅�) [−(𝑥 − �̅�) −
𝑢1(𝑦 − �̅�)   

𝜂2�̅�2
−
(𝑦 − �̅�)

𝜂1𝜂3
+
𝑢2𝑦 ̅ (𝑥

2 − �̅�2)

𝜂1�̅�1𝜂3
+
𝑢3�̅�𝑧

�̅�1𝜂3
]

+(𝑦 − �̅�) [
𝑢4(𝑥 − �̅�)

𝜂1�̅�1𝜂3
−
𝑢2𝑢4𝑥�̅�(𝑥 − �̅�)

𝜂1�̅�1𝜂3
−
𝑢3𝑢4 𝑧�̅�

�̅�1𝜂3
−
𝑢5𝑧

𝜂4
  ]

+
𝑢5𝑦𝑧

𝜂4
−
𝑢5𝑢9
𝑢8

𝑧

 

Further computation gives: 

𝑑𝑁2
𝑑𝑡

≤ − 𝑢4 [1 −
𝑢2𝑦 ̅(1 + �̅�)

�̅�1
] (𝑥 − �̅�)2 −  𝑢4(𝑦 − �̅�)

2                             

− 𝑢4 [
𝑢1
𝜂2�̅�2

+
1

𝜂1𝜂3
−

1

𝜂1�̅�1𝜂3
+
𝑢2𝑥�̅�

𝜂1�̅�1𝜂3
] (𝑥 − �̅�)(𝑦 − �̅�)

− [
𝑢5𝑢9
𝑢8

−
𝑢3 𝑢4�̅�

�̅�1
− 𝑢5�̅�] 𝑧 +  𝑢4(𝑦 − �̅�)

2

 

Consequently, using the conditions (21a) and (21b) yield that: 

 

𝑑𝑁2

𝑑𝑡
≤ − 𝑢4 [√1 −

𝑢2�̅�(1+𝑥 ̅)

�̅�1
(𝑥 − �̅�) + (𝑦 − �̅�)]

2

                      

− [
𝑢5𝑢9

𝑢8
−
𝑢3 𝑢4�̅�

�̅�1
− 𝑢5�̅�] 𝑧 +  𝑢4(𝑦 − �̅�)

2.

 

 Accordingly, with the help of condition (21c), it is observed that 
𝑑𝑁2

𝑑𝑡
 is negative definite and 

hence all the trajectories stating from points satisfy the given conditions approach asymptotically 

to TPFEP.                                               ■ 

Theorem (6): Assume that the CEP is locally asymptotically stable, then all the trajectories of the 

system (2) starting from points belong to the sub-region of ℝ+
3 , which satisfy the following 

sufficient conditions, approach asymptotically to CEP. 

 𝑞12
2 < 𝑞11𝑞22,                                      (22a) 

 𝑞13
2 < 𝑞11,                                          (22b) 

 𝑞23
2 < 𝑞22,                                      (22c) 

𝑢2𝑦
∗(𝑥+𝑥∗)

𝜂1𝜂1∗𝜂3∗
< 1,                                      (22d)     
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2𝑞22(𝑦 − 𝑦
∗)2 <

1

2
[√𝑞11 (𝑥 − 𝑥

∗) + √𝑞22(𝑦 − 𝑦
∗)]

2
,              (22e) 

(𝑧 − 𝑧∗) <
1

2
[√𝑞22 (𝑦 − 𝑦

∗) + (𝑧 − 𝑧∗) ]
2
,                         (22f) 

where the symbols 𝑞𝑖𝑗, 𝑖, 𝑗 = 1,2,3 are given in the proof. 

Proof: Consider the following real valued function: 

 𝑁3(𝑥, 𝑦, 𝑧) = (𝑥 − 𝑥
∗ − 𝑥∗ ln (

𝑥

𝑥∗
)) + (𝑦 − 𝑦∗ − 𝑦∗ ln (

𝑦

𝑦∗
)) + (𝑧 − 𝑧∗ − 𝑧∗ ln (

𝑧

𝑧∗
))  

Clearly the function 𝑁3  is a positive definite function, that is 𝑁3(𝑥
∗, 𝑦∗, 𝑧∗) = 0 , while 

𝑁3(𝑥, 𝑦, 𝑧) > 0 , for all values in the region {(𝑥, 𝑦, 𝑧) ∈ ℝ+
3: 𝑥 > 0, 𝑦 > 0, 𝑧 > 0; (𝑥, 𝑦, 𝑧) ≠

(𝑥∗, 𝑦∗, 𝑧∗)}. Thus after some algebraic manipulation it is obtain that:   

𝑑𝑁3
𝑑𝑡

= −
𝑞11
2
(𝑥 − 𝑥∗)2 − 𝑞12(𝑥 − 𝑥

∗)(𝑦 − 𝑦∗) −
𝑞22
2
(𝑦 − 𝑦∗)2 + 2𝑞22(𝑦 − 𝑦

∗)2

+𝑞13(𝑥 − 𝑥
∗)(𝑧 − 𝑧∗) − 𝑞23(𝑦 − 𝑦

∗)(𝑧 − 𝑧∗) ± (𝑧 − 𝑧∗)2,
 

Where  

𝑞11 = 1 −
𝑢2𝑦

∗(𝑥+𝑥∗)

𝜂1𝜂1∗𝜂3
, 𝑞22 =

𝑢5𝑢6𝑧
∗(𝑦+𝑦∗)

𝜂4𝜂4∗
, 𝑞13 =

𝑢3𝑦
∗

𝜂1𝜂3𝜂3∗
, 

𝑞12 =
𝑢1

𝜂2𝜂2∗
+

1

𝜂1𝜂3
−
𝑢4(1−𝑢2𝑥

∗𝑥)

𝜂1𝜂1∗𝜂3∗
, 𝑞23 =

𝑢3𝑢4𝑥
∗(1+𝑢2𝑥

∗𝑥)

𝜂1𝜂1∗𝜂3𝜂3∗
+
𝑢5

𝜂4
+
𝑢8(1−𝑢6𝑦𝑦

∗)

𝜂4𝜂4∗
. 

