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Abstract. In this paper, we formulated and analyzed a fractional-order model for cholera disease transmission that

consists of human population and surrounding environment. Three control strategies namely: health education

campaigns, hygiene practices, and treatment of infected individuals are investigated. We divided the human pop-

ulation into three sub-classes namely: Susceptible, infected and recovered classes. The main assumptions on the

disease transmission were that susceptible humans acquire the disease through contact with either infected humans

or directly from environment. Mathematical analysis of the model was carried out and the threshold quantity R0

which determine the existence of the disease in the population was determined. The model analysis showed that

the disease exist in the population whenever R0 > 1 and dies wherever R0 ≤ 1. It was also noted that both the

disease-free and endemic equilibria are globally stable. Further more, we performed the numerical simulations of

the model and the results showed that the order of derivatives have the influence on spread of cholera disease in

the population. It was also noted that both the aforementioned control strategies have the potential to minimize the

spread of cholera in the community.
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1. INTRODUCTION

Cholera is an infectious intestinal disease caused by the bacterial species Vibrio cholerae [13].

Infectious bacterial cells are carried in vomits or faeces of infected people and spread in the

population through the fecal-oral route [14]. The disease is manifested by severe diarrhea and

excessive vomiting when a person ingests contaminated water or food [15]. The disease has for

years been a major source of public health concern and an indication of the inadequacy of so-

cial amenities in developing countries. The recent cholera outbreaks in Zimbabwe [16], Yemen

[17], Ethiopia [18], Kenya [19], Tanzania [20] and other countries continue to put the disease

in the global limelight. The transmission dynamics of cholera involve several interactions of

humans, pathogens, and the environment [21], which form direct human-to-human and indirect

environment-to-human transmission pathways. Owing to its huge impact on economic devel-

opment and public health, cholera has extensively been researched experimentally, clinically,

and theoretically. Eradication of cholera is possible with appropriate measures such as hygienic

practices, and treatment of infected individuals. Cognizant of this, efforts have been made to

develop feasible intervention and prevention strategies for many years.

Mathematical models to study the dynamics and controls of infectious diseases have been for-

mulated and studied by many mathematicians (see, [38, 23, 7, 24, 36]). Among the efforts

which have been made to comprehend the complex dynamics of cholera disease transmissions

[22]. In [31], a mathematical model of cholera epidemic with optimal control strategies using

Pontryagin’s maximum principle was formulated and studied. The study considered vaccina-

tion, treatment, and awareness programs as the control measures to the spread of cholera disease

in the population. However, the model did not include the provision of safe domestic water as

one of the control parameters. Authors in [26], proposed a model to study the cholera outbreak

in Zimbabwe between 2008 and 2009. The model included both direct (human-to-human) and

indirect (environment-to-human) transmission pathways and established the significance of the

human-to-human transmission pathway in African cholera epidemics. Study in [27] modified

the cholera model proposed and studied in [28], added more control options, and analyzed the

optimal intervention strategies, but no human-to-human infection route was considered. [29]
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proposed and analyzed a deterministic cholera model in Tanzania and incorporated human ed-

ucational campaigns and water treatment as the control strategies. Nevertheless, in their model

analysis, the basic reproduction number which is a threshold value for disease dynamics was

not quantitatively analyzed. Authors in [25] also proposed a mathematical model on the con-

trol of cholera based on hygiene practices as a control strategy. However, their model did not

incorporate the provision of safe domestic water as one of the control strategies. Other recent

cholera models include those in [30], [35], [32], [34], and [33], highlighted that cholera can

be controlled using suitable preventive strategies. However, most of these models did not in-

corporate human awareness campaigns, hygiene practices coupled with treatment of infected

individuals as part of control strategies.

In recent years, researchers have been working on developing mathematical models using

fractional-order derivatives. Many researchers have proposed different types of fractional and

non-local derivatives, suggesting a decrease in all order derivatives, see [37, 38, 39]. For

example, Riemann-Liouville introduced fractional-order differential theory which was further

modified by Caputo [53, 40]. Both Rie-mann-Liouville and Caputo operators are called frac-

tional derivatives with singular kernels [41]. Modeling physical problems using fractional-

order derivatives received many attentions in both biological and engineering systems see,

[42, 43, 44, 45, 46, 47, 48]. This is because fractional-order operators enlarge the region of

stability, capture the memory dynamics and genetic properties which exist in both biological

and engineering systems [49]. It is well known that integer order derivatives do not capture

memory effects and are convenient for the local systems without the effect of external forces

[50]. In addition, fractional-order derivatives can provide a better fit for real data for different

disease models see, [51, 52, 53]. These are the advantages of modeling physical problems using

fractional operators that are not included in integer-order derivatives.

Therefore, motivated by the above studies on fractional-order derivatives, we proposed and

analyzed a fractional-order model of cholera disease transmission that incorporates the effect of

human awareness campaign, hygiene practice and treatment of infected individuals. The paper

is organized in the following form: In section 2 we present the model formulation; section
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3 we perform the model analysis of the proposed model; followed by model simulations and

discussions in section 4, and finally conclusion remarks is presented in section 5.

