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Abstract: Diagnostic tests are used to determine the presence or absence of a disease. Diagnostic accuracy is the main 

tool to evaluate a test. Four accuracy measures are used to evaluate how well the results of the test under evaluation 

(index test) agree with the outcome of the reference test (gold standard). These measures are sensitivity, specificity, 

positive predictive value and negative predictive value. Some subjects are only measured by a subset of tests which 

result in missing values. This leads to biased results. The mechanism of missing data could be missing completely at 

random (MCA), missing at random (MAR), or missing not at random (MNAR). Various methods such as the complete-

case analysis (CCA) and the maximum likelihood (ML) method are used to handle missing data. Also, imputation 

methods could be used. The article aims to use a multiple imputation approach to evaluate binary diagnostic tests with 

missing data under the MCAR mechanism. The proposed approach is applied to a real data set. Also, a simulation 

study is conducted to evaluate the performance of the proposed approach.  
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1. INTRODUCTION 

Clinicians use diagnostic tests to determine the presence or absence of a disease. Accurate 

diagnosis of a disease is often the first step toward its treatment and prevention. The aim of 

diagnostic accuracy studies is usually to find out the ability of a test to differentiate between 

patients with and without a disease. The presence or absence of a disease is determined by a gold 

standard test [3]. The gold standard is the best available test with known results. Usually, the gold 

standard test is often invasive or expensive. The results of a new non-invasive test (the index test) 

are compared with the results of the gold test. The basic structure of all diagnostic test studies is 

to select a series of patients to receive the index test(s) then followed by the gold standard test. 

Finally, the results of the index test and the gold standard are used to estimate the accuracy 

parameters.  The accuracy measures express how well the results of the test under evaluation 

(index test) agree with the outcome of the gold standard test. These measures are the sensitivity, 

specificity, negative predictive value and positive predictive value Sensitivity of a test is the 

probability of testing positive given the presence of disease. Specificity of a test refers to the 

probability of testing negative given the absence of the disease. Positive predictive value of a test 

is the probability of disease given testing positive. Negative predictive value of a test is the 

probability of no disease given testing negative [9].  

Missing values are very common in medical studies and in diagnostic tests. Missing data can 

be caused by several mechanisms. Missing data mechanism is called missing completely at random 

(MCAR) if the probability that an observation is missing is not related to any other patient 

characteristics. A mechanism is said to be missing at random (MAR) when the reason for the 

missingness is based on other observed patient characteristics.  If the probability that an 
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observation is missing depends on information that is not observed, the missing data are called 

missing not at random (MNAR) [10].  

There are various approaches that are used to handle missing data. These methods ranges from 

the complete case analysis (CCA) to the imputation techniques.  The multiple imputation (MI) is 

very common as imputation method. The MI method consists of three steps. In the first step an M 

(M>1) complete (imputed) data sets are obtained by filling each missing value M times using a 

convenient imputation model. In the second step the analysis of the M data sets is conducted using 

standard complete-data techniques. In the third step the results from the M imputed complete data 

sets are combined in an appropriate way to obtain the estimates [10].  

A well-known variant of multiple imputation technique is the multiple imputation using the 

chained equations (MICE) Approach. The MICE is a practical approach for generating imputation 

based on a set of imputation models, given that there is one model for each variable with missing 

values. Consider a set of variables Y1…… Yk, where some or all have missing values. If Y1 has 

missing values, it will be regressed on the other variables Y2 to Yk. The missing values of Y1 are 

simulated from P(Y1 │ Y2
t
, Y3

t ,…… ,Yk
t), where, t is an iteration counter and the estimation is thus 

restricted to individuals with observed Y1. If Y2 has missing values, Y2 is regressed on all the other 

variables Y1
t+1, Y3 to Yk. The missing values of Y2  are simulated from P(Y2 │ Y1

t+1
 ,Y3

t ,…… ,Yk
t), 

the estimation is thus restricted to individuals with observed Y2. The process is repeated for all 

other variables with missing values in a cycle. In order to stabilize the results, the procedure is 

generally repeated for several replications (e.g. 10 or 20) to produce a single imputed data set, and 

the whole procedure is repeated M times to give M imputed data sets [2]. 

The aim of this article is to use a multiple imputation approach to evaluate binary diagnostic 

tests in the presence of missing values under the MCAR assumption. Multiple imputation by 

chained equations (MICE) is suggested for the evaluation of binary diagnostic tests with missing 

values. 