Consequently, using the conditions (22a)-(22d) gives 

 

𝑑𝑁3

𝑑𝑡
≤ −

1

2
[√𝑞11 (𝑥 − 𝑥

∗) + √𝑞22(𝑦 − 𝑦
∗)]

2
+ 2𝑞22(𝑦 − 𝑦

∗)2 

−
1

2
[√𝑞22 (𝑦 − 𝑦

∗) + (𝑧 − 𝑧∗) ]
2
+ (𝑧 − 𝑧∗) 

−
1

2
[√𝑞11 (𝑥 − 𝑥

∗) − (𝑧 − 𝑧∗)]
2
.

 

Clearly, with the help of conditions (22e), and (22f), it is observed that 
𝑑𝑁2

𝑑𝑡
 is negative definite 

and hence all the trajectories stating from points satisfy the given conditions approach 

asymptotically to CEP. 

 

6. BIFURCATION ANALYSIS  

In this section, an investigation of the effect of varying the values of the parameters on the system's 

dynamical behavior (2) is carried out using Sotomayor’s theorem for local bifurcation. Recall that, 
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the non-hyperbolic equilibrium point of the dynamical system is a necessary but not sufficient 

condition for a bifurcation to occur. Therefore, the parameter that makes the equilibrium point a 

non-hyperbolic point is chosen as a candidate bifurcation parameter. 

Rewrite the system (2) in the form  

𝑑𝑋

𝑑𝑡
= 𝐹(𝑋), 𝑋 = (𝑥, 𝑦, 𝑧)𝑇 , 𝐹 = (𝑥𝑓1, 𝑦𝑓2, 𝑧𝑓3)

𝑇.                (23) 

Also, the second directional derivative of the right hand side of the system (2) can be determined 

as: 

𝐷2𝐹(𝑋, 𝜇)(𝑊,𝑊) = [𝑑𝑖1]3𝑥1,              (24)        

where 𝑊 = (𝑤1, 𝑤2, 𝑤3)
𝑇 be any non-zero vector and 𝜇 is any parameter, with 

𝑑11 = [−2 +
2𝑢2𝑥𝑦(3−𝑢2𝑥

2)

𝜂1
3𝜂3

]𝑤1
2 − 2 [

𝑢1

𝜂2
2 +

(1−𝑢2𝑥
2)

𝜂1
2𝜂3

] 𝑤1𝑤2 + 2
𝑢3(1−𝑢2𝑥

2)𝑦

𝜂1
2𝜂3
2  𝑤1𝑤3

+2
   𝑢3𝑥

𝜂1𝜂3
2  𝑤2𝑤3 + 2

𝑢1
2𝑥

𝜂2
3 𝑤2

2 − 2
𝑢3
2𝑥𝑦

𝜂1𝜂3
3 𝑤3

2
,  

𝑑21 = −2
𝑢2𝑢4𝑥𝑦(3−𝑢2𝑥

2)

𝜂1
3𝜂3

𝑤1
2 + 2

𝑢4(1−𝑢2𝑥
2)

𝜂1
2𝜂3

 𝑤1𝑤2 − 2
𝑢3𝑢4(1−𝑢2𝑥

2)𝑦

𝜂1
2𝜂3
2  𝑤1𝑤3

−2 [
𝑢5(1−𝑢6𝑦

2)

𝜂4
2 +

𝑢3𝑢4𝑥

𝜂1𝜂3
2 ]𝑤2𝑤3 + 2

𝑢5𝑢6𝑦𝑧(3−𝑢6𝑦
2)

𝜂4
3 𝑤2

2 + 2
𝑢3
2𝑢4𝑥𝑦

𝜂1𝜂3
3 𝑤3

2
,       

𝑑31 = −2
𝑢6𝑢8𝑧𝑦(3 − 𝑢6𝑦

2)

𝜂4
3 𝑤2

2 + 2
𝑢8(1 − 𝑢6𝑦

2)

𝜂4
2  𝑤2𝑤3 

According to the above calculation, the following theorems investigate the possibility of 

occurrence of local bifurcation in the system (2). 

Theorem (7): Assume that the following condition holds, then the system (2) at the AEP undergoes 

a transcritical bifurcation when the parameter 𝑢7 passes through the value 𝑢7
∗ =

𝑢4

1+𝑢2
.  

 1 ≠ 𝑢2,                                                             (25) 

Proof: The Jacobian matrix of the system (2) at (𝑒1, 𝑢7
∗  ) can be written as:  

𝐽1 = 𝐽(𝑒1, 𝑢7
∗) = (

−1 −𝑢1 −
1

1+𝑢2
0

0 0 0
0 0 −𝑢9

), 

Then the matrix 𝐽1 have two eigenvalues with negative real parts, and the third one is zero, say 
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𝜆12
∗ = 0. Hence 𝑒1 is non-hyperbolic point.   