2. MODEL FORMULATION

In this section, the Caputo fractional-order derivative has been used to define the model differ-

ential equations for cholera disease transmission. The compartments proposed in this study are

used to represent the epidemiological status of each human population and the concentration

of Vibrio bacteria in the environment. The proposed and studied model is governed by the

following assumptions:

(i) We sub-divided compartments for the humans into three sub-classes: susceptible S(t),

infectious I(t), and recovered R(t) populations. Thus, the total population of human is

denoted by N(t), defined by: N(t) = S(t)+ I(t)+R(t). The Vibrios concentration in

the environment is denoted by B(t), and the parameter K, denotes the half saturation

concentration of Vibrios in the environment

(ii) Throughout the document, variables and parameters are assumed to be no-negative and

are defined as follows: Λ and µ represent the rate of new recruitment and natural mor-

tality rate of human populations respectively; 1
α

represents the average time in which

humans spend in the infectious period.

(iii) We are assumed that humans become aware of the disease from education campaigns

and join the recovered class at the rate, θ and never loose their awareness and immu-

nity in the same cholera outbreak. Infected individuals that fail to receive successful

treatment succumb to the disease at the rate d and upon successful therapeutic treatment

recover from the disease after an average of 1
α

days.

(iv) In addition, the parameter ω1 denotes the rate of treatment of infected humans, ω2 is

the excise of hygiene practices to reduce the concentration of vibrio bacteria in the

environment. Parameters βh and βe are the forces of infections between human-to-

human and environment-to-human transmission respectively, and σ denotes the rate of

human shedding vibrio bacteria in the environment.
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Our assumptions on the dynamics of cholera disease in this document illustrated in figure 1 and

corresponding model differential equations presented below:

FIGURE 1. Flow chart for Cholera disease transmission

2.1. Model differential equations.

(1)



c
bDq

t S(t) = Λ
q− (1−θ

q)β
q
h S(t)I(t)− (1−ω

q
2 )β

q
e

S(t)B(t)
kq +B(t)

− (µq +θ
q)S(t),

c
bDq

t I(t) = (1−θ
q)β

q
h S(t)I(t)− (1−ω

q
2 )β

q
e

S(t)B(t)
kq +B(t)

− (µq +dq +ω
q
1 α

q)I(t),

c
bDq

t B(t) = σ
qI(t)− (ω

q
2 +δ

q)B(t),
c
bDq

t R(t) = ω
q
1 α

qI(t)+θ
qS(t)−µ

qR(t).

2.2. Preliminaries on the Caputo fractional calculus. We begin by introducing the defini-

tion of Caputo fractional derivative and state related theorems (see, [3, 4, 5, 41, 11]) that we

will use to derive important results in this work.

Definition 1. Suppose that q > 0, t > b,q,b, t ∈R, the Caputo fractional derivative is given by:

c
bDq

t f (t) =
1

Γ(n−q)

∫ t

b

f n(ξ )

(t−ξ )q+1−n dξ , n−1 < q,n ∈ N.(2)
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Definition 2. (Caputo derivative of a constant [41]). The fractional derivative for a constant

function f (t) = c is zero, that is:

c
bDq

t c = 0.(3)

Let us consider the following general type of fractional differential equations involving Caputo

derivative:

c
bDq

t x(t) = f (t,x(t)), q ∈ (0,1)(4)

with initial condition x0 = x(t0).

Definition 3. (see [3]). The constant x∗ is an equilibrium point of the Caputo fractional dynamic

system (4) if and only if, f (t,x∗) = 0.

In what follows, we present an extension of the Lyapunov direct method for Caputo type frac-

tional order for nonlinear systems [3, 42].

Theorem 2.1. (Uniform Asymptotic Stability [3, 42]). Let x∗ be an equilibrium point for the

non-autonomous fractional order system (4) and Ω ⊂ Rn be a domain containing x∗. Let L :

[0,∞)×Ω→ R be a continuously differentiable function such that:

M1(x)≤ N(t,x(t))≤M2(x)

and:

c
bDq

t N(t,x(t))≤M3(x),

for all q ∈ (0,1) and all x ∈Ω, where M1(x), M2(x) and M3(x) are continuous positive definite

functions on Ω. Then the equilibrium point of system (4) is uniformly asymptotically stable.

The following theorem summarizes a lemma proved in [3], where a Volterra-type Lyapunov

function is obtained for fractional-order epidemic systems.

Lemma 1. (see [3]. Let x(·) be a continuous and differentiable function with x(t) ∈ R+. Then,

for any time instant t ≥ b, one has:

c
bDq

t

(
x(t)− x∗− x∗ ln

x(t)
x∗

)
≤

(
1− x∗

x(t)

)
c
bDq

t x(t), x∗ ∈ R+, ∀q ∈ (0,1).
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3. MODEL ANALYSIS

3.1. Non-negativity and boundness of model system (1).

Theorem 3.1. For the model system (1), there exists a unique solution in (0,∞), however, the

solution is always positive for all values of t ≥ 0and remains in R3
+.

Proof. From the model system (1), we first show that:

R3
+ ={N(t) ∈ R3

+ : N(t) ≥ 0} is positive invariant. Now we have to demonstrate that each

hyper-plane bounding the positive orthant and the vector field points to R3
+. Now consider the

following: let us assume that there exists a t∗ > t0, such that N(t∗) = 0, and N(t) < 0 for

t ∈ (t∗, t1), where t1 is sufficiently close to t∗, if N(t∗) = 0 then we have that:
c
bDq

t N(t∗)−Λ
q > 0. This implies that c

bDq
t N(t) > 0 for all t ∈ [t∗, t1]. The above discussion

shows that the three hyper-plane bounding the orthants, that is the vector field points to R3
+.