The rest of the article is organized as follows. In Section 2, different methods to evaluate the 

accuracy measures are presented. In Section 3, literature review of diagnostic test with missing 
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values issue is presented. The proposed MI technique is described in Section 4. Section 5 is devoted 

to apply the proposed techniques to a dataset described in [9]. In Section 6, the performance of 

MICE in evaluating diagnostic tests is evaluated using a simulation study. Finally, discussion and 

conclusion are presented in Section 7.  

 

2. EVALUATION OF THE ACCURACY MEASURES  

There are four methods to evaluate the four accuracy measures. They are the simple proportion 

method, the logistic modelling method and the GEE method.  The simple proportion method is 

the simplest one. It ignores the correlation among tests. The four diagnostic measures of the test 

and their standard errors are obtained as follows. The sensitivity of a test and its standard error are: 

  Sens (test) =P (test +│disease+) = 
 𝑇𝑃

𝑇𝑃+𝐹𝑁 
    and  SE (Sens) =√

 𝑆𝑒𝑛𝑠(1−𝑆𝑒𝑛𝑠)

𝑇𝑃+𝐹𝑁 
.                   

The specificity of a test and its standard error are: 

  Spec (test) =P (test -│disease-) = 
 𝑇𝑁

𝐹𝑃+𝑇𝑁 
 and SE (Spec) =√

 𝑆𝑝𝑒𝑐(1−𝑆𝑝𝑒𝑐)

𝐹𝑃+𝑇𝑁 
.                                                                                                                                                                                                                                             

The positive predictive value of a test and its standard error are: 

   PPV (test) =P (disease +│test+) = 
 𝑇𝑃

𝑇𝑃+𝐹𝑃 
  and SE (PPV) =√

 𝑃𝑃𝑉(1−𝑃𝑃𝑉)

𝑇𝑃+𝐹𝑃
.                                                                                          

The negative predictive value of a test and its standard error are: 

  NPV (test) =P (disease -│test-) = 
 𝑇𝑁

𝐹𝑁+𝑇𝑁 
 and SE (NPV) =√

 𝑁𝑃𝑉(1−𝑁𝑃𝑉)

𝐹𝑁+𝑇𝑁 
,  where  TP  is 

the true Positive, FP is the false positive, FN  is the false negative and TN  is the true negative 

[6]. 

The logistic regression model may be used to estimate the accuracy parameters. The dependent 

variable (Y) is defined as the dichotomous results of the test. The presence or absence of disease, 

as defined by the “gold standard”, is included as a binary explanatory variable (D) [5] as follows:  

           Logit (p) =ln (
 𝑃

1−𝑃 
) =𝛽0  +  𝛼 𝐷 + 𝛽1 𝑋1 + ⋯ + 𝛽𝑘 𝑋𝑘, 

where p = P(Y=1│D, 𝑋1, … … .,  𝑋𝑘), D represents the disease status and 𝑋1, … … .,  𝑋𝑘  are other 

covariates in the model. Because  p = P(Y=1│D, 𝑋1, … … .,  𝑋𝑘 ) = 
 𝑒𝛽0 +𝛼 𝐷 +𝛽1 𝑋1+⋯+𝛽𝑘 𝑋𝑘

1+𝑒𝛽0+𝛼 𝐷+ 𝛽1 𝑋1+⋯+𝛽𝑘 𝑋𝑘
, then, 
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Sens (test) =P(test +│disease+) = P (Y=1│D=1, 𝑋1, … … .,   𝑋𝑘 ) = 
 𝑒𝛽0 + 𝛼+𝛽1 𝑋1+⋯+𝛽𝑘 𝑋𝑘

1+𝑒𝛽0 + 𝛼+𝛽1 𝑋1 +⋯+𝛽𝑘 𝑋𝑘
    , 

Spec (test) = P (test -│diease-) = P (Y=0│D =0, 𝑋1, … … .,  𝑋𝑘 ) =1- 
 𝑒𝛽0 +𝛽1 𝑋1+⋯+𝛽𝑘 𝑋𝑘

1+𝑒𝛽0 +𝛽1 𝑋1 +⋯+𝛽𝑘 𝑋𝑘
. Also, 

PPV and NPV can be estimated using the logistic regression model by defining the dependent 

variable (Y) to be the presence or absence of disease and the diagnostic test result is included as a 

binary explanatory variable in the model. PPV (test) is obtained the same as Sens(test) above.  