Let  θ1 = (θ11, θ12, θ13)
𝑇 be the eigenvector corresponding to the eigenvalue 𝜆12

∗ = 0. Thus, 

𝐽1θ1 = 0 , gives that θ1 = (𝜎1θ12, θ12, 0)
𝑇 , where 𝜎1 = −(𝑢1 +

1

1+𝑢2
),  and θ12 ≠ 0  any real 

number. 

Now, let  Υ1 = (γ11, γ12, γ13)
𝑇  represents the eigenvector corresponding to the eigenvalue 

𝜆12
∗ = 0  of the matrix 𝐽1

𝑇 . Thus, 𝐽1
𝑇Υ1 = 0   gives that Υ1 = (0, γ12, 0)

𝑇 ,  where γ12 ≠ 0 

any real number. Now, according to the Sotomoyar’s theorem, it is obtain that:  

 
𝜕𝐹

𝜕𝑢7
= 𝐹𝑢7(𝑋, 𝑢7) = (0,−y ,0)

𝑇 ⟹ 
𝜕𝐹

𝜕𝑢7
= 𝐹𝑢7(𝑒1, 𝑢7

∗) = (0, 0 ,0)𝑇. 

Therefore, Υ1
𝑇𝐹𝑢7(𝑒1, 𝑢7

∗) = 0, hence the system (2) has no saddle-node bifurcation. Moreover, 

since  

 𝐷𝐹𝑢7(𝑋, 𝑢7) = (
0 0 0
0 −1 0
0 0 0

) ⟹ 𝐷𝐹𝑢7(𝑒1, 𝑢7
∗)θ1 = (0,−θ12, 0)

𝑇. 

Then, Υ1
𝑇𝐷𝐹𝑢7(𝑒1, 𝑢7

∗)θ1 = −θ12γ12 ≠ 0. 

Also, by using equation (24), it is obtain that: 

 𝐷2𝐹(𝑒1, 𝑢7
∗)(θ1, θ1) =

(

 

[−2]𝜎1
2θ12

2 − 2 [𝑢1 +
(1−𝑢2)

(1+𝑢2)2
] 𝜎1θ12

2 + 2𝑢1
2θ12

2

2
𝑢4(1−𝑢2)

(1+𝑢2)2
 𝜎1θ12

2

0 )

 . 

Then, due to condition (25) it is observed that: 

 Υ1
𝑇𝐷2𝐹(𝑒1, 𝑢7

∗)(θ1, θ1) =
2𝑢4(1−𝑢2)

1+𝑢2
 𝜎1θ12

2γ12  ≠ 0. 

Then a transcrtical bifurcation take place in the sense of Sotomayor.                 ■ 

Theorem (8): Assume that the conditions (13a) and (13b) together with the following condition 

hold. Then the system (2) at the TPFEP undergoes a transcritical bifurcation when the parameter 

𝑢9 passes through the value 𝑢9
∗ =

𝑢8�̅�

�̅�4
. 

 (1 − 𝑢6�̅�
2) 𝜎3 ≠ 0,                                            (26) 

where the symbol 𝜎3 is given in the proof. 
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Proof: The Jacobian matrix of the system (2) at (𝑒2, 𝑢9
∗ ) can be written as:  

𝐽2 = 𝐽(𝑒2, 𝑢9
∗) = (

𝑏11 𝑏12 𝑏13
𝑏21 0 𝑏23
0 0 0

), 

where 𝑏𝑖𝑗 , 𝑖 = 1,2 𝑎𝑛𝑑 𝑗 = 1,2,3 are given in Eq. (11a). Clearly, 𝑒2 becomes a non-hyperbolic 

point at 𝑢9 = 𝑢9
∗ , due to existence of zero eigenvalue, say 𝜆23

∗ = 0 , while the other two 

eigenvalues 𝜆21 , and 𝜆22  are given in Eq. (12) and having negative real parts under the 

conditions (13a) and (13b). 

Let  θ2 = (θ21, θ22, θ23)
𝑇 be the eigenvector corresponding to the eigenvalue 𝜆23

∗ = 0 . Thus, 

𝐽2θ2 = 0, gives that θ2 = (𝜎2θ23, 𝜎3θ23, θ23)
𝑇, where  𝜎2 =

−𝑏23

𝑏21
,    𝜎3 =

𝑏11𝑏23−𝑏13𝑏21

𝑏21𝑏12
 , θ23 ≠

0 any real number. 

Now, let  Υ2 = (γ21, γ22, γ23)
𝑇  represents the eigenvector corresponding to the eigenvalue 

𝜆23
∗ = 0 of the matrix 𝐽2

𝑇. Thus, 𝐽2
𝑇Υ2 = 0  gives that Υ2 = (0,0, γ23)

𝑇, where γ23 ≠ 0 any 

real number. Now, since:  

 
𝜕𝐹

𝜕𝑢9
= 𝐹𝑢9(𝑋, 𝑢9) = (0, 0 , −z)

𝑇 ⇛ 
𝜕𝐹

𝜕𝑢7
= 𝐹𝑢9(𝑒2, 𝑢9

∗) = (0, 0 ,0)𝑇. 

Therefore, Υ2
𝑇𝐹𝑢9(𝑒2, 𝑢9

∗) = 0, hence the system (2) has no saddle-node bifurcation. Moreover, 

since  

 𝐷𝐹𝑢9(𝑋, 𝑢9
∗) = (

0 0 0
0 0 0
0 0 −1

) ⇛ 𝐷𝐹𝑢9(𝑒2, 𝑢9
∗)θ2 = (0, 0, −θ23)

𝑇. 

