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Abstract: East Java is one of the producers of food crops in Indonesia. Some food crop commodities in East Java 

Province are corn, soybeans, peanuts, sweet potatoes, and cassava. These food crops have many benefits to make the 

demand for production increase. The uncertain amount of food crop production will be a problem for the Department 

of Agriculture and Food Security of East Java Province in determining a policy. To overcome this problem, a system 

is needed to predict the production of food crops in East Java. This study compares the Backpropagation algorithm 

and Elman Recurrent Neural Networks (ERNN). The data in this study were obtained from the Department of 

Agriculture and Food Security of East Java Province starting from 2007-2020 per quarter. The result of this research 

is that trial scenario 1 produces the best MSE value of 0.00000063 on the Backpropagation algorithm compared to 

ERNN which only gets an MSE value of 0.00000627. Trial scenario 2 produces the best MSE value, which is 

0.000000003 in the Backpropagation algorithm with gradient descent momentum, this is also better when compared 

to ERNN which gets an MSE value of 0.00000407. It can be concluded that the best algorithm in this study is 
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Backpropagation with gradient descent momentum because it produces MSE values with good prediction results from 

all algorithms compared. 

Keywords: corm; backpropagation; ERNN; gradient descent momentum. 

2010 AMS Subject Classification: 92B20. 

 

1. INTRODUCTION 

East Java is one of the producers of food crops in Indonesia. Several kinds of food crop 

commodities in East Java are rice and secondary crops (maize, cassava, sweet potatoes, soybeans, 

and peanuts) [1]. Palawija crops are usually referred to as seasonal crops which can be used as 

food crop rotation when the climate and weather are not favorable. The existence of palawija plants 

is also an effort to create a diversity of types of food in Indonesia. With the diversity of food crops 

in Indonesia, it can increase food security when the main commodity, namely rice, experiences a 

decline in prices. In addition, in 2019 the amount of rice production in East Java decreased by 0.62 

million tons [1]. This instability in rice production is one proof of why the government must 

maintain the production of other food crops to stabilize the country's food security. 

Corn is the main secondary food commodity in Indonesia [2][3]. Corn is a food plant that 

contains carbohydrates other than rice and is a food crop commodity with the largest production 

after rice. Corn seeds can be used as food, animal feed, industrial raw materials and can be 

processed into various types of food [4][5]. In addition to corn, there are also soybeans, peanuts, 

cassava, and sweet potatoes which have many benefits, including soybeans as raw material for 

various processed products such as tempeh, soy sauce, tofu, and soy milk. The benefits of these 

food crops make the demand for production increase, but the uncertain amount of food crop 

production will be a problem for the Department of Agriculture and Food Security of East Java 

Province in determining a policy. Therefore, a system is needed to predict food crop production in 

the East Java region. 

Several methods are often used to make predictions, such as research comparing the Double 

Exponential Smoothing (DES) and Artificial Neural Network (ANN) methods that have been 
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carried out for forecasting the development of COVID-19 in Indonesia. Another research 

comparing the method of Exponential Smoothing and Backpropagation Neural Networks in 

prediction systems. The results of their research show that Backpropagation Neural Network is 

superior to Exponential Smoothing [6]. 

Several Artificial Neural Network methods that can be used for prediction are the 

Backpropagation algorithm and Elman Recurrent Neural Network (ERNN). Research using 

Backpropagation Neural Network and Elman Recurrent Neural Network (ERNN) has been carried 

out for forecasting cement sales at PT Semen Indonesia (Persero) Tbk using monthly sales data 

from January 2006 to March 2018. The results of this study state that the best model for the system 

is cement forecasting at PT Semen Indonesia (Persero) Tbk, namely Backpropagation Neural 

Network [7]. 

In addition, predictive research that compares 3 methods at once, namely Exponential 

Smoothing, Backpropagation, and Elman Recurrent Neural Network, has been carried out for the 

prediction of palawija production using 7 datasets. The results of this study indicate that the Elman 

Recurrent Neural Network is the best method for predicting palawija production [8]. 

In some of the prediction studies above that use the Backpropagation algorithm and Elman 

Recurrent Neural Networks (ERNN), some show Backpropagation is better than Elman Recurrent 

Neural Networks (ERNN) but there is also the opposite. Therefore, in this study, we will compare 

the Backpropagation and Elman Recurrent Neural Networks (ERNN) algorithms. 

The main contribution of this research is to predict maize production using Backpropagation 

Algorithm Artificial Neural Networks and Elman Recurrent Neural Networks (ERNN) as well as 

adding Gradient Descent momentum (GDM) optimization to the training algorithm. 

 

2. PRELIMINARIES 

The forecasting process is forecasting an event or something in the future by using the relevant 

data or variables. The forecasting process uses data in the past which is processed by using an 

algorithm and based on a theoretical explanation so that it is not only considered as a guess but has 
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been based on a strong theory [9]. 