NPV (test) is obtained the same as Spec (test) above. 

Leisenberg et al. [8] demonstrated how to estimate sensitivity and specificity for two and three 

diagnostic tests, respectively, using the generalized estimating equation (GEE) approach. 

Sternberg and Hadgu [11] generalized their formulation to estimate the sensitivity and specificity 

when J diagnostic tests are applied to each subject. This is done by assume arbitrary number of 

covariates measured on each subject. These include  ꭆ
𝑖    is an ordered set of indexes that 

correspond to the diagnostic tests applied or observed on the ith individual, 𝑛iis the size of the set 

ꭆ
i
 and let 𝑗𝑘 be the kth element of the set  ꭆ

i
 . Also,  𝑌𝑖𝑗𝑘

 is the outcome of diagnostic test 

𝑗𝑘performed for individual i, where k =1,……..,𝑛𝑖, such that 

          𝑌𝑖𝑗𝑘
= { 

1                   positive
o                  negative

   𝑗𝑘   ϵ    ꭆi. 

Let 𝐷𝑖𝑗𝑘
 be the result of the perfect gold standard, which indicates disease status, such that  

         𝐷𝑖𝑗𝑘
= {  

1             disease
0           no disease

  𝑗𝑘    ϵ    ꭆ𝑖 .  

For the J diagnostic tests, we create a set of J −1 indicator variables, and arbitrarily assume 

that the test 1 be the reference test and let  

       𝑇𝑖𝑗𝑘𝑚= {  
1          if    𝑗𝑘 = 𝑚
0           otherwise

   𝑗𝑘    ϵ    ꭆi   and m=2,…., J . 

Let 𝑋𝑖𝑗𝑘

𝑇 = ( 𝑋𝑖𝑗𝑘1, 𝑋𝑖𝑗𝑘2,………, 𝑋𝑖𝑗𝑘𝑝) be the 1×P vector of covariates corresponding to 𝑌𝑖𝑗𝑘
. 

A reasonable model to estimate sensitivity and specificity for an arbitrary test j, for a given set of 

covariates 𝑋𝑖𝑗is  

Ln (
 𝑃

1−𝑃 
) =𝛽0  +  𝛽1𝐷𝑖𝑗 +𝛽2 𝑇𝑖𝑗2 + ⋯ + 𝛽𝐽 𝑇𝑖𝑗𝐽+𝛽𝐽+1 𝐷𝑖𝑗𝑇𝑖𝑗2 + ⋯ +

                                                        𝛽2𝐽−1 𝐷𝑖𝑗𝑇𝑖𝑗𝐽+𝛽2𝐽 𝑋𝑖𝑗1+𝛽2𝐽+1 𝑋𝑖𝑗2 + ⋯ + 𝛽2𝐽+𝑝−1 𝑋𝑖𝑗𝑝. 
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For j =1  Sens (test) = 
 𝑒𝛽0 +𝛽1+𝛽∗

ˊ   𝑋𝑖1

1+𝑒𝛽0 +𝛽1+𝛽∗
ˊ   𝑋𝑖1

  and Spec (test) = 
 1

1+𝑒𝛽0 +𝛽∗
ˊ   𝑋𝑖1

. For j = 2, 3,….., J   

Sens (test) = 
 𝑒

𝛽0 +𝛽1+𝛽𝑗+𝛽𝑗+𝐽−1+𝛽∗
ˊ   𝑋𝑖𝑗

1+𝑒
𝛽0 +𝛽1+𝛽𝑗+𝛽𝑗+𝐽−1+𝛽∗

ˊ   𝑋𝑖𝑗
  and Spec (test) = 

 1

1+𝑒
𝛽0 +𝛽𝑗+𝛽∗

ˊ   𝑋𝑖𝑗
, where,  𝛽∗

ˊ  is a P × 1 

vector of regression coefficient for all covariates (X) in the model.  

 

3. DIAGNOSTIC TESTS WITH MISSING DATA  

Barnhart and Kosinski [1] studied the use of subunit-level sensitivities and specificities for 

assessing the performance of a diagnostic test performed at the subunit level. They obtained an 

adjusted formula for estimates of the subunit sensitivities and specificities under the assumption 

that the subunit disease status is missing at random. They introduced a WLS approach for inference 

concerning correlated subunit-level sensitivities and specificities, especially for testing the equality 

of subunit-level sensitivities and the equality of subunit-level specificities. 