Then, Υ2
𝑇𝐷𝐹𝑢9(𝑒2, 𝑢9

∗)θ2 = −θ23γ23 ≠ 0. 

Also, by using equation (24), it is obtain that: 

 𝐷2𝐹(𝑒2, 𝛼9
∗)(θ2, θ2) = [�̅�𝑖1]3×1, 

Where 

�̅�11 = [−2 +
2𝑢2�̅��̅�(3−𝑢2�̅�

2)

�̅�1
3 ] (𝜎2θ23)

2 − 2 [
𝑢1

�̅�2
2 +

(1−𝑢2�̅�
2)

�̅�1
2 ] 𝜎2𝜎3θ23

2                    

+2
𝑢3(1−𝑢2�̅�

2)�̅�

�̅�1
2  𝜎2θ23

2 + 2
   𝑢3�̅�

�̅�1
 𝜎3θ23

2 + 2
𝑢1
2�̅�

𝜂2
3 (𝜎3θ23)

2 − 2
𝑢3
2�̅��̅�

�̅�1
θ23

2
, 
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�̅�21 = −2
𝑢2𝑢4�̅��̅�(3−𝑢2�̅�

2)

�̅�1
3 (𝜎2θ23)

2 + 2
𝑢4(1−𝑢2�̅�

2)

�̅�1
2  𝜎2𝜎3θ23

2                                    

−2
𝑢3𝑢4(1−𝑢2�̅�

2)�̅�

�̅�1
2  𝜎2θ23

2 − 2 [
𝑢5(1−𝑢6�̅�

2)

�̅�4
2 +

𝑢3𝑢4�̅�

�̅�1
] 𝜎3θ23

2 + 2
𝑢3
2𝑢4�̅��̅�

�̅�1
θ23

2
,       

�̅�31 = 2
𝑢8(1−𝑢6�̅�

2)

�̅�4
2  𝜎3θ23

2
. 

Then, using the conditions (26) yields:  

 Υ2
𝑇𝐷2𝐹(𝑒2, 𝑢9

∗)(θ2, θ2) =
2𝑢8(1−𝑢6�̅�

2)

�̅�4
2  𝜎3(θ23)

2γ23 ≠ 0.  

Hence a transcrtical bifurcation take place in the sense of Sotomayor.              ■ 

Theorem (9): Assume that the conditions (16a), (16b), (16c), and (16e) together with the following 

condition hold. Then the system (2) at the CEP undergoes a saddle-node bifurcation when the 

parameter 𝑢4 passes through the value  𝑢4
∗ =

𝑢5𝜂1∗𝜂3∗
2 [𝜂1∗

2 𝜂3∗−2𝑢2𝑥
∗𝑦∗]

𝑢3𝜂4∗[(1−𝑢2𝑥∗
2)𝑦∗−[𝜂1∗

2 𝜂3∗−2𝑢2𝑥∗𝑦∗]𝑥∗]
. 

     𝜎5γ32𝑑11
∗ + γ32𝑑21

∗ ≠ 0,                          (27)                                        

Proof: The Jacobian matrix of the system (2) at CEP with 𝑢4 = 𝑢4
∗  can be written as:  

𝐽3 = 𝐽(𝑒3, 𝑢4
∗) = (

𝑐11 𝑐12 𝑐13
𝑐21

∗ 𝑐22 𝑐23
∗

0 𝑐32 0
), 

where 𝑐𝑖𝑗, 𝑖, 𝑗 = 1,2,3  with 𝑐21
∗ = 𝑐21(𝑢4

∗) , and   𝑐23
∗ = 𝑐23(𝑢4

∗) . Direct computation shows 

that 𝑐11𝑐23
∗ − 𝑐13𝑐21

∗ = 0, hence the determinant of the matrix 𝐽3 is equal to zero. Therefore the 

matrix 𝐽3 has a zero eigenvalue given by 𝜆3
∗ = 0, and hence the CEP is a non-hyperbolic point. 

Let  θ3 = (θ31, θ32, θ33)
𝑇 be the eigenvector corresponding to the eigenvalue 𝜆3

∗ = 0. Thus, 

𝐽3θ3 = 0 , gives that θ3 = (𝜎4θ33, 0, θ33)
𝑇 , where, 𝜎4 = −

𝑐13

𝑐11
> 0  due to condition (16c), and 

θ33 ≠ 0 is any real number. 

Now, let  Υ3 = (γ31, γ32, γ33)
𝑇  represents the eigenvector corresponding to the eigenvalue 

𝜆3
∗ = 0 of the matrix 𝐽3

𝑇. Thus, 𝐽3
𝑇Υ3 = 0, gives that Υ3 = (𝜎5γ32, γ32, 𝜎6γ32)

𝑇, where  𝜎5 =

−
𝑐21

𝑐11
> 0  due condition (16a), and 𝜎6 =

𝑐12𝑐21−𝑐11𝑐22

𝑐21𝑐32
< 0  due to conditions (16a), (16b), and 

(16e) with   γ32 ≠ 0 be any real number. Moreover, it is observed that:   

 
𝜕𝐹

𝜕𝑢4
= 𝐹𝑢4(𝑋, 𝑢4) = (0,

𝑥

𝜂1𝜂3
 ,0)𝑇 ⟹ 𝐹𝑢4(𝑒3, 𝑢4

∗) = (0,
𝑥∗

𝜂1∗𝜂3∗
 ,0)𝑇. 
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Therefore, Υ3
𝑇𝐹𝑢4(𝑒3, 𝑢4