This shows that all the solutions of the model system (1) remains positive for all t ≥ 0. �

Theorem 3.2. Let Φ(t) = N(t) be the unique solution of the model system (1) for all t ≥ 0, then

the solution Φ(t) is bounded above, that is, Φ(t) ∈Ω where Ω is the feasible region defined as:

Ω =
{

N(t) ∈ R3
+0≤ N(t)≤CN .

}
which is interior denoted by int(Ω) and given by:

int(Ω) =
{

N(t) ∈ R3
+0≤ N(t)≤CN .

}
Proof. Here we prove that the solutions of model system (1) are bounded for all t ≥ 0. Bi-

ologically, the lowest possible value of each state of the model system (1) is zero. Next, we

determine the upper-bound of states. Based on this discussion, it is easy to show that the fol-

lowing condition holds for biological relevance of species. 0≤ N(t)≤CN From this condition

one gets:

c
bDq

t N(t)≤ Λ
q−µ

qN(t)
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From the Laplace transformation condition, one gets:

SqL[N(t)]−Sq−1N(0)≤ Λq

S
−µ

qL[N(t)]

Collecting the terms, we have:

L[N(t)] ≤ Λ
q S−1

Sq +µq +N(0)
Sq−1

Sq +µq .

= Λ
q Sq−(1+q)

Sq +µq +N(0)
Sq−1

Sq +µq

Using the inverse Laplace transform, we have:

N(t) ≤ L−1
{

pq
Λ

q Sq−(1+q)

Sq +µq

}
−N(0)L−1

{
Sq−1

Sq +µq

}
≤ Λ

qtqEq,q+1(−µ
q)tq +N(0)Eq,1(−µ

q)tq

≤ Λq

µq tqEq,q+1(−µ
q)tq +N(0)Eq,1(−µ

q)tq

≤ Max
{

Λq

µq ,N(0)
}(

tqEq,q+1(−µ
q)tq +Eq,1(−µ

q)tq
)

=
C

Γ(1)
=CN .

Where CN = Max
{

Λq

µq ,N(0)
}
. Therefore, N(t) is bounded above and this complete the proof.

�

3.2. Model Equilibria and Stability Analysis.

3.2.1. Disease-free equilibrium and the basic reproduction number. Since R(t) does not ap-

pear in all the equations in system (1), it is sufficient to analyze the solutions of system (5) for

the behavior of the model differential equations (1).

(5)



c
bDq

t S(t) = Λ
q− (1−θ

q)β
q
h S(t)I(t)− (1−ω

q
2 )β

q
e

S(t)B(t)
kq +B(t)

− (µq +θ
q)S(t),

c
bDq

t I(t) = (1−θ
q)β

q
h S(t)I(t)− (1−ω

q
2 )β

q
e

S(t)B(t)
kq +B(t)

− (µq +dq +ω
q
1 α

q)I(t),

c
bDq

t B(t) = σ
qI(t)− (ω

q
2 +δ

q)B(t).

In what follows, we compute the threshold quantity R0 which determines the power of a disease

to spread in the population. The model system (5) always has a disease-free equilibrium E0
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given by:

E0 :

(
S0, I0,B0

)
=

(
Λq

µq +θ q ,0,0

)
.

Following the next generation matrix approach as used in [6, 2],the non-negative matrix F that

denotes the generation of new infection and the non-singular matrix V that denotes the disease

transfer among compartments evaluated at E0 are defined as follows;

(6) F =

(1−θ q)β
q
h Λq

(µq +θ q)

(1−ω
q
2 )β

q
e Λq

k(µq +θ q)

0 0



(7) V =

(µq +dq +ω
q
1 α

q) 0

−σ
q (ω

q
2 +δ

q)


Therefore, from equations (6) and (7), it can easily be verified that the basic reproduction num-

ber R0 of system (1) is:

R0 = R0h +R0e(8)

Where by:

R0e =
(1−ω

q
2 )σ

qβ
q
e

kq(µq +θ q)(ω
q
2 +δ q)

(9)

R0h =
(1−θ q)Λqβ

q
h

(µq +θ q)(µq +dq +ω
q
1 αq)

(10)

The basic reproduction number R0 is defined as the expected number of secondary cases of

human infections produced in a completely susceptible population by one infected individ-

ual during its lifetime as infectious. The terms R0e and R0h refer to the human-to-human and

environment-to-human disease transmissions respectively.

3.2.2. Stability of the model equilibria. Our goal in this section is to investigate the stability

of the disease-free and endemic equilibria of the model system (5).