Poleto et al. [9] presented data extracted from an observational study to diagnose 

endometriosis (D) by a laparoscopy procedure (gold standard) versus three diagnostic tests; 

Ultrasonography (US), Magnetic Resonance (MR) and Echo-Colonoscopy (EC). They considered 

models that ignore the missing data mechanism such as the complete case analysis (CCA) method. 

Also, they considered models that include the missing data mechanism, such as the maximum 

likelihood methods (ML). The ML method showed better performance comparable to the CCA 

under missing completely at random (MCAR) and with high rates of missingness.  

Zhang et al. [16] developed an EM algorithm-based approach to evaluate the diagnostic 

accuracy of multiple imperfect tests in the absence of a gold standard under either an MAR 

assumption or an MNAR mechanism. The tests are assumed to be independent conditional on the 

true disease status. They applied the proposed methods to a real data set from the National Cancer 

Institute (NCI) colon cancer family registry on diagnosing microsatellite instability for hereditary 

non-polyposis colorectal cancer.  
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Jimenez and Nofuentes [7] introduced a global hypothesis test to simultaneously compare the 

positive predictive values of two or more binary diagnostic tests when the disease status (either 

present or absent) is unknown for a subset of individuals. The global hypothesis test is based on 

the chi-squared distribution and can be solved through the method of maximum likelihood and the 

delta method.  

 

4. THE PROPOSED APPROACH  

Multiple imputation is achieved by three steps. First, generating M (M > 1) complete (imputed) 

data sets by filling each missing value M times. Second, analyzing the M imputed complete data 

sets using standard complete-data technique. This step includes estimation of the four parameters; 

sensitivity, specificity, positive predictive value and negative predictive value. There are different 

methods for estimating sensitivity, specificity, positive predictive value and negative predictive 

value. Finally (the third step), combining the analysis results from the M imputed complete data 

sets in appropriate way. The evaluation of diagnostic tests will be carried out based on the 

combined estimates of the parameters from the third step.  

The adopted approach is the multiple imputation by chained equations (MICE). The steps of 

the MICE to evaluate binary diagnostic tests in the presence of missing values can be conducted 

as follows. The MICE needs an imputation model and an analysis model. These models need to be 

compatible. This means that all the variables in the analysis model need to be included in the 

imputation model (regardless of whether they contain missing values or not) including the 

dependent variable. If the analysis model contains interactions and the imputation is performed 

through standard MICE, this must be specified in the imputation model as well to avoid bias in the 

analysis [14].  The interaction terms will be incomplete if the variables that make up the 

interaction are incomplete. A reasonable imputation method is considered to take into account the 

interaction during the imputation process [13]. The interactions are included in the third analysis 

method: the GEE method [11].  
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Let �̂�𝑖 and �̂�𝑖  be the point and variance estimates of the needed parameter from the ith 

imputed data set, i=1, 2, ..., M. Then the point estimate for Q from multiple imputations is the 

average of the M complete-data estimates [15]:  

�̅� =
1

m
∑ �̂�i

m
i=1  . 

Let U̅ be the within-imputation variance, which is the average of the M complete-data estimates     

 �̅� =
1

m
∑ �̂�i

m
i=1  and B be the between-imputation variance B=

1

𝑚−1
∑ (�̂�𝑖 − �̅�)2m

i=1  

Then the variance estimate associated with  Q̅  is the total variance  

                                         T =�̅� + (1 +
1

𝑚
 )𝐵 

 

5. APPLICATION: COMPARING THE ACCURACY OF SUCH NON-INVASIVE TESTS (US, 

MR AND EC) WITH MISSING VALUES  

We apply the proposed technique to the data presented in Poleto et al. [9]. The data consider 

219 patients submitted to a laparoscopy procedure (gold standard) to diagnose endometriosis (D) 

were also evaluated with one or more non-invasive methods (ultrasonography (US), magnetic 

resonance (MR) and echocolonoscopy (EC)). The true status of the patients is determined by 

laparoscopically (gold standard). The frequencies of patients with positive (+) and negative (−) 

results are presented in Table 1.  

All the 219 patients were  evaluated via US. Out of these 219 patients, 91 had additional MR 

measurements only, 17 were also evaluated via EC, 13 had both (MR and EC) measurements, and 

for 98 patients, neither MR nor EC measurements were available.  