Forecasting or prediction can also be interpreted as an attempt to predict something in the future 

by using data in the past (historical data) within a certain period and utilizing relevant information 

[11]. 

A. Artificial Neural Network 

An artificial Neural Network or commonly called Artificial Neural Network is an algorithm that 

imitates human neural networks [10]. Like the human brain, the ANN consists of neurons that are 

interconnected to deliver an impulse. The structure of the human nerve cell consists of the soma 

(nerve cell body) which is the site of synthesis and integration of nerve impulses. Dendrites have 

a function to collect all messages to be sent to the nerve cell body (input, processing). The axon 

(neurite) has the function of carrying the nerve impulse to all other nerve cells (output). This can 

be seen in Figure 1.   

 

Figure 1. Human Neural Network 

Each simple artificial neural network has 3 sets of layers, namely input, hidden, and output as 

depicted in Figure 2.  

 

Figure 2. layers of Artificial Neural Network 
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B. Backpropagation 

The typical topology of the Backpropagation algorithm has 3 layers, namely the input layer 

where the data is entered. The hidden layer is where the data is processed and the output layer is 

where the results of the input are given [11]. Before getting to know the Backpropagation algorithm. 

So it would be better if you can know the architecture of the Backpropagation algorithm. Figure 3 

shows the Backpropagation Algorithm Architecture. 

 

Figure 3. Architecture of the Backpropagation Algorithm 

Figure 3 depicts an architecture with the number of neurons in the input layer = 1, the number 

of neurons in the hidden layer = 5, and neurons in the output layer = 1. The number of weights V 

depends on the number of neurons in the input layer and hidden layer, then the number of weights 

V that connects the two The layer is (1x5=5). If there is a bias between the input layer and the 

hidden layer, the total weight of V is ((1+1) x 5 = 10). This also applies to the weights connecting 

the hidden layer and the output layer. Based on this, this study uses the architecture shown in table 

1. 
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Table 1. Number of Layers and Neurons of Backpropagation Algorithm 

Number of layers 3 

Input Neuron 1 

Hidden Neuron 5 

Output Neuron 1 

 

The architecture of the number of layers and the neurons of the Backpropagation algorithm has 

3 layers consisting of an input layer, a hidden layer, and an output layer. Each layer has 1 input 

neuron, 5 hidden neurons, and 1 output neuron. 

While the Elman Recurrent Neural Networks (ERNN) algorithm is a development of the 

Backpropagation ANN algorithm. The thing that distinguishes it from Backpropagation is that 

there is feedback on the hidden layer of ERNN. The result of this feedback is an additional layer 

called the context layer [12]. The ERNN architecture can be seen in Figure 4. 

Figure 4 explains that the Elman Recurrent Neural Networks (ERNN) algorithm has 4 layers, 

namely the input layer, hidden layer, output layer, and context layer. There is 1 neuron in the input 

layer as input, 5 neurons in the hidden layer, 1 neuron in the output layer, and 5 neurons in the 

context layer. The neurons in the context layer are the output values of the hidden layer (𝑡−1) 

which are used as additional input so that the number of neurons in the context layer is the same 

as the hidden layer [12]. 

There is a connection between the hidden layer and the context layer with a weight value of one. 

The result of backward propagation in the context layer is the previous value of the hidden layer 

[13]. 
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Figure 4. ERNN Algorithm Architecture. 

 

Table 2. Number of Layers and Neurons of Backpropagation Algorithm 

Number of layers 4 

Input Neuron 1 

Hidden Neuron 5 

context Neuron 5 

Output Neuron 1 

 

There are 2 processes in the Backpropagation and ERNN algorithms, namely: 

1. Training Process 

In the Backpropagation algorithm, the training process can be interpreted as an iteration of the 

forward and backward propagation processes which aims to obtain trained weights and biases. The 

Elman Recurrent Neural Networks algorithm has a process that is almost the same as the 

Backpropagation algorithm, the difference is that in the Elman Recurrent Neural Networks 

algorithm there is feedback on the hidden layer and the result of this feedback is an additional layer 

called the context layer. The neurons in the context layer will be additional input to the training 

process. 
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2. Testing Process 

This process is a process that is carried out on test data, in the Backpropagation and Elman 

Recurrent Neural Networks testing process only the forward propagation process is carried out. In 

the test process, the data testing process is carried out using the weights from the training process. 

The weights generated in the training process are used for the system testing process. The test 

results are in the form of quarterly food crop predictions whose error value is calculated using 

Mean Square Error by comparing the target data and the predicted data. 