Theorem 3.3. if R0 < 1 the disease-free equilibrium point (DFE) of the system (1) is locally

asymptotically stabe when R0 < 1 and unstable if R0 > 1.
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Proof. To prove the theorem (3.3), we evaluate the Jacobean matrix of system (5) at the disease-

free equilibrium and investigate the behavior of eigenvalues. In what follows the Jacobean

matrix of the system (5) evaluated at the disease-free equilibrium is given by:

(11)

JDFE =


−(θ q +µ

q) −(1−ω
q
3 )

β
q
h Λq

(θ q +µq)
−(1−ω

q
2 )

β
q
e Λq

kq(θ q +µq)

0 (1−θ q)
β

q
h Λq

(θ q+µq) − (µq +dq +ω
q
1 αq) (1−ω

q
2 )

β
q
e Λq

kq(θ q+µq)

0 σ
q −(ωq

2 +δ
q)


The first eigenvalue of matrix (11) is given by λ1 = −(θ q + µq) which is non-positive. The

remaining two eigenvalues are obtained in the following matrix:

(12) M =

(1−θ
q)

β
q
h Λq

(θ q +µq)
− (µq +dq +ω

q
1 α

q) (1−ω
q
2 )

β
q
e Λq

kq(θ q +µq)

σ
q −(ω2 +δ

q)


It follows that, we find the characteristic polynomial of the matrix (12) which is given as follows:

(13)

λ
2+

[
−(µq+dq+ω

q
1 α

q)(R0h−1)+(ωq
2 +δ

q)

]
λ −(ωq

2 +δ
q)

[
(µq+dq+ω

q
1 α

q)(R0h−1)+R0e

]
= 0

Since the coefficients of the characteristic polynomial (13) are all non-negative for R0h < 1 and

R0e < 1, then we conclude that for R0 < 1 the disease-free equilibrium E0 of the system (1) is

locally asymptotically stable and this completes the proof. �

Theorem 3.4. The disease-free equilibrium E0 is globally asymptotically stable if R0 ≤ 1, oth-

erwise is unstable.

Proof. To prove the theorem (3.4), we first evaluate the model system (5) at the point E0 which

leads to the following system:

(14)

c
bDq

t S(t) = S(t)
(

Λ
q(

1
S(t)
− 1

S0 )− (1−θ
q)β q

h I(t)− (1−ω
q
2 )

β
q
e B(t)

kq +B(t)

)
,

c
bDq

t I(t) =

(
(1−θ

q)β q
h I(t)+(1−ω

q
2 )

β
q
e B(t)

kq +B(t)

)(
S0 +(S(t)−S0)− (µq +dq +ω

q
1 +α

q)

)
,

c
bDq

t B(t) = σ
qI(t)− (ωq

2 +δ
q)B(t).
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In what follows, we consider the following Lyapunov functional:

(15) L0(t) =

{
S(t)−S0−S0 ln

S(t)
S0

}
+ I(t)+

µq +dq +ω
q
1 αq

σq B(t).

Taking the derivative of L(t) along the system (14) and making simplifications, one gets:

(16)

c
bDθ

t L0(t) ≤ Λ
q
(

2− S(t)
S0 −

S0

S(t)

)
+

(
µ

q +dq +ω
q
1 α

q
)(

R0h−1
)

I(t)

+

(
ω

q
2 +δ

q
)(

R0e−1
)

B(t).

Since all the parameters and variables in system (16) are non-negative, it follows that
c
bDθ

t L0(t) < 0 holds if R0h < 1 and R0e < 1. Moreover, c
bDθ

t L0(t) = 0 if and only if S(t) = 0,

I(t) = 0, B(t) = 0, for all t ≥ 0. Thus, L0(t) is Lyapunov function on Ω. Using Lasalle Invari-

ance principle [1], it implies that every solution of the system (5) approaches the disease-free

equilibrium point E0 as t → ∞. Therefore, we conclude that the disease-free equilibrium point

of system (5) is globally asymptotically stable whenever R0 ≤ 1. This completes the proof. �

Theorem 3.5. The Model system (5) has endemic equilibrium point E∗ which is globally asymp-

totically stable for R0 > 1.

Proof. To prove the theorem (3.5), we consider the following Lyapunov functional:

(17)

L0(t) = C1

{
S(t)−S∗−S∗ ln

S(t)
S∗

}
+C2

{
I(t)− I∗− I∗ ln

I(t)
I0

}
+C3

{
B(t)−B∗−B∗ ln

B(t)
B∗

}
.

Differentiating L1(t) one gets the following:

c
bDq

t L1(t) ≤ C1

(
1− S∗

S

)
c
bDq

t S(t)+C2

(
1− I∗

I(t)

)
c
bDq

t I(t)+C3

(
1− B∗

B(t)

)
c
bDq

t B(t).(18)

In what follows, we substitute (1) in (18) and we get the following:

c
bDθ

t L1(t) ≤ C1

(
1− S∗

S(t)

)(
Λ

q− (1−θ
q)β q

h S(t)I(t)− (1−ω
q
2 )β

q
e

S(t)B(t)
kq +B(t)

− (µq +θ
q)S(t)

)
+ C2

(
1− V ∗

V (t)

)(
(1−θ

q)β q
h S(t)I(t)− (1−ω

q
2 )β

q
e

S(t)B(t)
kq +B(t)

− (µq +dq +ω
q
1 α

q)I(t)
)

+ C3

(
1− B∗

B(t)

)(
σ

qI(t)− (ωq
2 +δ

q)B(t)
)
.

(19)
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Let us set the system (5) at the endemic equilibrium point, that is:

(20)



µ
q +θ

q =
Λq

S∗
− (1−θ

q)β
q
h I∗− (1−ω

q
2 )

β
q
e B∗

kq +B∗

(µq +dq +ω
q
1 α

q) = (1−θ
q)β

q
h S∗+(1−ω

q
2 )β

q
e

S∗B∗

I∗(kq +B∗)
,

f (ω
q
2+δ q) =

σqI∗

B∗
,

f ∗(B) =
B∗

kq +B∗
.