The main reason for the missing data was the unavailability  of the corresponding equipment 

at the occasion of evaluation; in some cases, diagnostic tests  results for retrocervical endometriosis 

were missing because some patients were only evaluated  for endometriosis occurring at other 

sites.    
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Table 1: Observed frequency of patients 

   D 

US MR EC - + 

  - 6 0 

 - + 1 0 

  Missing 51 1 

  - 0 0 

- + + 0 0 

  Missing 4 1 

  - 3 1 

 Missing + 3 1 

  Missing 51 2 

  - 0 1 

 - + 0 2 

  Missing 0 21 

  - 0 1 

+ + + 0 2 

  Missing 1 12 

  - 0 4 

 Missing + 0 5 

  Missing 2 43 

 

Analyses that depend on all the observed data are not generally implemented in  statistical 

packages, so many users pragmatically decide to consider only some subset of the data which can 

be analyzed using the available software.  

Therefore, MICE is considered a suitable choice for comparing the three tests (US, MR and 

EC) because multiple imputation generally assumes that the data are, at the least, MAR. This 
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approach can also be used on data that are MCAR [2]. Since the partial response rate is above 10%, 

this means that using an MICE framework to handle missing data is appropriate [14]. After 

generating the imputations, we have 35 complete datasets for the simple proportion method, for 

the LR model (because the percent of missing values = 35%) and 5 for the GEE method. We 

estimated the four parameters; the sensitivity (Sens), the specificity (Spec), the positive predictive 

value (PPV) and the negative predictive value (NPV) for each diagnostic test (EC, MR and US) 

on each complete dataset.  

We employed the multiple imputation by chained equations (MICE) approach. There are three 

estimation methods included in the second step of multiple imputation. The three estimation 

methods are: the simple proportion method, the logistic regression approach and the GEE approach. 

In our data, �̂�𝑖 represents the estimate for each parameter of the four parameters (Sens, Spec, 

PPV and NPV) for EC, MR and US on each complete dataset. �̂�i is the variance estimate for each 

parameter of the four parameters (Sens, Spec, PPV and NPV) for EC, MR and US on each 

complete dataset. Then we can calculate  �̅�,�̅�, B and T in straightforward way. 

The results are presented in Table (2). The results show that the estimates of sensitivity, 

specificity, positive predictive value and negative predictive values using the simple proportion 

method are consistent with those of the LR model. The GEE approach showed an improvement in 

the estimates of the Sens(MR), Sens(EC), NPV(MR) and NPV(EC). The Sens(MR)  ̂  increased from 

0.4071 to 0.4385. The Sens(EC)  ̂ increased from 0.5997 to 0.6652. The NPV(MR)  ̂ increased from 

0.657 to 0.6614.  The NPV(EC)  ̂ increased from 0.6677 to 0.6838. In contrast, the estimates of the 

Spec(MR), Spec(EC), PPV(MR) and PPV(EC) that are obtained under the GEE method became lower. 

The Spec(MR)  ̂  decreased from (0.9009) to 0.8703. The  Spec(EC)  ̂  decreased from 0.6478 to 

0.5548. The PPV(MR)  ̂ decreased from 0.7659 to 0.7285. The PPV(EC)  ̂ decreased from 0.5837 to 

0.5338. According to the three estimation methods, the (US) test has the highest estimates of Sens 

is 0.9381, Spec is 0.9754, PPV is 0.9681 and NPV is 0.95). The MR test has higher estimates of 
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Spec and PPV than the estimates of Spec and PPV of the EC test. The EC test has higher estimates 

of Sens and NPV than the estimates of Sens and NPV of the MR test.  

 

Table (2): Analysis of MICE (through the three estimation methods) under MCAR (MR × EC 

× US) for the four diagnostic measures. 

Simple proportion LR GEE 

Parameter Estimate Std. error Estimate Std. error Estimate Std. error 

Sens(MR) 0.4071 0.0712 0.4064 0.0718 0.4385 0.0934 

Sens(EC) 0.5997 0.0944 0.6004 0.0975 0.6652 0.1953 

Sens(US) 0.9381 0.0245 0.9381 0.0245 0.9381 0.0245 

Spec(MR) 0.9009 0.0388 0.9044 0.0392 0.8703 0.0563 

Spec(EC) 0.6478 0.1257 0.6571 0.1314 0.5548 0.0934 

Spec(US) 0.9754 0.014 0.9754 0.014 0.9754 0.014 
       

PPV(MR) 0.7659 0.0856 0.7715 0.0868 0.7285 0.0972 

PPV(EC) 0.5837 0.1009 0.5863 0.1037 0.5338 0.0828 

PPV(US) 0.9681 0.0181 0.9681 0.0181 0.9681 0.0181 

NPV(MR) 0.657 0.0432 0.6573 0.0434 0.6614 0.0521 

NPV(EC) 0.6677 0.0754 0.6702 0.0752 0.6838 0.1548 

NPV(US) 0.952 0.0191 0.952 0.0191 0.952 0.0191 

 