Figures 5 and 6 describe the training and test process of the Backpropagation algorithm as well as 

Figures 7 and 8 regarding ERNN. There are 3 sub-processes of training, namely the stages of 

normalization of training data, forward propagation, and backward propagation. 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5. Flowchart Training        Figure 6. Flowchart Testing  

 

 What distinguishes the Backpropagation and ERNN algorithm training processes is the forward propagation 

sub-process. The Backpropagation and ERNN algorithms have different forward propagation processes when 

calculating the value of but the process of calculating the value is the same for both algorithms. The flowchart 

of the Backpropagation algorithm forward propagation process can be seen in Figure 9 dan 10. 
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Figure 7. Flowchart 𝑦𝑗 Backpropagation    Figure 8. Flowchart 𝑦𝑘 Backpropagation 

 

 

Figure 9. Flowchart 𝑦𝑗 ERNN        Figure 10. Flowchart 𝑦𝑘 ERNN 
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C. Normalization and denormalization 

In this study using the min-max normalization method, this method changes the data into a 

range of zero to one (0-1) [14]. Normalization aims to get data with a smaller size that represents 

the original data without losing its characteristics. The normalization formula can be seen from the 

equation below: 

xn  =  
x0−xmin

xmax−xmin
                (1) 

Description : 

𝑋𝑛 = Normalized data value 

𝑋0 = Actual data value 

𝑋𝑚𝑖𝑛 = smallest data value of all actual data 

𝑋𝑚𝑎𝑥  = The largest data value of all actual data 

After the training process is complete, the value that comes out in the output layer is still 

in the form of normalization, so a denormalization process must be carried out to return the 

normalized value to the actual value. The denormalization formula can be seen from the equation 

below [15]: 

 𝑥𝑖  =  𝑦 (𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)  +  𝑥𝑚𝑖𝑛            (2) 

Description: 

𝑋𝑖 = Normal data value 

𝑦 = Target value 

D. Means Square Error (MSE) 

In this study, Means Square Error (MSE) is used to compare the value that comes out in the 

output layer with the actual value or the target value [16][17]. MSE is the mean squared forecast 

error. To calculate MSE, you can use the equation below [18][19][20]: 

𝑀𝑆𝐸 =  ∑
(𝑡𝑘−𝑦𝑘)2

𝑛

𝑛
𝑘−1  𝑥 100%              (3) 

Where, is the average squared error, the value of is the actual data while is the predicted data and 

the amount of data is indicated by n. 
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3. MAIN RESULTS 

A. Data Collection 

The data obtained from the Department of Agriculture and Food Security of East Java Province 

consists of the last 14 years starting from 2007-2020 per quarter. Then choose the parameters that 

will be used as input data and determine the data that will be used as target data. In this study, there 

is the amount of production as an input parameter for prediction. 

Table 3. Sample data on corn production in Bangkalan Regency 

Quarterly area and year production (tons) 

Bangkalan 1st quarter 2007 11981,55 

Bangkalan 2nd quarter 2007 11882,31 

Bangkalan 3rd quarter 2007 11792,15 

Bangkalan 1st quarter 2008 11711,06 

Bangkalan 2nd quarter 2008 11639,06 

Bangkalan 3rd quarter 2008 11576,13 

Bangkalan 1st quarter 2009 11522,28 

Bangkalan 2nd quarter 2009 11477,52 

Bangkalan 3rd quarter 2009 11441,83 

Bangkalan 1st quarter 2010 11415,21 

Bangkalan 2nd quarter 2010 11397,68 

Bangkalan 3rd quarter 2010 11389,23 

Bangkalan 1st quarter 2011 11389,85 

Bangkalan 2nd quarter 2011 11399,56 

Bangkalan 3rd quarter 2011 11418,34 

Bangkalan 1st quarter 2012 11446,2 

Bangkalan 2nd quarter 2012 11483,14 

Bangkalan 3rd quarter2012 11529,16 

B. Testing of Backpropagation and ERNN methods 

The trials in this study were carried out by dividing the training data from 70% to 90%, 

maximum iterations, and changes in the learning rate value. Therefore, the test scenario carried 

out is as shown in the table below. The number of layers used in the Backpropagation algorithm is 

3 layers with 1 input neuron, 5 hidden neurons, and 1 output neuron. While the number of layers 

for the ERNN algorithm is 4 layers with 1 input neuron, 1 hidden neuron, 5 context neurons, and 

1 output neuron. Table 5 will show the MSE value of the test changes carried out with different 

amounts of train and testing data and LR. 
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Table 4 Trial Scenario 1 

No Scenario Trial 

1 Distribution of training data and test data 70 : 30, 80 : 20, 90 : 10 

2 Maximum iteration 2000 

3 Learning rate (LR) 0.1-0.9 

4 Minimum error 0.00001 

5 Activation Functions Binary Sigmoid 

 