By substituting (20) in (19) and setting the constants Bi = 1 with i = 1,2,3, one gets the follow-

ing after simplifications:

c
bDθ

t L1(t) ≤ Λq

S∗

(
2− S(t)

S∗ −
S∗

S(t)

)
+(1−θ q)β

q
h I∗
(

S(t)
S∗ −

S(t)I(t)
S∗I∗ + I(t)

I∗ −1
)

+(1−ω
q
2 )β

q
e f ∗(B)

(
S(t)
S∗

+
S∗

S(t)
I∗

I(t)
− I(t)

I∗
+1
)

+(1−θ
q)β

q
h S∗
(

1− S(t)
S∗
− I(t)

I∗
+

I(t)S(t)
I∗S∗

)
+(1−ω

q
2 )β

q
e

f ∗(B)S∗
I∗

(
f (B)
f ∗(B) −

f (B)I∗

f ∗(B)I(t) −
I(t)
I∗ +1

)
(21)

Note that x− 1 ≥ ln(x) for any x > 0, and this holds if and only if x = 1. In what follows, we

have:

(
S(t)
S∗ −

S(t)I(t)
S∗I∗ + I(t)

I∗ −1
)

= ≤ ln
S(t)
S∗
− S(t)

S∗
+ ln

S(t)I(t)
S∗I∗

+
I(t)
I∗
− ln

I(t)
I∗

= ln
S(t)
S∗
− S(t)

S∗
+

I(t)
I∗
− ln

I(t)
I∗(

S(t)
S∗ + S∗

S(t)
I∗

I(t) −
I(t)
I∗ +1

)
≤ ln I(t)

I∗ −
I(t)
I∗ + S∗I∗

S(t)I(t) − ln I∗S∗
I(t)S(t)(

1− S(t)
S∗ −

I(t)
I∗ + I(t)S(t)

I∗S∗

)
≤ ln S(t)

S∗ −
S(t)
S∗ + I(t)S(t)

I∗S∗ − ln I(t)S(t)
I∗S∗(

f (B)
f ∗(B) −

f (B)I∗

f ∗(B)I(t) −
I(t)
I∗ +1

)
= ≤ ln

f (B)I∗

f ∗(B)I(t)
+

f (B)
f ∗(B)

− ln
f (B)
f ∗(B)

+ ln
I(t)
I∗
− I(t)

I∗

=
f (B)
f ∗(B)

− ln
f (B)
f ∗(B)

+ ln
I(t)
I∗
− I(t)

I∗

(22)

Since
(

2− S(t)
S∗ −

S∗
S(t)

)
≤ 0, it follows from equation (22) yields the following:

c
bDθ

t L1(t) ≤ +(1−ω
q
3 )β

q
h I∗
(

ln S(t)
S∗ −

S(t)
S∗ + I(t)

I∗ − ln I(t)
I∗

)
+(1−ω

q
2 )β

q
e f ∗(B)

(
ln

I(t)
I∗
− I(t)

I∗
+

S∗I∗

S(t)I(t)
− ln

I∗S∗

I(t)S(t)

)
+(1−ω

q
3 )β

q
h S∗
(

ln
S(t)
S∗
− S(t)

S∗
+

I(t)S(t)
I∗S∗

− ln
I(t)S(t)

I∗S∗

)
+(1−ω

q
2 )β

q
e

f ∗(B)S∗
I∗

(
f (B)
f ∗(B) − ln f (B)

f ∗(B) + ln I(t)
I∗ −

I(t)
I∗

)
(23)
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Since the arithmetic mean is greater than or equal to the geometrical mean, it follows that; from

(23), one can note that c
bDq

t L1(t) ≤ 0 whenever R0 > 1. Therefore, using Lasalle Invariance

principle [1], the system (1) has a global asymptotically stable equilibrium point for all R0 ≥ 1

and this completes the proof. �

4. NUMERICAL SIMULATIONS

In this section, we perform the numerical simulations of the model system (1) using MATLAB

programming language to support the analytical results and determine the effects of proposed

control strategies. We utilized the fractional Adam-Bashforth-Moulton scheme to simulate the

model (1) as illustrated below;

Consider the nonlinear differential equation:

c
bDq

t Φ(t) = f (t,Φ(t)),0≤ t ≤ T(24)

With the initial conditions:

Φ
p(t) = Φ

p
0 , p = 0,1,2, ...[q]−1(25)

Now, with operating by the fractional integral operator on the equation 24, we can obtain on the

solution Φ(t) by solving the following equation:

Φ
p(t) =

|q|−1

∑
p=0

Φp

p!
t p +

1
Γ(q)

∫ t

0
(t− τ)q−1 f (τ,Φ(τ))dτ(26)

Diethelm [5] used the predictor-corrector scheme based on the Adam-Bashforth-Moulton algo-

rithm to solve the equation 24. setting h = T
N , tn = nhand n = 0,1,2, ...,N ∈ Z+. Therefore we

can discrete the equation 26 as follows:

Φh(tn+1) =
|q|−1

∑
p=0

Φ
p
0

p!
t p
n+1 +

hq

Γ(q+2)

n

∑
m=0

am,n+1 f (tm,Φm)+
hq

Γ(q+2)
f (tn+1,Φ

v
n+1)(27)

where by tm = mh with some fixed h and:

am,n+1 =


nq+1− (n−q)(n+q)q, m = 0,

(n−m+2)q+1 +(n−m)q+1−2(n−m+1)q+1, 1≤ m≤ n,

1 i f m = n+1.
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and the predicted value :