Ranking of the three tests US, EC & MR according to the three estimation methods are 

presented in Table 3. The results show that the US test has the first rank of the estimates (Sens, 

Spec, PPV and NPV). The MR test has the second rank of the estimates (Spec and PPV). The EC 

test has second rank of the estimates (Sens and NPV). 
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Table 3: Ranking of the three tests (US, EC & MR) according to the three estimation 

methods 

parameter              

test US MR EC 

Sens 1 3 2 

Spec 1 2 3 

PPV 1 2 3 

NPV 1 3 2 

 

The p-values are presented in Table 4. The results show that the P-values obtained under the 

simple proportion method are consistent with those obtained under the LR model.   

Table 4: The P-values of the three methods 

  Simple proportion LR GEE 

 Sens(US) Sens(EC) Sens(US) Sens(EC) Sens(US) Sens(EC) 

Sens(MR) 0.00012 1.24052 0.00012 1.31119 0.00012 3.67002 

Sens(EC) 0.00626  0.00938  1.96416  
 

  Spec(US) Spec(EC) Spec(US) Spec(EC) Spec(US) Spec(EC) 

Spec(MR) 0.85477 0.65075 1.05632 0.85854 0.73448 0.04147 

Spec(EC) 0.11471   0.1927   0.00012   
 

PPV(US) PPV(EC) PPV(US) PPV(EC) PPV(US) PPV(EC) 

PPV(MR) 0.24966 2.02214 0.32038 2.05199 0.14731 0.84169 

PPV(EC) 0.00211  0.00347  0.00012  

  NPV(US) NPV(EC) NPV(US) NPV(EC) NPV(US) NPV(EC) 

NPV(MR) 0.00012 10.8215 0.00012 10.5862 0.00012 10.6033 

NPV(EC)  0.00306   0.00336   0.98548   
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The results obtained using the ML approach under MCAR mechanism in Poleto et al. [9] is 

presented in Table 5 for the sake of comparison with our results. The results show that the 

parameters estimate that are obtained using the ML approach are so close to the parameters 

estimates that are obtained under the simple proportion method and the LR model. The estimates 

of the Sens(MR), Sens(EC), NPV(MR) and NPV(EC)  that are obtained under the GEE approach are 

higher than those obtained by the ML approach. The Sens(MR)  ̂ increased from 0.391 to 0.4385. 

The Sens(EC)  ̂ increased from 0.592 to 0.6652. The NPV(MR)  ̂ increased from 0.653 to 0.6614. The 

NPV(EC)  ̂ increased from 0.675 to 0.6838. In contrast, the GEE approach has lower estimates of the 

Spec(MR), Spec(EC), PPV(MR) and PPV(EC) than the ML approach. The Spec(MR)  ̂  decreased from 

0.909 to 0.8703. The Spec(EC)  ̂  decreased from 0.674 to 0.5548. The PPV(MR)  ̂  decreased from 

0.774 to 0.7285. The PPV(EC)  ̂ decreased from 0.591 to 0.5338. 

Table 5: Analysis of MICE (through the three estimation methods) and the ML approach 

under MCAR (MR × EC × US) for the four diagnostic measures. 

 ML Simple 

proportion 

LR GEE 

Para. Est. Std. 

error 

Est. Std. 

error 

Est. Std. 

error 

Est. Std. 

error 

Sens(MR) 0.391 0.07

2 

0.4071 0.0712 0.4064 0.0718 0.4385 0.09344 

Sens(EC) 0.59

2 

0.13

5 

0.5997 0.0944 0.6004 0.0975 0.6652 0.19532 

Sens(US) 0.93

8 

0.02

4 

0.9381 0.0245 0.9381 0.0245 0.9381 0.02446 
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6. SIMULATION STUDY 

The aim of this simulation study is to evaluate the performance of MICE for estimating 

diagnostic measures using the three proposed estimation methods.  