Table 5. Result MSE BP and ERNN 

Train : Test LR BP ERNN 

70% : 30% 

0.1 0,00012364 0,00172311 

0.2 0,0001041 0,00008217 

0.3 0,00008172 0,00007988 

0.4 0,00003158 0,0000982 

0.5 0,00004002 0,00007562 

0.6 0,00002443 0,00014784 

0.7 0,00004178 0,00018677 

0.8 0,0000066 0,00022646 

0.9 0,00001111 0,00025265 

80% : 20% 

0.1 0,00009303 0,00013851 

0.2 0,0000679 0,00005633 

0.3 0,00005244 0,00002843 

0.4 0,00004956 0,00005461 

0.5 0,00001974 0,00000427 

0.6 0,00000206 0,0000017 

0.7 0,00000461 0,00006485 

0.8 0,00000214 0,00008157 

0.9 0,00000192 0,00010253 

90% : 10% 

0.1 0,00009303 0,00916573 

0.2 0,00004973 0,00001765 

0.3 0,00002279 0,00000876 

0.4 0,00002063 0,00000563 

0.5 0,00001174 0,00000648 

0.6 0,00000978 0,00000935 

0.7 0,00000799 0,00000652 

0.8 0,00000091 0,0000067 

0.9 0,00000063 0,00000627 
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 From the several trials shown in table 5, the best MSE results were obtained in a comparison 

of training and testing of 90% and 10% with a learning rate of 0.00000063 for Backpropagation 

and 0.00000627 for ERNN. This proves that Backpropagation's performance is still superior to 

ERNN for corn production prediction data in the district. Bangkalan. Figure 10 shows the 

comparison of the MSE value between backpropagation and ERNN from the test results with a 

learning rate of 0.9  

 

Figure 10. Graph of MSE comparison between Backpropagation and ERNN 

 

C. Backpropagation and ERNN trials with Gradient Descent optimization 

The trial scenario at this stage is used to compare the Backpropagation gradient descent 

algorithm with momentum and ERNN gradient descent with momentum. The addition of this 

momentum value aims to reduce the significant weight changes. In the trial, the best 

backpropagation and ERNN were at a learning rate of 0.9, so in this trial, it will be reused without 

recombining other parameters. The second trial scenario can be seen in table 6. 

Table 6 Trial Scenario 2 

No Scenario Trial 

1 Distribution of training data and test data 90 : 10 

2 Maximum iteration 2000 

3 Learning rate (LR) 0.9 

4 Minimum error 0.00001 

5 Activation Functions Sigmoid biner 

6 Weight optimization 0.1-0.9 

0

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

70% : 30% 80% : 20% 90% : 10%

BP ERNN
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Table 7. MSE BP and ERNN results with gradient descent optimization 

GDM BP ERNN 

0.1 0,00005683 0,00005859 

0.2 0,00003712 0,00001792 

0.3 0,00003249 0,00000291 

0.4 0,00000751 0,00000431 

0.5 0,00000803 0,00000297 

0.6 0,00001386 0,00000253 

0.7 0,00000279 0,00000407 

0.8 0,00000339 0,00003101 

0.9 0,00000003 0,00002801 

 

 

Figure 11. Graph of MSE comparison between Backpropagation and ERNN with GDM 

 

From test scenario 2 shown in table 7, the best MSE results are obtained at a momentum value 

of 0.9 with an MSE value of 0.000000003 for Backpropagation and 0.00000407 for ERNN at a 

momentum value of 0.7. This proves that Backpropagation's performance is still superior to ERNN 

for corn production prediction data in the district. Bangkalan. Figure 11 shows the comparison of 

the MSE value between backpropagation and ERNN with Gradient Descent optimization from the 

test results with a learning rate of 0.9. 

 

CONCLUSION 

Based on the system testing that has been carried out and the results of several research trial 

scenarios that have been carried out, it can be concluded that: 
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0.00002

0.00004

0.00006

0.00008

0.0001
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1. Based on the results of the analysis in test scenario 1 which compares the Backpropagation 

algorithm and Elman Recurrent Neural Networks by using data sharing of 90% for training 

data and 100% for test data, the minimum error is 0.00001, the learning rate is 0.9, the 

maximum number of iterations is 2000 and the function binary sigmoid activation, the MSE 

obtained is 0.00000063 from the Backpropagation algorithm in the Bangkalan corn dataset, 

which is smaller than the ERNN which only gets an MSE value of 0.00000627. 

2. The results of the analysis of trial scenario 2 which compares the Backpropagation algorithm 

with gradient descent momentum of 0.9, the smallest MSE is 0.00000033 and MSE is 

0.00000407 for ERNN with Gradient Descent momentum optimization of 0.7 Bangkalan. 

3. Giving weight optimization to the Backpropagation and ERNN algorithms makes the 

prediction results and MSE test values smaller than without using weight optimization. This 

is because the optimization function can optimize the weight value for use in the testing 

process. 
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