Φ
p
tn+1 =

|q|−1

∑
p=0

Φ
p
0

p!
t p
n+1 +

1
Γ(q)

n

∑
m=0

bm,n+1 f (tm,Φh(tm))(28)

With

bm,n+1 =
hq

q

(
(n+1−m)q− (n−m)q

)
(29)

The error estimate is

max
0≤m≤k

|Φ(tm)−Φh(tm)|= O(hp)(30)

with k ∈ N and p = min(2,n+q)

4.1. Application of Adam-Bashforth-Moulton Scheme to the proposed model. In this sec-

tion, we utilize the Adam-Bashforth-Moulton method to numerically solve the nonlinear frac-

tional model (1). In the view to the generalized Adam-Bashforth-Moulton scheme, the proposed

model (1) has the following form:



S(tn+1) = S0 +
hq

Γ(q+2)
fS
(
tn+1,Sp(tn+1), Ip(tn+1),Rp(tn+1),Bp(tn+1)

)
+

hq

Γ(q+2)

n

∑
m=0

am,n+1 fS
(
tm,S(tm), I(tm),R(tm),B(tm)

)
,

I(tn+1) = I0 +
hq

Γ(q+2)
fI
(
tn+1,Sp(tn+1), Ip(tn+1),Rp(tn+1),Bp(tn+1)

)
+

hq

Γ(q+2)

n

∑
m=0

am,n+1 fI
(
tm,S(tm), I(tm),R(tm),B(tm)

)
,

R(tn+1) = R0 +
hq

Γ(q+2)
fR
(
tn+1,Sp(tn+1), Ip(tn+1),Rp(tn+1),Bp(tn+1)

)
+

hq

Γ(q+2)

n

∑
m=0

am,n+1 fR
(
tm,S(tm), I(tm),R(tm),B(tm)

)
,

B(tn+1) = B0 +
hq

Γ(q+2)
fB
(
tn+1,Sp(tn+1), Ip(tn+1),Rp(tn+1),Bp(tn+1)

)
+

hq

Γ(q+2)

n

∑
m=0

am,n+1 fB
(
tm,S(tm), I(tm),R(tm),B(tm)

)
.

(31)
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Where: 

Sp(tn+1) = S0 +
1

Γq

n

∑
m=0

bm,n+1 fS(tm,S(tm), I(tm),R(tm),B(tm)),

Ip(tn+1) = I0 +
1

Γq

n

∑
m=0

bm,n+1 fI(tm,S(tm), I(tm),R(tm),B(tm)),

Rp(tn+1) = R0 +
1

Γq

n

∑
m=0

bm,n+1 fR(tm,S(tm), I(tm),R(tm),B(tm)),

Bp(tn+1) = B0 +
1

Γq

n

∑
m=0

bm,n+1 fB(tm,S(tm), I(tm),R(tm),B(tm)).

(32)

In what follows we have:

fS(tm,S(tm), I(tm),R(tm),B(tm)) = Λ
q− (1−ω

q
3 )β

q
h S(t)I(t)− (1−ω

q
2 )β

q
e

S(t)B(t)
kq +B(t)

−(µq +θ q)S(t),

fI(tm,S(tm), I(tm),R(tm),B(tm)) = (1−ω
q
3 )β

q
h S(t)I(t)− (1−ω

q
2 )β

q
e

S(t)B(t)
kq +B(t)

−(µq +dq +ω
q
1 αq)I(t),

fR(tm,S(tm), I(tm),R(tm),B(tm)) = σ
qI(t)− (ωq

2 +δ
q)B(t),

fB(tm,S(tm), I(tm),R(tm),B(tm)) = ω
q
1 α

qI(t)+θ
qS(t)−µ

qR(t).

(33)

Additionally, the quantities

fS(tn+1,Sp(tn+1), Ip(tn+1),Rp(tn+1),Bp(tn+1)),

fI(tn+1,Sp(tn+1), Ip(tn+1),Rp(tn+1),Bp(tn+1)),

fR(tn+1,Sp(tn+1), Ip(tn+1),Rp(tn+1),Bp(tn+1)),

fB(tn+1,Sp(tn+1), Ip(tn+1),Rp(tn+1),Bp(tn+1)).

(34)

are the derivatives from (33) at the point tn+1,n = 1,2,3, ...m.

In simulating the model system (1), we assumed the initial condition that S(0) = 12, I(0) = 1,

and B(0) = 230. The parameters used in the model simulations are in table (1).
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TABLE 1. Description of parameters used in the model system (1)

Symbol Description Value Units

Λ New recruitment rate of humans 0.0000548 Years−1 [9]

µ Natural mortality rate of humans 0.02 Years−1 [12]

βe environment-to-human transmission rate 0.124 Day−1 [9]

βh Human-to-human transmission rate 0.0444 Day−1 [9]

d Disease mortality rate of humans 0.013 Day−1 [10]

K Vibrio cholerae concetration in the Environment 500 cells/ml [12]

σ Shedding rate of humans in the environment 10 cells/ml day−1person−1 [12]

δ Vibrio cholerae decay in the environment 1
30 Day−1 [12]

α Recovery rate of infected humans 0.2 Day−1 [12]

θ Human awareness rate Variable Dimensionaless

ω1 Rate of teatment of infected humans Variable Dimensionaless

ω2 Effect of hygiene practices Variable Dimensionaless

4.2. Sensitivity analysis of the reproduction number. The results from model system (1)

have shown that the basic reproduction number is an important threshold parameter for persis-

tence and extinction of cholera disease in the population. Most of the parameters in this study

have been drawn from the literature and some were estimated, therefore, it is important. to per-

form the sensitivity analysis to demonstrate the influence of each parameter in the magnitude of

basic reproduction number R0.