∗) =
𝑥∗

𝜂1∗𝜂3∗
γ32 ≠ 0,  

Moreover, since  

 𝐷2𝐹(𝑒3, 𝑢4
∗)(θ3, θ3) = [𝑑𝑖1

∗]3×1, 

where  

𝑑11
∗ = [−2 +

2𝑢2𝑥
∗𝑦∗(3−𝑢2𝑥

∗2)

𝜂1∗
3 𝜂3∗

] (𝜎4θ33)
2 + 2

𝑢3(1−𝑢2𝑥
∗2)𝑦∗

𝜂1∗
2 𝜂3∗

2 𝜎4 θ33
2 − 2

𝑢3
2𝑥∗𝑦∗

𝜂1∗𝜂3∗
3 θ33

2
,       

𝑑21
∗ = −2

𝑢2𝑢4𝑥
∗𝑦∗(3−𝑢2𝑥

∗2)

𝜂1∗
3 𝜂3∗

(𝜎4θ33)
2 − 2

𝑢3𝑢4(1−𝑢2𝑥
∗2)𝑦∗

𝜂1∗
2 𝜂3∗

2  𝜎4 θ33
2 + 2

𝑢3
2𝑢4𝑥

∗𝑦∗

𝜂1∗𝜂3∗
3 θ33

2
,       

𝑑31
∗ = 0. 

Therefore, using the condition (27), it is obtain that  

 Υ3
𝑇𝐷2𝐹(𝑒3, 𝑢4

∗)(θ3, θ3) = 𝜎5γ32𝑑11
∗ + γ32𝑑21

∗ ≠ 0  

Then a saddle-node bifurcation take place in the sense of Sotomayor. 

 

7. HOPF BIFURCATION ANALYSIS 

In this section, the possibility of occurrence of the Hopf bifurcation is investigated. Recall 

that the three-dimensional dynamical system undergoes a Hopf bifurcation around an equilibrium 

point provided that the Jacobian matrix at that equilibrium point has one negative eigenvalue with 

two complex conjugate eigenvalues having real part 𝑅𝑒(𝜆) satisfies that 𝑅𝑒(𝜆)|𝜃=�̂� = 0, and 

𝑑

𝑑𝜃
𝑅𝑒(𝜆)|𝜃=�̂� ≠ 0 (known as transversality condition), where 𝜃 is a bifurcation parameter.   

Theorem (10): Assume that the conditions (16a)-(16d) and (16f) along with the following 

condition hold: 

2𝑢5𝑢6𝑦
∗𝑧∗(𝜂1∗

2 𝜂3∗ − 2𝑢2𝑥
∗𝑦∗)𝜂1∗𝜂2∗

2 𝜂3∗ > 𝑢4(𝑢1𝜂1∗𝜂3∗ + 𝜂2∗
2 )(1 − 𝑢2𝑥

∗2)𝜂4∗
2 ,  (28a) 

𝐴3
′(𝑢8

∗) > (𝐴1(𝑢8
∗)𝐴2(𝑢8

∗))
′
,                               (28b) 

where 𝐴𝑖; 𝑖 = 1,2,3  are the coefficients of the characteristic equation (15). Then system (2) 

undergoes a Hopf bifurcation near the CEP as the parameter 𝑢8 passes through the value 𝑢8
∗ , 

where 𝑢8
∗ =

(𝑐11+𝑐22)(𝑐11𝑐22−𝑐12𝑐21)𝜂4∗
2

𝑧∗(1−𝑢6𝑦∗)(𝑐22𝑐23+𝑐13𝑐21)
 , with 𝑐𝑖𝑗; 𝑖, 𝑗 = 1,2,3  are the elements of the Jacobian 
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matrix 𝐽𝑒3. 

Proof: According to the form of ∆= 𝐴1𝐴2 − 𝐴3 given in equation (15), it is easy to verify that 

∆= 0 when 𝑢8 = 𝑢8
∗ , where 𝑢8

∗ > 0 provided that the given conditions are satisfied. Therefore, 

it is obtain 𝐴1(𝑢8
∗)𝐴2(𝑢8

∗) = 𝐴3(𝑢8
∗). Consequently, the characteristic equation (15) at 𝑢8 = 𝑢8

∗  

becomes 

𝑃3(𝜆) = (𝜆 + 𝐴1)(𝜆
2 + 𝐴2) = 0,                          (29) 

where 𝐴1, and 𝐴2 are positive due to the given conditions. Now direct computation gives that 

the equation (29) has the following roots   

𝜆1 = −𝐴1  and 𝜆2,3 = ±𝑖√𝐴2. 

Therefore, the first condition of the Hopf bifurcation that is represented by the existence of pure 

imaginary complex conjugate eigenvalues is satisfied when 𝑢8 = 𝑢8
∗ . Now, in the neighborhood 

of 𝑢8
∗  , the complex conjugate eigenvalues take the form 𝜆2,3 = 𝛿1(𝑢8) ± 𝑖𝛿2(𝑢8) . Hence 

substituting 𝜆 = 𝛿1(𝑢8) + 𝑖𝛿2(𝑢8) in equation (29), and then take the derivative with respect to 

the bifurcation parameter 𝑢8 . After that compare the two sides of resulting equation and then 

equating their real and imaginary parts, we get  

𝜓(𝑢8)𝛿1
′(𝑢8) + 𝜙(𝑢8)𝛿2

′(𝑢8) = −Θ(𝑢8),

𝜙(𝑢8)𝛿1
′(𝑢8) + 𝜓(𝑢8)𝛿2

′(𝑢8) = −Γ(𝑢8),
                       (30) 