 

Simulation Setting 

    A random reference test variable (D) is generated from the Bernoulli distribution with a mean 

equal to probability (p).  Then, three binary diagnostic tests t1, t2, t3 for each subject are generated 

from the Bernoulli distribution. For the simple proportion method the mean (p1) = sensitivity (true 

Spec(MR) 0.90

9 

0.03

5 

0.9009 0.0388 0.9044 0.0392 0.8703 0.05626 

Spec(EC) 0.67

4 

0.11

1 

0.6478 0.1257 0.6571 0.1314 0.5548 0.093

4 

Spec(US) 0.97

5 

0.01

4 

0.9754 0.01

4 

0.9754 0.01

4 

0.9754 0.01402 

         

PPV(MR) 0.77

4 

0.07

8 

0.7659 0.0856 0.7715 0.0868 0.7285 0.09725 

PPV(EC) 0.59

1 

0.10

4 

0.5837 0.1009 0.5863 0.1037 0.5338 0.08278 

PPV(US) 0.96

8 

0.01

8 

0.9681 0.0181 0.9681 0.0181 0.9681 0.01813 

NPV(MR) 0.65

3 

0.04

2 

0.65

7 

0.0432 0.6573 0.0434 0.6614 0.05206 

NPV(EC) 0.67

5 

0.08

6 

0.6677 0.0754 0.6702 0.0752 0.6838 0.15481 

NPV(US) 0.95

2 

0.01

9 

0.95

2 

0.0191 0.95

2 

0.0191 0.95

2 

0.01912 
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value) for the diseased subjects and mean (p2) = 1-specificity (true value) for the non-diseased 

subjects. For the logistic model the mean pr_1, pr_2 and pr_3.   pr_1, pr_2 and pr_3 were 

determined using the following functions (Carsey and Harden, 2014): 

Logit ( pr_1 )=b1+ b2*D , where  0 ≤ pr_1 ≤1 

Logit ( pr_2 )=c1+ c2*D , where  0≤  pr_2 ≤1 

Logit ( pr_3 )=r1+ r2*D , where  0≤  pr_3 ≤1 

The b1, c1 and r1 are regression intercepts. The b2, c2, and r2 are regression coefficients. For  

the GEE approach, first, we simulated (D)  with a mean equal to probability (p) and the indicator 

variables were also created. To generate Y1,……. ,YJ (in our data J=3=the number of the tests) 

correlated binary outcomes given the gold standard (D) and the other indicator variables,  

NORTA method (Cario and Nelson, 1997; Touloumis, 2016) was used as follows: 

For     Yj  ~ F for all j= 1, . . . , J and a given correlation matrix Ry: 

1. Generate a random vector Z = (Z1, . . . , ZJ) ˊfrom a standard multivariate normal distribution 

with correlation matrix corr (Z) = RZ. The elements of RZ are calculated by solving 

numerically J (J-1) /2 equations, such that each equation relates corr (Zj, Zjˊ) with corr (Yj,Y jˊ) 

for all  j < jˊ. 

2. Apply the transformation Yj = F-1 [ɸ (Zj)] for all j, where ɸ is the cumulative distribution of the 

standard normal distribution. Since Y1,……., YJ are correlated binary outcomes, then F is the 

CDF of the standard logistic distribution.  

3. Then RZ≈ Ry due to the well-known approximation ɸ(x) = F (x𝜋/3) for all x∈ ꭆ (Cario and 

Nelson, 1997). 

Once data are simulated the missingness in t2 and t3 under MCAR are introduced. The process is 

replicated 1000 times. Then MICE is applied to calculate the percent relative bias (RB %) and the 

MSE in all common four measures of diagnostic accuracy (Sens, Spec, PPV and NPV) for the 

three tests. 

 

Simulation Results 

The relative bias (RB%) and the mean square errors (MSE) are presented in Table 6. 

 

javascript:void(0);
javascript:void(0);
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Table 6: The RB (%) and the MSE of the three estimation methods under MCAR at 0% with 

US, 52.5% with MR and 86.3% with EC for the four diagnostic measures at n=219. 