Definition 4. (See, [8]) The normalized sensitivity index of R0 which depends on differentiably

of parameter, ζ is defined as Φ
R0
ζ

= ∂R0
∂ζ
× ζ

R0
.

The implication of the sensitivity analysis is that the model parameters whose sensitivity index

is positive increase the magnitude of R0 whenever they are increased and those with a nega-

tive index decrease the magnitude of R0 whenever they are increased. Therefore, the value of

normalized sensitivity index for each parameter used in the model (1) is summarized in table

(2):
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TABLE 2. Sensitivity analysis of parameters for the model system (1)

Parameter Λ µ βe βh d K δ

Index +0.0085 -0.0548 +0.4915 +0.0085 -0.0031 -0.4915 −0.0259

Parameter σ α ω1 ω2 ω3 θ

Index +0.4915 -0.0005 -0.0005 -1.2030 -0.0042 -0.45

FIGURE 2. Sensitivity analysis of the model system (1)

From the results in Fig. 2, it was noted that model parameters Λ, βe, βh, and σ have a positive

influence on the magnitude of R0, that is, whenever they are increased, the magnitude of R0

increases. For instance, an increase in βe by 10% will lead to an increase in the magnitude

of the magnitude of R0 by 4.915%. Model parameters with negative index values have a neg-

ative influence on R0, for example, an increase in ω2 by 10% will lead to a decrease on R0 by

12.030%.
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(a)

(b)

FIGURE 3. Effects of varying (a) Rate of treatment of infected humans ω1 on

R0 (b) hygiene practices ω2 on R0

Numerical results in Fig. 3 (a), shows the effects of varying treatment rate ω1 on R0. From the

results we noted that increasing the treatment rate of infected human (modeled by parameter

ω1) decreases the size of R0. we can note that, whenever ω1 is greater than 0.2 the disease

dies in the community. In Figure 3 (b), we investigate the effect of hygiene practice, ω2 on

the spread of disease in the community. We noted that whenever the hygiene practive rate, ω2

is greater than 0.1 the disease dies in the community which implies that exercising by 10% of

hygiene practices, the disease become eliminated in the community.
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FIGURE 4. Effect of varying human awareness θ on R0

Simulation results in Fig. 4, depicts the effects of varying human awareness rate θ on R0. The

results shows that an increase in human awareness rate (modeled by parameter θ ) decreases

the size of R0. In particular, whenever θ > 0.4, then R0 < 1 which implies that it increases the

human awareness rate by more than 40% the disease dies in the community.

FIGURE 5. Effects of varying Shedding rate of vibrio bacteria σ on R0
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FIGURE 6. Effects of varying the rate of disease transmission between humans

and environment βe on R0

Numerical results in Fig. 5, shows the effects of varying shedding rate of infected humans in the

environment σ on R0. From the results we observed that increasing the shedding rate of infected

human in the environment (modeled by parameter σ ) the disease persists in the community. In

Fig. 6, shows the effect of varying the probability of disease transmission from environment

to susceptible humans. One can note that increasing the risks of disease transmission from

environment to susceptible humans, βe the disease persists in the community.

FIGURE 7. A contour plot of R0 as the function of hygiene practices (modeled

by the parameter ω2) and health education campaigns (modeled by the parameter

θ )
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Figure (7) shows the contour plot of R0 as function of hygiene practices and social mobilization

on cleaning the environment ω2 and education campaigns θ on reducing the spread of cholera

disease in the community. From numerical simulation, it was noted that increasing the rate of

hygiene practices and education campaigns θ , can lead to elimination of the disease in the pop-

ulation. This results demonstrate the effect of health education campaign and hygiene practice

on reducing the spread of cholera disease in the population.

FIGURE 8. A contour plot of R0 as the function of rate of treatment on infected

human (modeled by the parameter ω1) and health education campaign (modeled

by the parameter θ )

Figure (8) depicts the contour plot of R0 as a function of treatment on infected human ω1, and

health education campaign θ . The numerical results demonstrated that increasing the rate of

treatment on infected humans ω1 and use of health education campaigns θ reduce the magnitude

of basic reproduction number R0. In particular, one can note that the rate of health education

campaign must be greater that 20% for the disease to be eliminated in the community.
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FIGURE 9. A mesh plot of the model system (1) to show the effect of treatment

on infected humans (modeled by the parameter ω1) and health education cam-

paign (modeled by the parameter θ )

Figure (9) depicts the mesh plot of R0 as a function of treatment on infected humans ω1, and

health education campaign θ on reducing the spread of cholera disease in the community. From

numerical simulation, one can observe that both treatment on infected humans ω1, and health

education campaigns θ have the potential to reduce the magnitude of basic reproduction number

R0. The result demonstrate that increasing the aforementioned parameters minimize the spread

of cholera disease in the community.