where  

𝜓(𝑢8) = 3𝛿1
2(𝑢8) + 2𝐴1(𝑢8)𝛿1(𝑢8) + 𝐴2(𝑢8) − 3𝛿2

2(𝑢8), 

𝜙(𝑢8) = 6𝛿1(𝑢8)𝛿2(𝑢8)  + 2𝐴1(𝑢8)𝛿2(𝑢8), 

Θ(𝑢8) = 𝛿1
2(𝑢8)𝐴1

′(𝑢8) + 𝐴2
′(𝑢8)𝛿1(𝑢8) + 𝐴3

′(𝑢8) − 𝐴1
′(𝑢8)𝛿2

2(𝑢8), 

Γ(𝑢8) = 2𝛿1(𝑢8)𝛿2(𝑢8)𝐴1
′(𝑢8) + 𝐴2

′(𝑢8)𝛿2(𝑢8). 

Solving the linear system (30), we get  

𝛿1
′(𝑢8) =

𝑑𝛿1(𝑢8)

𝑑𝑢8
= −

Θ(𝑢8)𝜓(𝑢8)+Γ(𝑢8)𝜙(𝑢8)

[𝜓(𝑢8)]2+[𝜙(𝑢8)]2
,

 𝛿2
′(𝑢5) = −

Γ(𝑢8)𝜓(𝑢8)−Θ(𝑢8)𝜙(𝑢8)

[𝜓(𝑢8)]2+[𝜙(𝑢8)]2
.                   

                                (31)  
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Hence, the transversality condition is satisfied provided that Θ(𝑢8
∗)𝜓(𝑢8

∗) + Γ(𝑢8
∗)𝜙(𝑢8

∗) ≠ 0 . 

Obviously, we have that 𝛿1(𝑢8
∗) = 0 and 𝛿2(𝑢8

∗) = √𝐴2(𝑢8
∗), then the coefficients of system (30) 

at 𝑢8 = 𝑢8
∗  become:   

𝜓(𝑢8
∗) = −2𝐴2(𝑢8

∗), 

𝜙(𝑢8
∗) = 2𝐴1(𝑢8

∗)√𝐴2(𝑢8
∗) , 

Θ(𝑢8
∗) = 𝐴3

′(𝑢8
∗) − 𝐴1

′(𝑢8
∗)𝐴2(𝑢8

∗), 

Γ(𝑢8
∗) = 𝐴2

′(𝑢8
∗)√𝐴2(𝑢8

∗).  

Therefore,  

Θ(𝑢8
∗)𝜓(𝑢8

∗) + Γ(𝑢8
∗)𝜙(𝑢8

∗) =                                                                         

−2𝐴2(𝑢8
∗)[𝐴3

′(𝑢8
∗) − (𝐴1

′(𝑢8
∗)𝐴2(𝑢8

∗) + 𝐴1(𝑢8
∗)𝐴2

′(𝑢8
∗))].

 

Hence, Θ(𝑢8
∗)𝜓(𝑢8

∗) + Γ(𝑢8
∗)𝜙(𝑢8

∗) ≠ 0  under the condition (28b), which gives 𝛿1
′(𝑢8

∗) > 0 . 

Thus system (2) undergoes Hopf bifurcation at 𝑢8 = 𝑢8
∗ .  

 

8. NUMERICAL SIMULATION 

In this section, the food chain system (2) is solved numerically using the hypothetical set of 

biologically feasible parameters values that given by (8). The objectives are to confirm the 

theoretical finding and understand the impact of varying the values of the parameters including the 

fear rates on the dynamical behavior of the system. The obtained numerical solution of the food 

chain system (2) is presented in different forms such as phase portrait, time sires, bifurcation 

diagrams, and Lyapunov exponent’s bifurcation diagram using Matlab version R2013a. The 

numerical trajectory of system (2) using the parameters set (8) with the initial point (0.8, 0.7, 0.6) 

are drawn in Figure (2). 
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Figure 2. The trajectory of system (2) using parameters set (8). (a) 3D Phase portrait 

represents strange attractor. (b) Time sires of the strange attractor. (c) Projection of the 

strange attractor in the 𝑥𝑦 −plane. (d) Projection of the strange attractor in the 𝑥𝑧 −plane. 

(e) Projection of the strange attractor in the 𝑦𝑧 −plane. 
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According to Figure (2), system (2) approaches asymptotically to a strange attractor that was drawn 

after removing the transient effect. Now, the effect of varying the parameter 𝑢1  in the range 

[0, 1.5]  on the dynamics of the system (2) is investigated numerically using the bifurcation 

diagram along with Lyapunov exponents bifurcation diagrams as shown in Figure (3).  

 

 

Figure 3. Bifurcation diagrams as a function of 𝑢1. (a) Max (x) vs. 𝑢1. (b) Max (y) vs. 𝑢1. 

(c) Max (z) vs. 𝑢1. (d) Lyapunov exponents vs. 𝑢1. 

According to Figure (3), the bifurcation diagrams show clearly the existence of chaos for the range 

0 ≤ 𝑢1 ≤ 1.05 . As the value of 𝑢1  increases so that 1.06 ≤ 𝑢1 ≤ 4.07 , the chaotic dynamics 

transfer to periodic dynamic as shown in Figure 4(a-b) for typical value of 𝑢1, while the system 

(2) approaches asymptotically to a stable CEP for 4.08 ≤ 𝑢1 ≤ 37 as shown in the Figure 5(a-b) 

for a typical value of 𝑢1 . Furthermore, for 38 ≤ 𝑢1  system (2) loses its persistence and 
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approaches asymptotically to TPFEP as shown in Figure 6(a-b) for typical value of 𝑢1. 