 

n=219 

  

Simple 

prop. 
LR GEE 

Simple 

prop. 
LR GEE 

Simple 

prop. 
LR GEE 

  (US) (MR) (EC) 

Sens 

original 0.94 0.94 0.94 0.41 0.41 0.44 0.60 0.60 0.66 

Sens 0.94 0.94 0.94 0.42 0.42 0.44 0.59 0.59 0.67 

RBSens  -0.07 -0.02 0.17 2.31 2.39 0.00 -1.96 -0.77 0.55 

MSESens 0.01 0.00 0.00 0.01 0.01 0.01 0.02 0.02 0.01 

Spec 

original 0.97 0.97 0.97 0.90 0.90 0.87 0.65 0.66 0.55 

Spec 0.97 0.97 0.97 0.89 0.89 0.88 0.63 0.65 0.55 

RBSpec  -0.14 0.03 -0.38 -1.44 -1.03 1.52 -2.58 -1.31 -0.33 

MSESpec 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 

PPV 

original 0.97 0.97 0.97 0.77 0.77 0.73 0.58 0.59 0.53 

PPV 0.97 0.97 0.97 0.76 0.77 0.73 0.57 0.58 0.53 

RBPPV  -0.03 0.18 -0.23 -1.17 -0.64 0.65 -1.42 -0.27 0.09 

MSEPPV 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 

NPV 

original 0.95 0.95 0.95 0.66 0.66 0.66 0.67 0.67 0.68 

NPV 0.95 0.95 0.95 0.65 0.65 0.66 0.65 0.66 0.68 

RBNPV -0.19 -0.16 -0.36 -1.07 -0.94 -0.47 -2.26 -0.87 0.13 

MSENPV 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 
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The results show that the US test, the percent of the RB of the estimates of the four diagnostic 

measures for 3 estimation method is less than 1. The MSE of the estimates is the same for the 

simple proportion method and the LR model, but it is slightly higher for the GEE method. 

For the MR test, the performance of the simple proportion method and the LR model is the 

same for the estimation of the four parameters according to the MSE, but the MSE of the estimates 

of the parameters is slightly higher for the GEE method except for the estimate of the PPV. The 

simple proportion method and the LR model have approximately the same percent of the RB for 

the estimate of the Sens. The GEE method records the least percent of the RB for the estimates of 

the Sens and NPV. The percent of the RB for the estimate of the Spec goes from 1 to 2 for the three 

estimation methods. The GEE method and the LR model have approximately the same percent of 

the RB for the estimate of the PPV, but the simple proportion method has higher percent.  

For the EC test, the GEE method showed the best performance in the estimation of the four 

parameters according to the percent RB and the MSE. The LR model has lower RB% than the 

simple proportion method in the estimation of the four parameters, but the two methods have the 

same MSE.      

  

7. DISCUSSION AND CONCLUSION 

Accurate diagnosis of a disease or classification of a sub-type of a disease is often the first step 

toward its treatment and prevention. Missing data are common in diagnostic medical settings 

where some subjects are only measured by a subset of tests (Zhang et al., 2014). Considerable 

methods are developed to assess the diagnostic accuracy of the index tests whose performance is 

under evaluation in the presence of the missing values.  

The missing data mechanisms can be classified according to the process causing missingness 

[10]. The missing data mechanisms are: MCAR, MAR, MNAR. Both MCAR and MAR are 

considered ‘ignorable’ missing data mechanism, as MCAR is a special case of MAR. MNAR is 

denoted as non-ignorable missing. Also, an important issue to determine the missing data pattern 

to select the proper imputation method. The missing data patterns are: univariate, monotone and 

arbitrary. 
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In this article we considered the multiple imputation by chained equations (MICE) approach to 

evaluate binary diagnostic tests with missing data under the MCAR assumption. The MICE 

approach is achieved through three steps. Creating m imputed data sets in the first step. Analyzing 

the m imputed data sets using the simple proportion method, the LR model and the GEE method 

in the second step. Finally, combining the estimates from the second step. The applications are 

conducted using the data analyzed by Poleto et al. [9].  

Poleto et al. [9] introduced an ML approach to evaluate three binary diagnostic tests in the 

presence of missing values. The results that are obtained by the MICE approach including the 

simple proportion method are consistent with those obtained through the LR model, also they are 

so close from those obtained by Poleto et al. [9] using the ML approach. The GEE approach has 

an improvement in the estimates of the parameters, and it also has a drop. 

The simulation results of the current study showed that the MICE approach including the simple 

proportion method and the MICE approach including the LR model have the same performance 

according to the MSE. The GEE method showed the best performance in the estimation of the four 

parameters according to the percent RB and the MSE for one of the 3 tests. The percent relative 

bias of the estimates of the four parameters of the three tests doesn’t exceed 3% for the three 

estimation methods. 
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