FIGURE 10. A mesh plot of the model system (1) to show the effect of hygiene

practice (modeled by parameter ω2), and health education campaign (modeled

by the parameter θ )
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4.3. Fitting the proposed model with cholera cases reported in Tanzania. In this section,

we use the real data of cholera cases from Tanzania as reported in [29] to fit in the proposed

model (1). The present data are yearly reported from 1998 to 2010 as presented in table (1). We

utilized the Adam-Bashforth-Moulton scheme presented in (31) to numerically fit the real data

in the model, and the commutative new infections predicted by the model (1) is obtained using

the equation (35):

c
bDq

t C(t) = βhI(t)S(t)+
βeS(t)B(t)

k+B(t)
(35)

TABLE 3. Commutative of cholera cases in Tanzania from 1998 to 2010 as re-

ported in [29]

Year 1998 1999 2000 2001 2002 2003 2004

Cases 296 12266 4637 2154 12403 12919 9639

Year 2005 2006 2007 2008 2009 2010

Cases 3284 14297 2860 1619 6295 5566

FIGURE 11. The model system (1) fitted to cholera cases in Tanzania at q =

0.23. The red circles indicate the real data and the smooth line denotes the model

fit to the real data. We used the cholera cases as reported in [29]
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Figure (11) denotes the commutative detected cholera cases in Tanzania. We used the cases

reported in [29] to fit the model system (1) at the order of derivative q = 0.23. The results show

that the model system (1) fit well on reported cholera cases in Tanzania.

FIGURE 12. The model system (1) was fit to cholera cases in Tanzania at q =

0.22, q = 0.23, q = 0.24, and q = 0.25. The red circles indicate the real data and

the smooth line indicates the model fit to the real data. We used the cholera cases

as reported in [29].

Figure (12) shows the commutative detected cases of cholera cases in Tanzania at different

fractional-order of derivatives. We used the cholera cases in Tanzania as reported in [29] to

fit the model system (1) at q = 0.22, q = 0.23, q = 0.24, and q = 0.25. It was noted that at

different values of memory species the model system (1) fits well with cholera cases reported

in Tanzania.

4.4. Simulation of the model to support the analytical results. In this section, we simulated

the model (1) at q∈ (0,1] to support the analytical results. We first simulate the model at R0 < 1,

followed by simulation at R0 > 1 and show the behavior of solution profiles in a long-range of

interaction between humans, pathogens and environment.
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(a)

(b)

(c)
FIGURE 13. Simulation of the model system (1) to show the convergence of

solution profiles at R0 < 1

Figure (13) shows the simulation of model (1) to demonstrate the convergence of solution to the

disease-free equilibrium point. We simulated the model at R0 ≤ 0.1163 with ω1 = 0.01, ω2 =

0.6, and θ = 0.18. We observed that by varying the fractional order derivative q, the solution

profile of the model converge to unique point which is equilibrium point. In particular, the

disease can be eliminated in the population after 15 days of infections. Additionally, as the

order of derivatives decrease from integer the solution of model attain its stability much faster

compared to that close of integer order derivative.
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(a)

(b)

(c)
FIGURE 14. Simulation of the model (1) to show the convergence of solution

profiles at R0 > 1.

Figure (14) depicts the simulation of model (1) to show the convergence of solutions at the

endemic equilibrium point. We simulated the model at R0 > 13.3332 with ω1 = 0.001, ω2 =

0.06, and θ = 0.018. We noted that, at different values of fractional order derivatives q, the

solution profiles converge to the endemic equilibrium point. In particular we observed that after

20 days of infections the disease persists in the population.
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5. CONCLUSION REMARKS

In this work, a fractional-order model for cholera disease transmission was proposed and stud-

ied. The model analysis was carried out and the results revealed that there exists global stability

of disease-free and endemic equilibrium points whenever R0 ≤ 1 and R0 > 1 respectively. We

also performed the Sensitivity analysis of the model and the results showed that some parame-

ters have a major influence on the spread of cholera disease in the community. From numerical

simulations, We have used the Matlab programming to simulate the proposed model (1) at

R0 < 1 and R0 > 1 to support the analytical results. We observed that for R0 < 1, all solu-

tion profile of the model converge to the disease-free equilibrium point. In particular, after 15

days the disease dies in the population. Further more, we noted that as the order of derivatives

decrease from integer the number of infections also decrease in the community.

Further more, we performed the sensitivity analysis of the model and we noted that some

parameters have influence on spread of the disease in the community. In particular, increasing

the shading rate of vibrio bacteria from infected humans in environment lead increase on the

spread of disease in the population. Also, we used the real data of cholera cases in Tanzania as

reported in [29] to fit in the proposed model. We noted that the formulated model fits well to the

reported cholera cases in Tanzania. To minimize the spread of the disease in the population, we

incorporated three control strategies in the proposed model namely; health education campaign,

hygiene practice, and treatment of infected individuals. From the numerical simulations, we

noted that, implementing human awareness by 40%, hygiene practices by 15% and treatment

of infected humans by 20% can lead to elimination of the disease in the population. Finally,

we simulated the model to support the analytical results at R0 < 1 followed by simulations at

R0 > 1. The results showed that at different values of order of derivative, the solution profile

of the model attains its stability at the equilibrium point which agree with analytical result

on existence of global stability. In future, we will take and improve the formulated model by

incorporating human movement and assess their effect on the dynamics of cholera disease in

the population.
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