 

 

Figure 4. The trajectory of system (2) for the data (8) with 𝑢1 = 1.2 . (a) 3D periodic 

attractor. (b) Time series of the periodic attractor in (a).  

 

 

Figure 5. The trajectory of system (2) for the data (8) with 𝑢1 = 5. (a) Asymptotically 

stable CEP that given by (0.6,0.1,0.27). (b) Time series of the periodic attractor in (a).  

The effect of varying the parameter 𝑢2 in the range [0.8, 2] on the dynamics of the system (2) 

is investigated numerically using the bifurcation diagram along with Lyapunov exponents 

bifurcation diagrams as shown in Figure (6).  



26 

FIRAS HUSSEAN MAGHOOL, RAID KAMEL NAJI  

 

Figure 6. The trajectory of system (2) for the data (8) with 𝑢1 = 45. (a) Asymptotically 

stable TPFEP that given by (0.1,0.09,0). (b) Time series of the periodic attractor in (a).  

 

 

Figure 7. Bifurcation diagrams as a function of 𝑢2. (a) Max (x) vs. 𝑢2. (b) Max (y) vs. 𝑢2. 

(c) Max (z) vs. 𝑢2. (d) Lyapunov exponents vs. 𝑢2. 
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Clearly, system (2) has complex dynamics including chaos as shown in Figure (7). It is 

observed that for the range 0.01 ≤ 𝑢2 ≤ 0.4 the system approaches asymptotically to CEP, 

however for the range 0.41 ≤ 𝑢2 ≤ 0.8, the system (2) has a periodic attractor, see Figures (8) 

and (9) for typical values of 𝑢2. Further, an increase for the value of 𝑢2 in the range 0.8 ≤

𝑢2 < 9  enters the system (2) to the complex dynamics region. However, for 9 ≤ 𝑢2 , the 

system (2) approaches asymptotically to AEP.  

 

Figure 8. The trajectory of system (2) for the data (8) with 𝑢2 = 0.3. (a) Asymptotically 

stable CEP that given by (0.9,0.1,0.78). (b) Time series of the periodic attractor in (a).  

 

Figure 9. The trajectory of system (2) for the data (8) with 𝑢2 = 0.5 . (a) 3D periodic 

attractor. (b) Time series of the periodic attractor in (a).  

The influence of the varying 𝑢3 in the range [0, 2], is presented in the bifurcation diagrams given 

by Figure (10). The trajectory of system (2) for the parameters set (8) with the 𝑢3 = 1.5  is 

presented in Figure (11) too. 
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Figure 10. Bifurcation diagrams as a function of 𝑢3. (a) Max (x) vs. 𝑢3. (b) Max (y) vs. 

𝑢3. (c) Max (z) vs. 𝑢3. (d) Lyapunov exponents vs. 𝑢3. 

 

Figure 11. The trajectory of system (2) for the data (8) with 𝑢3 = 1.5. (a) Strange attractor. 

(b) Time series of the strange attractor in (a).  
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Obviously, Figures (10) and (11) show the presence of complex dynamics including chaos for the 

wide range of the parameter 𝑢3. The existence of a positive Lyapunov exponent throughout the 

range ensures the existence of chaos too. 

Moreover, the impact of varying other parameters of the system (2) on its dynamical behavior is 

also investigated using bifurcation diagrams and Lyapunov exponents bifurcation diagrams, and 

the obtained results are presented in Figures (12)-(17) for the parameters 𝑢4, 𝑢5, 𝑢6, 𝑢7, 𝑢8, and 

𝑢9 respectively. 

 

 

 

Figure 12. Bifurcation diagrams as a function of 𝑢4. (a) Max (x) vs. 𝑢4. (b) Max (y) vs. 

𝑢4. (c) Max (z) vs. 𝑢4. (d) Lyapunov exponents vs. 𝑢4. 

 

 



30 

FIRAS HUSSEAN MAGHOOL, RAID KAMEL NAJI  

 

 

Figure 13. Bifurcation diagrams as a function of 𝑢5. (a) Max (x) vs. 𝑢5. (b) Max (y) vs. 

𝑢5. (c) Max (z) vs. 𝑢5. (d) Lyapunov exponents vs. 𝑢5. 
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Figure 14. Bifurcation diagrams as a function of 𝑢6. (a) Max (x) vs. 𝑢6. (b) Max (y) vs. 

𝑢6. (c) Max (z) vs. 𝑢6. (d) Lyapunov exponents vs. 𝑢6. 

 

 

Figure 15. Bifurcation diagrams as a function of 𝑢7. (a) Max (x) vs. 𝑢7. (b) Max (y) vs. 

𝑢7. (c) Max (z) vs. 𝑢7. (d) Lyapunov exponents vs. 𝑢7. 
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Figure 16. Bifurcation diagrams as a function of 𝑢8. (a) Max (x) vs. 𝑢8. (b) Max (y) vs. 

𝑢8. (c) Max (z) vs. 𝑢8. (d) Lyapunov exponents vs. 𝑢8. 
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Figure 17. Bifurcation diagrams as a function of 𝑢9. (a) Max (x) vs. 𝑢9. (b) Max (y) vs. 

𝑢9. (c) Max (z) vs. 𝑢9. (d) Lyapunov exponents vs. 𝑢9. 

According to the above bifurcation diagrams and Lyapunov exponents bifurcation diagrams 

given in Figures (12)-(17), it is concluded that system (2) has a wide range of complex 

dynamics including periodic, periodic doubling leading to chaos, and chaos. This range 

depends on the type of the bifurcation parameter. Furthermore, system (2) is solved numerically. 

Then the obtained trajectories are plotted in the form of phase portraits and time series for the 

typical values of parameters, which belong to the bifurcation diagram ranges and outside those 

ranges. The objective is to explore the set of control parameters on the persistence of the food 

chain system. All the obtained numerical results are plotted in Figures (18)-(21) and 

summarized in Table (2). 

 

Figure 18. The trajectory of system (2) for the data (8) with 𝑢4 = 0.3. (a) Asymptotically 

stable AEP that given by (1,0,0). (b) Time series of the periodic attractor in (a).  
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Figure 19. The trajectory of system (2) for the data (8) with 𝑢4 = 0.35. (a) 3D periodic 

attractor. (b) Time series of the periodic attractor in (a).  

 

 

Figure 20. The trajectory of system (2) for the data (8) with different values of 𝑢7. (a) 3D 

periodic attractor when 𝑢7 = 0.01. (b) Strange attractor when 𝑢7 = 0.15. (c) 3D periodic 

attractor when 𝑢7 = 0.25 . (d) The trajectory approaches to AEP when 3D periodic 

attractor when 𝑢7 = 0.45. 
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Figure 21. The trajectory of system (2) for the data (8) with 𝑢9 = 0.4. (a) Asymptotically 

stable TPFEP that given by (0.1,0.75,0). (b) Time series of the periodic attractor in (a).  

Table 2. The dynamical behavior of the food chain system (2) as a function of parameters using 

data (8). 

The parameter The range The dynamical behavior of the system (2) 

𝑢1 

0 ≤ 𝑢1 < 1.05 Chaotic dynamics in between there are windows of periodic 

1.05 ≤ 𝑢1 ≤ 4.07 3D periodic dynamics 

4.08 ≤ 𝑢1 < 37 Approaches to CEP 

37 ≤ 𝑢1 Approaches to TPFEP 

𝑢2 

0 < 𝑢2 ≤ 0.4 Chaotic dynamics in between there are windows of periodic 

0.41 ≤ 𝑢2 ≤ 0.9 3D periodic dynamics 

0.9 < 𝑢2 < 9 Chaotic dynamics in between there are windows of periodic 

9 ≤ 𝑢2 Approaches to AEP 

𝑢3 
0 ≤ 𝑢3 < 9 Chaotic dynamics in between there are windows of periodic 

9 ≤ 𝑢3 3D periodic dynamics 

𝑢4 

0 < 𝑢4 ≤ 0.3 Approaches to AEP 

0.3 < 𝑢4 ≤ 0.55 3D periodic dynamics 

0.55 < 𝑢3 ≤ 1 Chaotic dynamics in between there are windows of periodic 

𝑢5 0 < 𝑢5 ≤ 2 Chaotic dynamics in between there are windows of periodic 

𝑢6 
0 < 𝑢6 ≤ 0.6 3D periodic dynamics 

0.6 < 𝑢6 ≤ 5 Chaotic dynamics in between there are windows of periodic 

𝑢7 

0 < 𝑢7 ≤ 0.03 3D periodic dynamics 

0.03 < 𝑢7 < 0.25 Chaotic dynamics in between there are windows of periodic 

0.25 ≤ 𝑢7 < 0.34 3D periodic dynamics 

0.34 ≤ 𝑢7 < 1 Approaches to AEP 

𝑢8 
0 < 𝑢8 ≤ 0.28 Approaches to TPFEP 

0.28 < 𝑢8 < 1 Chaotic dynamics in between there are windows of periodic 

𝑢9 
0 < 𝑢9 ≤ 0.35 Chaotic dynamics in between there are windows of periodic 

0.35 < 𝑢9 < 1 Approaches to TPFEP 
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9. DISCUSSION AND CONCLUSION 

This study proposes and investigates a three-species Sokol-Howell food chain model. The impact 

of predation fear on food chain dynamics was investigated. By incorporating the Sokol-Howell 

kind of functional response that signals such a characteristic, the ability of the anti-predator 

strategy to defend lower-level species from predation by upper-level species is also incorporated. 

All of the solution's qualities are discussed. The presence and local stability of all possible 

equilibrium points are studied. The food chain system's long-term viability is investigated. To 

examine global dynamics or estimate the basin of attraction of equilibrium sites, the Lyapunov 

function technique was applied. Local bifurcation conditions near equilibrium points are created. 

Finally, utilizing various techniques such as bifurcation diagrams, Lyapunov exponent's 

bifurcation diagrams, and the 3D phase portrait, numerical simulation was widely employed to 

study the possibility of the existence of complex dynamics. 

Throughout the numerical simulation, a hypothetical set of biologically plausible parameter 

values was used, and the following results were reached. The food chain system (2) is a chaotic 

system that experiences a variety of attractors, including periodic, long periodic, and chaotic 

attractors. The fear of predation has a calming influence on the food chain's dynamics. In fact, 

when the fear rate increased, the chaotic zones shrank and then shifted to periodic, then 

asymptotically stable CEP. Furthermore, increasing the rate of fear above a certain threshold may 

lead to predator extinction. Predators become extinct when the anti-predator property in the first 

level of the food chain system is increased. This does not happen, however, when the second level's 

anti-predator rate rises and the system shifts from periodic to chaotic. The food chain system will 

continue to exist as conversion rates rise. Finally, as death rates rise, the food chain system's ability 

to persist is threatened. 
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